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SUMMARY

In this article, we analyze a single server dynamic service system between conventional and retrial
queueing modes with impatient customers and switch-off and close-down periods of the server.
In such a system, analytical expressions for the steady-state joint probabilities of the status of the
server and the orbit size are derived in terms of hypergeometric functions. The factorial moments
of the orbit size are also determined. Several interesting and key performance measures have been
obtained. Moreover, the regenerative cycle length of the system and its related characteristics are
discussed. Finally, extensive numerical results are presented graphically to illustrate the effects of
the system parameters on the vital performance measures.
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1. INTRODUCTION

Queueing systems play a prominent role in the dimensioning and the performance anal-
ysis of a wide range of computer networks and communication systems. In fact, new
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results in queueing models have often been inspired by new technological advances in
wireless mobile networks and Wi-Fi internet systems. The classical/conventional queue-
ing model is the single-server service station where the server works at a constant speed.
In such a model, customers arrive at service station according to a Poisson process and
the service times of customers are independent and exponentially distributed random
variables. An arriving customer that finds an idle server, it immediately accesses the
server for the service. On the other hand, in the conventional queueing systems, it
is always assumed that when an arriving customer sees the busy server, either it joins
the infinite capacity waiting line to receive its service leading to unbounded queue size
or leaves the system forever without service, known as loss system (see Takagi, 1991;
Medhi, 2002). To alleviate the situations of either loss of the customers or overloading
the service area in the conventional queues, a new class of queueing system, often called
retrial queueing system, has been proposed as an alternative solution among others.

In the retrial queueing system, the buffer does not exist and hence an arriving cus-
tomer or request, not able to get service immediately, leaves the service zone and enters
a virtual place, called as orbit/retrial group. While waiting in the orbit, each orbiting
customer tries again independently to capture a free server in a random order and at
random time intervals by competing with other customers present in the orbit and new
primary arrivals. Analysis of retrial queues is more difficult than the investigation of
the corresponding system with buffers due to the space inhomogeneous of the number
of customers in the system and the necessity of monitoring the status of the server.

Nowadays, retrial queues are widely used for many real application systems such as
telephone switching systems, digital mobile communication networks, random access
protocols in wireless networks, automatically repeated request call centers, wavelength-
routed optical networks, cloud computing systems, just to name a few. For instance,
Choi et al. (1992) have studied the stability of the CSMA / CD (Carrier Sense Multiple
Access with Collision Detection) protocol, by a retrial queue. Later, Kumar et al. (2010)
have investigated the retrial queues with collision of packets in wireless LAN (Local Area
Network) with random access protocols and obtained vital performance measures of the
system. Avrachenkov and Yechiali (2008) have used a retrial queueing network to model
TCP (Transmission Control Protocol) traffic and derived related performance measures
of interest. Tran-Gia and Mandjes (1997) and Economou and Herrero (2009) have pro-
posed the retrial queueing systems for cellular communication networks and provided
key performance measures such as waiting time distribution, idle time of guard chan-
nels, etc. Aguir et al. (2008, 2004) have analyzed the impact of retrial phenomenon of
calls in the call centers and obtained the mean number of calls in the orbit and the block-
ing probability of calls by employing the retrial queueing system. Retrial queues have
also been used for performance analysis of optical communication networks by Abidini
et al. (2017). Artalejo and Phung-Duc (2012) have also performed a detailed study of
a single server call center retrial queue with two-way communication by adopting the
generating function technique. Recently, Kumar et al. (2021) have examined the multi-
processor two-stage tandem call center retrial queues with non-reliable processors and
derived some performance measures such as waiting time distribution of calls, the busy
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period of the call center, availability of the processors, etc. For excellent and compre-
hensive overviews of several results and the bibliographical information about retrial
queues, we refer the reader to the outstanding survey papers by Falin (1990), Kulka-
rni and Liang (1997), Choi and Chang (1999), Artalejo (2010) and Kim and Kim (2016).
Moreover, the detailed review of the analytical results and algorithmic approach on these
topics can be found in the monographs by Falin and Templeton (1997) and Artalejo and
Gomez-Corral (2008) and the references therein.

Impatience of customers is another vital phenomenon which is commonly encoun-
tered in several service systems. Impatient customers may leave (renege from) the sys-
tem before receiving service, if either a long wait already experienced in the queue or
a long wait anticipated by a customer upon arrival. As a result, customers’ impatience
or reneging leads to loss in revenues and customers’ goodwill to the service provider.
In fact, customers’ impatience will affect the system performance measures. In recent
years, queueing systems with customers’ impatience have drawn significant attention in
the designing and the performance evaluation of the complex computer networks and
the modern telecommunication systems. For instance, (i) the call center in which cus-
tomers’ hang up occurs due to impatience before they are served; (ii) in the real-time
data transmission network system, when the data packet is received after a hard dead-
line, it turns out to be useless, and (iii) the telecommunication system where the sub-
scribers give up owing to impatience before the required connection is established. For
significant aspects of queues with impatient customers and their applications, see the
research articles by Brandt and Brandt (2004), Altman and Yechiali (2006), Economou
and Kapodistria (2010), Phung-Duc (2014), Yue et al. (2016) and Peng and Wu (2020).

Enhancing energy efficiency in ICT (Information and Communication Technology)
service systems such as data transmission centers, cloud computing systems, call centers,
etc., is one of the challenging issues because the server in operative state consumes a
huge amount of energy. The simple way to reduce energy consumption is dynamic
control of switch on/off server according to the traffic load of the system. However,
this approach causes the additional energy and time loss due to switching off/on of the
server. Moreover, an off server needs some time in order to be active during which the
server consumes energy but cannot process a job. Hence, there is a delay in processing of
jobs when they arrive during the switch-off state. Thus, there exists a trade-off between
energy consumption and delay performance. Therefore, it is highly important to know
under what conditions it will be advantageous to put the server in switch-off state or
leave it in the operative state.

Taking into consideration of the above facts, ICT service systems are redesigned by
adding one more new feature apart from the server’s switch-on and switch-off states.
Specifically, when there is no job in the system to be served, the server is not immedi-
ately switched-off but stays idle for some random time duration, the so-called close-down
period. During the close-down time period, if a job arrives, the server immediately re-
turns to the switch-on state and begins service for that job, thereby the system busy
period starts again. On the other hand, if no job arrives until the end of close-down pe-
riod, the server enters into switch-off state for some random time duration. The systems



84 B. K. Kumar et al.

dealing with the concept of close-down and switch-off periods along with their applica-
tions have been investigated in various communication network systems by Hassan and
Atiquzzaman (1997), Niu et al. (2003), Sakai et al. (1998), Mitrani (2013), Kumar et al.
(2015), Phung-Duc (2017), Daraseliya and Sopin (2017) and Chang et al. (2019).

Another important aspect in the study of the queueing system is the oscillation of the
server. In such oscillating service queue, depending on the evaluation of number of cus-
tomers in the system, the server either provides the service at two different service rates
or switches between two different queueing modes. The oscillating queueing analysis is
often considered to be an effective instrument in modelling and performance analysis of
communication networks and service industries. For related research works pertaining
to the oscillating queueing systems and their applications, the readers are referred to re-
search papers by Choi and Choi (1996), Boxma and Kurkova (2001), Chydzinski (2002),
Mitrani (2013) and Banik (2015).

Several research articles have been appeared separately on retrial queueing systems,
impatience of customers, oscillating service systems and switch-off and close-down peri-
ods of the server. However, the investigation of retrial queueing system taking together
with the aforementioned features seems to be quite complicated and has not been stud-
ied in detail up to now. This motivates us to analyze a new class of oscillating retrial
queueing system with impatient customers, where the server needs the switch-off and
close-down periods.

Thus, here we study the oscillation of a single server between conventional queue
and retrial queue with impatient customers in which the close-down and switch-off pe-
riods of the server are considered. Further, our oscillating queueing system is equipped
with the mechanism of search of customers from the orbit in the following manner:
Whenever the number of customers in the orbit is less than or equal to the threshold
value N at a service completion epoch, the server immediately fetches the next cus-
tomer directly from the orbit, if any, for service with probability one. The time taken
for search is negligible. Hence, the system is operated in the classical queueing mode.
While the orbit size reaches N+1, no more search is made for customers and the system
switches to retial queueing mode and continue to operate under this mode until the size
of the orbit comes down to threshold value N at a service completion epoch. Thus, in
the retrial queueing mode, the customers from the orbit have to make retrials on their
own to occupy the free server for service. In addition, it is assumed that customers wait-
ing in the orbit may become impatient due to delay and decide to renege from the system
without getting service. The event of customers’ impatience occurs only when the size
of the orbiting customer is above the threshold value level N and at the same time the
server is being busy in the retrial queueing mode.

The motivation of this article is twofold. The first one is to study a versatile dy-
namic operating of a single server retrial queueing system with orbit search mechanism.
This provides insight of the link between the conventional queue with close-down and
switch-off periods of the server and the retrial queue with impatience of customers. The
notion of searching for customers in the orbit and the threshold value N would reduce
the idle time of the server resulting in improvement of the quality of service. More
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specifically, for a large threshold value N , the retrial queue resembles to a conventional
queue, whereas for small threshold value N , the idle time of server between two con-
secutive services will be rather lengthy if the system is in the retrial queueing mode. To
alleviate such long idle times, the server fetches the next customer right away from the
orbit as long as the number of customers in the orbit is below the pre-specified value
N . Furthermore, when the orbit size increases, retrial intensity also correspondingly
increases and hence the customers from the orbit generate the retrial flow quite often in
order to access service. As a result, the frequent retrial attempts reduce the idle time of
the server between services and hence the customers’ impatience while waiting in the
orbit is controlled and thus the loss of customers is reduced.

The second objective is to derive the analytical expressions for the steady-state joint
probabilities of the status of server and the number of customers in the orbit by employ-
ing the recursive scheme along with various performance descriptors of the system. Fur-
ther, we also show usefulness of a regenerative cycle approach, which is only concerned
with a single busy cycle, and uses a well known regenerative cycle formula to study
general structures of the average measures of the system such as the expected lengths of
server’s switch-off and close-down periods, the mean of the server being busy in both
conventional and retrial queueing systems and the average busy period of the system.

This article is organized in the following manner. In Section 2, the mathematical
model is described briefly. The compact expressions for the steady-state joint probabil-
ities of the status of server and the number of customers in the orbit are determined in
terms of generalized hypergeometric functions in Section 3. Section 4 deals with the
factorial moments for the system under discussion. In Section 5, some key performance
measures of the system are obtained. Section 6 discusses several important character-
istics in terms of the cycle period of the system. Numerical examples are provided to
illustrate the effects of system parameters on the vital performance measures in Section
7. In the final Section, we make some conclusions and remarks.

2. MODEL DESCRIPTION

We consider the oscillation of a single server between conventional/classical queueing
mode and retrial queueing mode with unlimited orbit capacity. In this system, the server
resides in one of three phases, namely operative period, close-down period and switch-
off period. During the operative period, primary customers arrive at the service area
according to a Poisson process with rate λ. The service times for all customers are in-
dependent and exponentially distributed with mean 1

ν . An arriving primary customer
immediately begins its service, if idle server is available at the arrival epoch. Otherwise,
it leaves the service area and joins the orbit. It is assumed that whenever the number of
customers in the orbit is less than or equal to the threshold value N at a service comple-
tion instant, the server immediately fetches the next customer directly from the orbit,
if any, for service with probability one and the time for this processing is negligible.
It means that the system is operated in a conventional queueing mode. As soon as the
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orbit size becomes greater than or equal to N + 1, i.e., once exceeds the threshold value
N , the system transits to retrial queueing mode and continues to operate under this
mode until the size of the orbit comes down to threshold value N at a service comple-
tion epoch. In the retrial queueing mode, the customers in the orbit conduct retrials
to access the server under the classical retrial policy until occupy the server. That is,
the inter-retrial time intervals are assumed to be exponentially distributed with inten-
sity µ j = jµ, where j (with j ≥N + 1) is the number of customers in the orbit/retrial
group and µ (with µ > 0) is the retrial rate. Consequently, there is a competition be-
tween primary and orbital customers for getting into the server for the next service.
Besides, customers waiting in the orbit may become impatient, so that they decide to
leave the system forever without getting the service. The events of customers’ impa-
tience occur only when the size of the orbiting customers is above the level N and at
the same time the server is being busy in the retrial queueing mode. More specifically,
while the number of customers in the orbit is at least N+1 and the server is also busy in
serving a customer, each waiting customer in the orbit activates an independent “impa-
tience timer”, τ, which is restricted by a random time having exponential distribution
with mean 1

ξ . If a customer’s retrial attempt has not been completed successfully before
the impatience timer expires, the customer abandons the system without getting service
and never returns. Whereas, if the orbit size j ≤ N , the waiting customers in the orbit
do not leave but stay in the system until their services are completed, behaving like the
conventional/classical queueing system. Thus, our dynamic service system deals with a
back and forth movement between conventional queue and retrial queue modes in the
operative period.

Apart from oscillation of the server between the two queueing modes with impa-
tience of customers, the server, upon completion of the services of all customers and the
system is empty, turns to close-down period for a random duration. The close-down
time periods are exponentially distributed random variables with mean 1

η . During the
close-down period, if a new primary customer arrives, the close-down period can be
interrupted and the server immediately returns to the operative period and starts serv-
ing for that customer, thereby the system busy period commences again. On the other
hand, if the close-down period expires before the arrival of a new primary customer,
the server immediately goes to switch-off mode for maintenance whose time duration is
exponentially distributed with mean 1

β . As the server is under the maintenance during
the switch-off period, the processing of service is suspended. Hence the new primary
arrivals are not allowed to join the system and loss forever. After completion of the
switch-off period, the server returns to the operative period and stays in an idle state.
The server is now ready to provide service if the primary customer arrives during the
idle state of the conventional queueing mode, thus a new busy period of the system be-
gins. For mathematical tractability and to provide exact analytical results of the system,
all the random variables defined above are assumed to be mutually independent.

From the above assumptions, we can model our dynamic operating of the single
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server retrial queueing system with impatient customers, where the server involves the
close-down and the server switch-off periods as a continuous time Markov chain (CTMC).

Let Nq (t ) denote the number of customers in the retrial group/orbit at time t and
J (t ) describe the status of the server at time t defined as:

J (t ) =



















0 if the server is idle,
1 if the server is busy,
S if the server is in switch-off state,
C if the server is in close-down state.

Thus, under these settings, the system states at time t can be described by the bivari-
ate process {X (t ); t ≥ 0} = {(J (t ),Nq (t )); t ≥ 0} taking the values on the state space
Ω = {0,1, S,C } × Z+, where Z+ = {0,1,2, . . .}. Consequently, the bivariate process
{X (t ); t ≥ 0} is an irreducible and aperiodic CTMC. In what follows,
π(i , j , t ) = P (J (t ) = i , Nq (t ) = j ), i ∈ {0,1, S,C }, j ∈ Z+, is the joint probability dis-
tribution of the status of the server and the number of customers in the orbit at time t .
By our hypothesis, whenever orbit size j ≤N , at a service completion epoch, evidently,
π(0, j , t ) = 0 for j = 1,2,3, . . . ,N , since on service completion the server immediately
fetches a customer from the orbit with probability one and the time for this procedure
is negligible. Thus, the infinitesimal generator matrix, Q =

�

q(i , j )(m,n)

�

, of the CTMC
{X (t ); t ≥ 0} is as follows:

q(i ,0)(m,n) =







































−β if (m, n) = (S, 0), i = S,
β if (m, n) = (0,0), i = S,
−(λ+η) if (m, n) = (C , 0), i =C ,
λ if (m, n) = (1,0), i =C ,
η if (m, n) = (S, 0), i =C ,
0 otherwise;

q(0, j )(m,n) =



















− (λ+ jµ) if (m, n) = (0, j ), j = 0, j ≥N + 1,
λ if (m, n) = (1, j ), j = 0, j ≥N + 1,
jµ if (m, n) = (1, j − 1), j ≥N + 1,
0 otherwise;
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q(1, j )(m,n) =



























































−(λ+ ν) if (m, n) = (1, j ), 0≤ j ≤N ,
−(λ+ ν + jξ ) if (m, n) = (1, j ), j ≥N + 1,
λ if (m, n) = (1, j + 1), j ≥ 0,
ν if (m, n) = (C , 0), j = 0,
ν if (m, n) = (1, j − 1), 1≤ j ≤N ,
ν if (m, n) = (0, j ), j ≥N + 1,
jξ if (m, n) = (1, j − 1), j ≥N + 1,
0 otherwise.

These transition rates among states are depicted in Fig. 1.
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Figure 1 – Dynamically controlled oscillating queueing system.

It is easily seen that the matrix Q = (q(i , j )(m,n)) is irreducible and conservative for
the system under discussion. Additionally, it is assumed that the process is standard in
the sense that

lim
t→0

P{X (t ) = (m, n)|X (0) = (i , j )}= δ(i , j )(m,n) ∀ (i , j ), (m, n) ∈Ω,

where δab represents the Kronecker’s delta function, i.e., δab = 1, if a = b and
δab = 0, if a ̸= b .

It is not hard to show formally that the system is always stable due to the reneging
of customers from the orbit when the server is busy. In other words, owing to the im-
patience of customers while the server is busy, the overall reneging rate ξ > 0 increases
with the orbit size j which prevents explosion of the system size. Hence, the system is
ergodic and stationary probabilities of the system exist as long as reneging rate ξ > 0
even if λ > ν (see Rao, 1967). However, if the reneging rate ξ = 0, i.e., the orbital cus-
tomers are patient (persistent), we verified formally, though it is not being presented
here, that the condition for ergodicity turns out be λ < ν (see Falin, 1986).
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Based on the above observations, we conclude that the system under investigation
is regular and ergodic. To this end, we now define the limiting joint probabilities of the
process {(J (t ),Nq (t )); t ≥ 0} as

π(i , j ) = lim
t→∞

P{J (t ) = i , Nq (t ) = j }, i ∈ {0,1, S,C }, j ∈Z+,

which always exist and are positive.

In what follows, we study the steady-state joint probabilities,π(i , j ) for i ∈ {0,1, S,C }
and j ∈Z+, of the status of the server and the number of customers in the orbit for reg-
ular and ergodic CTMC {X (t ); t ≥ 0}.

3. ANALYSIS OF STEADY-STATE DISTRIBUTION

In the following Theorem, the compact analytical expressions for the steady-state joint
probabilities π(i , j ) for i ∈ {0,1, S,C } and j ∈ Z+, are derived in terms of generalized
hypergeometric functions by solving the set of difference equations.

THEOREM 1. For λ > 0, β> 0, η > 0, ν > 0, µ> 0 and ξ > 0, the steady-state joint
probabilities, π(i , j ), of the status of the server and the number of customers in the orbit are
determined as:
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π(0,0) =
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π(1, j ) =
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�

ν

ξ
+
λ

µ
+N + 1
�

j−N

π(S, 0)

if j ≥N + 1, and ρ ̸= 1,
�

β

η

��

λ+η
µ

��

λ

µ
+N + 1
�

j−(N+1)

�

λ

ξ

� j−N

(N + 1) j−N

�

λ

�

1
ξ
+

1
µ

�

+N + 1
�

j−N

π(S, 0)

if j ≥N + 1, and ρ= 1;

(5)

whereρ=
λ

ν
and F represents the generalized hypergeometric series (Gradshteyn and Ryzhik,

2000) defined as

F
�

α1,α2, . . . ,αp ; β1,β2, . . . ,βq ; z
�

=
∞
∑

n=0

(α1)n(α2)n . . . (αp )n
(β1)n(β2)n . . . (βq )n

zn

n!
, | z |<∞,

in which no denominator parameter β j is allowed to be 0 or a negative integer and (x)n is
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the Pochhammer symbol defined by

(x)n =
¨

1 for n = 0,
x(x + 1)(x + 2) . . . (x + n− 1) for n ≥ 1.

PROOF. From the state transition diagram of Figure 1, we get the set of balance
equations as follows:

βπ(S, 0) = η π(C , 0), (6)
(λ+η)π(C , 0) = ν π(1,0), (7)

λ π(0,0) =βπ(S, 0), (8)
(λ+ jµ)π(0, j ) = ν π(1, j ), j ≥N + 1, (9)
(λ+ ν)π(1,0) = λ π(0,0) + ν π(1,1)+λ π(C , 0), (10)

(λ+ ν)π(1, j ) = λ π(1, j − 1)+ ν π(1, j + 1), 1≤ j ≤N − 1, (11)

(λ+ ν)π(1,N ) = λ π(1,N − 1)+ (N + 1)µπ(0,N + 1)
+ (N + 1) ξ π(1,N + 1), (12)

(λ+ ν + jξ )π(1, j ) = λ π(1, j − 1) + ( j + 1)µπ(0, j + 1)
+λ π(0, j )+ ( j + 1)ξ π(1, j + 1), j ≥N + 1, (13)

and the normalizing condition

π(S, 0)+π(C , 0)+π(0,0)+
∞
∑

j=N+1

π(0, j )+
∞
∑

j=0

π(1, j ) = 1. (14)

From Eq. (6) and Eq. (8), we get

π(C , 0) =
β

η
π(S, 0) (15)

and

π(0,0) =
β

λ
π(S, 0). (16)

Making use of Eq. (15) in Eq. (7) yields

π(1,0) =
�

β

η

��

λ+η
ν

�

π(S, 0). (17)
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By virtue of Equations (15)-(17), the joint probabilities π(1, j ), j = 1,2,3, . . . ,N , can be
computed recursively from Eq. (10) and Eq. (11) as

π(1, j ) =















�

β

η

��

λ+η
ν

�

ρ j π(S, 0), if 0≤ j ≤N , ρ ̸= 1,
�

β

η

��

λ+η
λ

�

π(S, 0), if 0≤ j ≤N , ρ= 1.

Thus, the steady-state joint probabilities π(1, j ), 0≤ j ≤N , given in Eq. (4), have been
determined.

Next, from Eq. (9), we get the relation

π(1, j ) =
1
ν
(λ+ jµ)π(0, j ), j ≥N + 1. (18)

Plugging Eq. (18) into Eq. (13), after a little algebra, results in

( j + 1)[µν +λξ +( j + 1)µξ ]π(0, j + 1)−λ[λ+ jµ]π(0, j )

= ( j + 2)[µν +λξ +( j + 2)µξ ]π(0, j + 2)
−λ[λ+( j + 1)µ]π(0, j + 1), j ≥N + 1.

(19)

The above can be expressed as

x j+1 π(0, j + 1)− y j π(0, j ) = x j+2 π(0, j + 2) − y j+1 π(0, j + 1), j ≥N + 1, (20)

where
x j = j [µν +λξ + jµξ ] and y j = λ[λ+ jµ] for j ≥N + 1.

Thus, from Eq. (20), we conclude that for j ≥N + 1,

x j+1 π(0, j + 1)− y j π(0, j ) =K , (21)

where K is an arbitrary constant.
Now, substituting Eq. (9) into Eq. (21), after simplification, we obtain

j [µν +λξ + jµξ ]π(0, j )−λν π(1, j − 1) =K . (22)

Replacing j by N + 1 in Eq. (22) and using Eq. (12) in the resulting expression, we get

ν2 π(1,N )−λν π(1,N − 1) =K . (23)

By inserting Eq. (4) into Eq. (23), we determine the unknown constant K = 0. There-
fore, for K = 0, Eq. (21) implies that

π(0, j + 1) =
λ[λ+ jµ]

( j + 1)[µν +λξ +( j + 1)µξ ]
π(0, j ), j ≥N + 1. (24)
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By making use of Equations (4) and (18) in Eq. (12) leads to

π (0,N + 1) =
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β

η

��

λ+η
µ

�

�

λ

ξ

�

ρN

(N + 1)
�

ν

ξ
+
λ

µ
+N + 1
�π(S, 0), if ρ ̸= 1,

�

β

η

��

λ+η
µ

�

�

λ

ξ

�

(N + 1)
�

λ

�

1
ξ
+

1
µ

�

+N + 1
�π(S, 0), if ρ= 1.

(25)

Usage of the above expression in Eq. (24) recursively, we arrive to the required result of
Eq. (5).

We now use Equations (25) and (5) in Eq. (18) recursively, the expressions forπ(1, j ),
j ≥N + 1, given in Eq. (4), are obtained. Subsequently, the unknown joint steady-state
probability π(S, 0) in Eq. (1) is determined by utilizing the normalization condition in
Eq. (14).

Finally, with the help of Equations (15), (16) and (1), the required steady-state joint
probabilities π(0,0) and π(C , 0) are obtained by Equations (2) and (3), respectively.
Hence the proof is completed. 2

COROLLARY 2. Ifµ→∞, then the stationary joint probabilities for the conventional
queueing system with occurrence of customers’ impatience phenomenon above the threshold
value N subject to switch-off and close-down periods can be deduced from Equations (1)-(5)
of Theorem 1 as

π(S, 0) =















































































1
β
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1
β
+

1
η
+

1
λ
+
�

1
η
+

1
λ

�

ρ
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1−ρN
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+ρN F
�
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ν

ξ
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λ

ξ

�

��

if ρ ̸= 1,
1
β

1
β
+

1
η
+

1
λ
+
�

1
η
+

1
λ

�

�

N + F
�

1;
λ

ξ
+N + 1;

λ

ξ

�

�

if ρ= 1;
(26)
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π(0,0) =
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1
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1
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+

1
λ

�

ρ
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+ρN F
�
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ν

ξ
+N + 1;

λ

ξ

�

��

if ρ ̸= 1,
1
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1
β
+

1
η
+

1
λ
+
�

1
η
+

1
λ

�

�

N + F
�
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λ

ξ
+N + 1;

λ

ξ

�

�

if ρ= 1;
(27)

π(C , 0) =
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η
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β
+
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η
+
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+
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1
η
+

1
λ

�

ρ
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+ρN F
�
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ν

ξ
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ξ

�

��
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+

1
η
+

1
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+
�

1
η
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1
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N + F
�
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λ

ξ
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λ

ξ

�

�

if ρ= 1;
(28)

π(1, j ) =
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β
+
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η
+

1
λ
+
�

1
η
+

1
λ

�

ρ
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+ρN F
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ν
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ξ
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��

if 0≤ j ≤N , ρ ̸= 1,
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η

��
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β
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1
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1
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�

1
η
+

1
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�

N + F
�
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ξ
+N + 1;

λ

ξ
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if 0≤ j ≤N , ρ= 1;

(29)
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π(1, j ) =
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+ρN F
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ξ
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if j ≥N + 1, ρ ̸= 1,
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1
η

��

λ+η
λ

�

1
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λ
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�
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ξ
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β
+

1
η
+

1
λ
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�

1
η
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�

�

N + F
�
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λ

ξ
+N + 1;

λ

ξ

�

�

if j ≥N + 1, ρ= 1.

(30)

PROOF. The proof follows by some mathematical manipulation and thus we omit-
ted the details. 2

COROLLARY 3. If N = 0, the results reported in Theorem 1 turn out be the joint steady-
state probabilities of the classical retrial queue with impatient customers subject to switch-off
and close-down periods as

π(S, 0) =
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1 +

�

λ

ξ

�

�
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�
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+
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µ
+ 2;

λ

ξ

���−1

if ρ ̸= 1,

(31)

π(S, 0) =
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«−1

if ρ= 1,
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π(0,0) =
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(32)

π(C , 0) =
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if ρ= 1,

(33)
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π(1, j ) =
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π(S, 0), j ≥ 0
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(34)

π(0, j ) =
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π(S, 0), j ≥ 1

if ρ= 1.

(35)

PROOF. It is straightforward procedure to derive the above results and thus we omit-
ted the details for brevity. 2

REMARK 4. In the case ofρ< 1, N →∞, the steady-state joint probability distribution
of Theorem 1, boils down to the steady-state probability distribution studied in Theorem 4
of Kumar et al. (2015).

REMARK 5. As far as we know, the results presented in Corollaries 2 and 3 have not
been investigated earlier in the literature.

4. FACTORIAL MOMENTS

In the present Section, we determine the partial factorial moments for our dynamic
oscillating service system in the steady-state regime.
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Define the partial generating functions for joint probabilitiesπ(C , 0),π(0,0),π(0, j ),
j ≥N + 1 and π(1, j ), j ≥ 0, as

P0(z) =π(C , 0)+π(0,0)+
∞
∑

j=N+1

π(0, j ) z j

and
P1(z) =

∞
∑

j=0

π(1, j ) z j , |z | ≤ 1.

On account of Equations from (2) to (5), one can obtain P0(z) and P1(z) as

P0(z) =
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(36)

and

P1(z) =
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(37)
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where π(S, 0) is as given in Eq. (1).

Our next aim is to compute explicit expressions for the partial factorial moments
for the dynamic control oscillating service system with impatient customers.

THEOREM 6. Let M i
k , for i ∈ {0,1} and k ≥ 1, be the partial k th factorial moments of

the number of customers in the orbit given that the status of the server is i , defined as

M i
k =

∞
∑

j=k

j ( j − 1) . . . ( j − k + 1)π(i , j ).

The partial k th factorial moments for k ≥ 1 are:

• for ρ ̸= 1
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k =



























































































































�

N !
(N − k + 1)!

�

β

η

��

λ+η
µ

�

�

λ

ξ

�

ρN

�

ν

ξ
+
λ

µ
+N + 1
�

×F
�

1,
λ

µ
+N + 1;N − k + 2,

ν

ξ
+
λ

µ
+N + 2;

λ

ξ

�

�

π(S, 0)

if k ≤N ,

�
N !
�

β

η

��

λ+η
µ

��

λ

µ
+N + 1
�

k−(N+1)

�

λ

ξ

�k−N

ρN

�

ν

ξ
+
λ

µ
+N + 1
�

k−N

×F
�

λ

µ
+ k;

ν

ξ
+
λ

µ
+ k + 1;

λ

ξ

�

�

π(S, 0)

if k ≥N + 1;

(38)
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• for ρ= 1

M 0
k =
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• for ρ ̸= 1

M 1
k =
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• for ρ= 1

M 1
k =
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(41)

Besides, the k th factorial moments, Mk , of the number of customers in the orbit are de-
rived as

Mk =M 0
k +M 1

k , k = 1,2,3, . . . .

PROOF. The proof follows by taking successive derivatives of Equations (36) and
(37) for k−times with respect to z at z = 1 and after tedious algebraic calculations. 2

Specifically, by the results of the Theorem 6, one can prove immediately that the
first and second partial factorial moments for the system under consideration as
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(43)
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M 1
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(45)

where π(S, 0) is as given in Eq. (1). In particular, the mean and variance of the number
of customers in the orbit are vital performance measures for the system under study.
These average measures can be obtained immediately from the above results.

5. PERFORMANCE MEASURES

In this Section, we present some key performance measures which help us to make a
detailed study about the oscillating queueing system under consideration.

1. P(Server is busy)= P1(1)

=
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2. P(Server is available) = 1−π(S, 0).
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3. P(Primary customer enters retrial orbit upon arrival) =
∞
∑

j=N

π(1, j )

=
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4. P(Primary customer captures the server upon arrival)=P0(1)

=π(C , 0)+π(0,0)+
∞
∑

j=N+1

π(0, j )

=
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5. The mean number, E(XQ ), of customers in the orbit is given by

E(XQ ) =M 0
1 +M 1

1 .

6. The mean number, E(XS ), of customers in the system is determined as
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E(XS ) =M 0
1 +M 1

1 + P1(1).

7. The expected number, U , of customers served per unit of time is

U = ν
∞
∑

j=0

π(1, j ) = ν P1(1).

8. The effective arrival rate (i.e., the total arrival rate while the server is available) is
given as

λe f f = λ [1−π(S, 0)] .

9. The total sojourn time, WS , of a customer in the system is measured from the
moment of its primary arrival until departure, either by completion of service or
as a result of abandonment. By Little’s law, the expected sojourn time E(WS ) in
the system is obtained as

E(WS ) =
1
λe f f

�

M 0
1 +M 1

1 + P1(1)
�

=
E(XS )

λ [1−π(S, 0)]
.

10. The rate, RA, of reneging/abandonment due to impatience is defined by

RA= λe f f − νP
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11. The proportion of customers served is calculated as

PS =
ν P1(1)
λe f f

=
P1(1)

ρ [1−π(S, 0)]

=
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12. Let E(XC Q ) be the expected number of customers in the conventional queueing
system before it becomes the retrial queueing system mode, i.e., before reaching
state (1,N ). This quantity is measured as

E(XC Q ) =
N−1
∑

j=0

( j + 1)π(1, j )

=
�
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η

��

λ+η
ν

�

π(S, 0)
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( j + 1) ρ j ,

where we have used the results given in Eq. (4). Hence, after using a little algebra
and calculus, the above expression yields that

E(XC Q ) =
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6. REGENERATIVE CYCLE ANALYSIS OF THE SYSTEM

We now investigate the regenerative cycle length and its related characteristics for our
dynamic service system in which the server is subject to switch-off and close-down pe-
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riods. Indeed, the regenerative approach is a versatile technique to compute the equilib-
rium distribution of the state probabilities for a wide variety of state-dependent arrival
and service rates queueing systems in tractable forms (Tijms, 1994).

1. The regenerative cycle, T , of our system is defined as the length of time interval
between two consecutive primary customer arrivals finding the server in operative
idle state and there is no customer in the system, i.e., at state (0,0). Hence, the
mean length of the regenerative cycle of our oscillating service system is

E(T ) =
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π(0,0)

=
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if ρ= 1.

2. The expected length, E(T(S,0)), of server’s switch-off period during the mean re-
generative cycle is computed as

E[T(S,0)] = E[T ]π(S, 0) =
1
β

.

3. The expected length, E(T(C ,0)), of server’s close-down period during the mean
regenerative cycle is given by

E[T(C ,0)] = E[T ]π(C , 0) =
1
η

.

4. The expected length, E(T(0,0)), of the server’s idle time in the conventional queue-
ing mode while the system is empty during the mean regenerative cycle is calcu-
lated as

E[T(0,0)] = E[T ]π(0,0) =
1
λ

.
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5. The expected length, E(TI PN EO ), of the server’s idle time in the retrial queueing
mode with nonempty orbit during the mean regenerative cycle is obtained by

E[TI PN EO] = E[T ]
∞
∑

j=N+1

π(0, j )

=
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6. The expected length, E(TC Q ), of the server being busy in the conventional queue-
ing system before the system turns out to be the retrial queue during the mean
regenerative cycle is determined as

E[TC Q] = E[T ]
N
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j=0

π(1, j )
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7. The expected length, E(TBPN EO ), of the server being busy in the retrial queueing
mode with nonempty orbit during the mean regenerative cycle is derived as

E[TBPN EO] = E[T ]
∞
∑

j=N+1

π(1, j )
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E[TBPN EO] =
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8. Finally, the busy period, L, of the oscillating service system is defined as the period
that starts at the epoch when an arriving primary customer finding the server is
in the operative idle state and there is no customer in the system, i.e., in state (0,0)
and ends at the epoch where the server leaves for the switch-off state (S, 0). Thus,
the mean length, E(L), of the system busy period of our dynamic service queueing
system is obtained as

E(L) = E(T )−
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7. NUMERICAL ILLUSTRATIONS

In this Section, we use some selected probability descriptors and average measures de-
rived previously to bring out the qualitative and quantitative aspects of the proposed
dynamic service system through numerical illustrations. To this end, numerical results
are presented in the form of three dimensional graphs. In each graph, we have drawn
three surfaces which correspond to the threshold value N = 4,8 and 12.
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Figure 2 – π(0,0) versus (ρ,µ) for (ξ ,β,η) = (4,5,6).

First, we look at the effects of the system parametersµ,ξ ,β,η andρ for the different
threshold values of N on the probability descriptor π(0,0) in Figures 2-4. We examine
the sensitivity of π(0,0) against the traffic intensity ρ and the retrial rate µ in Figure 2
by setting the other parameters as (ξ ,β,η) = (4,5,6). It is seen from Figure 2 that all
three surfaces ofπ(0,0) decrease sharply as convex functions of ρ, whereas they increase
monotonically for increasing values ofµ. This is due to the fact that higher the values of
ρ cause the more congestion in the system and henceπ(0,0) is a decreasing function ofρ.
But the larger µ results in a shorter mean retrial time 1/µ and thus π(0,0) is increasing
with µ. For (µ,β,η) = (10,5,6), we display the trends of the surfaces of π(0,0) versus
ρ and ξ in Figure 3. As before, one can observe that as the values of ρ increase, all three
surfaces of π(0,0) appear to decrease drastically in convex manner. However, the sur-
faces of π(0,0) increase at slower rate for increasing values of the impatient rate ξ . This
phenomenon is intuitively true because the reneging of more customers from the orbit
resulting in the reduction of congestion in the system and hence there is high chance of
the system becomes empty. We now sketch three surfaces corresponding to π(0,0) in
Figure 4 as functions of µ and ξ by fixing (ρ,β,η) = (0.778,5,6). As expected, all three
surfaces show the increasing trend with increasing values of both µ and ξ . Moreover, it
is worth mentioning that all three surfaces of the probability descriptor π(0,0) appear
to be decreasing functions of the threshold value N .
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Figure 3 – π(0,0) versus (ρ,ξ ) for (µ,β,η) = (10,5,6).

60.09
4

53.5

0.095

3 4
2.5

0.1

(0
,0

)

3
2

0.105

21.5

0.11

 N=4

 N=8

 N=12

Figure 4 – π(0,0) versus (µ,ξ ) for (ρ,β,η) = (0.778,5,6).
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Figure 5 – π(S, 0) versus (ρ,µ) for (ξ ,β,η) = (4,5,6).

Next, we investigate the behaviour of the probability descriptor π(S, 0) by varying
the values of the system parameters in Figures 5-7. We fix (ξ ,β,η) = (4,5,6) and plot
three surfaces corresponding to π(S, 0) as functions of ρ and µ in Figure 5. As a result,
while the values of retrial rate µ increase, all three surfaces of π(S, 0) increase gradually.
This trend agrees with our intuitive expectation. On the other hand, one can see from
Figure 5 that all three surfaces of π(S, 0) grow in the beginning for smaller values of ρ
and then the trend is reversed for larger values of ρ.
In other words, all three surfaces of π(S, 0) are concave functions of ρ. The possible
explanation of the above phenomenon is as follows. For smaller traffic intensity ρ, there
is more chance of the server resides in the switch-off state, whereas the possibility of the
server being in the switch-off state is very less for larger traffic intensity ρ. For chosen
parametric values (µ,β,η) = (10,5,6), Figure 6 describes the behaviours of the surfaces
of π(S, 0) against ρ and ξ . It is clearly seen that the trends of all three surfaces in Figure
6 are quite similar to those in Figure 5. Next, Figure 7 reveals the effects µ and ξ on the
surfaces of π(S, 0) by setting (ρ,β,η) = (0.778,5,6) for three different threshold values
of N . One can see from Figure 7 that all three surfaces increase gradually with both µ
and ξ , which is consistent with our intuition.



114 B. K. Kumar et al.

0.06
12

0.08

0.1

0.12

10

0.14

0.8

(S
,0

)

0.16

0.6

0.18

8

0.2

0.4

0.22

6 0.2

N=12

N=4

N=8

Figure 6 – π(S, 0) versus (ρ,ξ ) for (µ,β,η) = (10,5,6).

0.125

4

0.13

63.5

0.135

53

0.14

(S
,0

)

2.5 4

0.145

2 3

0.15

1.5 2

0.155

 N=12

 N=4

 N=8

Figure 7 – π(S, 0) versus (µ,ξ ) for (ρ,β,η) = (0.778,5,6).



Oscillating Service System Between Conventional and Retrial Queues 115

0

0.2

0.4

6

0.6

5

0.8

R
A

0.8

1

4

1.2

0.6

1.4

3
0.4

2
0.2

1

N=4

N=12

N=8

Figure 8 – RA versus (ρ,µ) for (ξ ,β,η) = (4,5,6).

We also conducted the numerical experiments to provide some illustrations in study-
ing the effects of parameters on the probability descriptorπ(C , 0). From our numerical
experience, but not reported here, it is observed that the trends of the surfaces ofπ(C , 0)
versus (ρ,µ), (ρ,ξ ) and (µ,ξ ) behave very similar to the trends of the surfaces corre-
sponding to π(S, 0) as in Figures 5,6 and 7, respectively, where the other parameters
have been kept fixed.

We now intend to analyze the sensitivity of the rate, RA, of reneging/abandonment
of customers due to impatience in Figures 8-10 by varying the values of the system pa-
rameters µ,ξ ,β,η and ρ and for three different values of threshold size N . We find
from Figure 8 that all three surfaces of RA are increasing convex functions of ρ and, in
contrast, they decrease while values of µ increase for (ξ ,β,η) = (4,5,6). It is consistent
with our intuition that more the customers in the system, greater the number of cus-
tomers who may leave the system without getting the service due to reneging, leading
to increase in values of RA. On the other hand, when the retrial rate µ increases, the
customers in the orbit will most likely get the service and hence this phenomenon con-
trols the reneging of the customers from the system resulting in decreasing the values of
RA.
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Next, Figure 9 describes the sensitivity of RA with respect to ρ and ξ by taking
the other parametric values (µ,β,η) = (10,5,6). As is to be expected, all three surfaces
corresponding to RA are always increasing convex functions of both ρ and ξ . However,
it is noticed that the parameter ρ has a greater effect on all three surfaces of RA than the
impact of ξ . It is also seen that while the threshold values of N increase, the surfaces
of RA decrease for a fixed value of ρ. We now fix (ρ,β,η) = (0.778,5,6) and present
numerical examples for the impact of both µ and ξ on the descriptor RA in Figure 10.
By looking at Figure 10, we infer that all three surfaces of RA decrease in slower manner
for increasing values µ, whereas they decrease initially and then start increasing slightly
for increasing values of ξ . Here too, it is seen that the surfaces are decreasing functions
of N for fixed value of (µ,ξ ).

Our next set of numerical illustrations deal with the behaviours of the expected total
sojourn time, E(WS ), of an arbitrary customer in the system for various values of the
parameters. The results are presented in Figures 11-13. For the fixed parametric values
(ξ ,β,η) = (4,5,6), the influences of both ρ and µ on E(WS ) are reported in Figure 11.
A quick examination of this figure reveals that all three surfaces of the measure E(WS )
rapidly increase when ρ increases, whereas they decrease moderately for increasing val-
ues of µ. Intuitively, higher the values of the traffic intensity ρ, the more number of
customers will join the system and they wait for their service. Obviously, the sojourn
time, E(WS ), of a newly arriving customer will increase in the system. But, increasing
the values of the retrial rateµwill reduce the congestion of the system implying that the
sojourn time, E(WS ), of the customer decreases. It is also worth to note that all three
surfaces increase with increasing values of N for fixed (ρ,µ). Figure 12 demonstrates the
impacts of the parametric values of ρ and ξ on E(WS ) by setting (µ,β,η) = (10,5,6).
Referring to this figure, we see that the trends of surfaces of E(WS ) in Figure 12 are
quite similar to the behaviours of the surfaces of E(WS ) as in Figure 11. Next, the influ-
ences of µ and ξ on E(WS ) are depicted in Figure 13 by keeping the parametric values
(ρ,β,η) = (0.778,5,6). Evidently, all three surfaces of E(WS ) gradually decrease for in-
creasing values of both µ and ξ as the number of customers in the system decrease lead-
ing to decrease in the sojourn time. However, in Figure 13, the surfaces corresponding
to E(WS ) increase with respect to the threshold value N for each fixed value of (µ,ξ ).
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8. CONCLUSION

In this work, we have carried out an exhaustive steady-state analysis of a single server
dynamic service system between conventional and retrial queueing modes with impa-
tient customers. The possibility of the close-down and switch-off periods of the server
has also been incorporated. For this oscillating service system, analytical expressions for
the steady-state joint probabilities of the status of server and the orbit size are derived in
terms of hypergeometric functions. We have investigated some interesting and impor-
tant performance measures along with the partial factorial moments of the orbit size.
Besides, the mean regenerative cycle length of the system and its related measures are
studied by applying the theory of regenerative process. Finally, graphical illustrations
of the selected performance measures have been provided to understand the system be-
haviour.
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