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SUMMARY

In the present article, we propose a jackknife empirical likelihood (JEL) ratio test for testing the
independence of time to failure and cause of failure in competing risks data. We use the U -statistics
theory to derive the JEL ratio test. The asymptotic distribution of the test statistic is shown to
be the standard chi-square distribution. A Monte Carlo simulation study is carried out to assess
the finite sample behavior of the proposed test. The performance of the proposed JEL test is
compared with the test given by Dewan et al. (2004). Finally, we illustrate our test procedure
using two real data sets.

Keywords: Chi-square distribution; Competing risks; Conditional probability; Jackknife empir-
ical likelihood; U -statistics.

1. INTRODUCTION

In survival studies, observed failure times of the individuals may often be attributed to
more than one cause of failure. For example, in human beings, the primary cause of
death may be classified as cancer, heart disease or other causes. Competing risks mod-
els are used to analyse such situations. In the analysis of competing risks, we need to
estimate the marginal probability of the occurrence of a certain event when the com-
peting events are present. In such cases, the traditional methods of survival analysis like
the Kaplan-Meier (Product-Limit) method cannot be applied. Here, we use the concept
of cumulative incidence functions or cause-specific hazard rate functions to analyse the
marginal probability of cause-specific events.

Consider the competing risks data with k possible causes of failure. Competing risks
data can be represented as a bivariate random pair (T , J ), where T represents a subject’s
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failure time and J ∈ {1,2, ..., k} is the corresponding cause of failure. Now the joint
distribution of (T , J ) for cause r is defined as

Fr (t ) = P (T ≤ t , J = r ), r = 1,2, ..., k ,

which is referred to as the cause-specific sub-distribution function. The overall distribu-

tion function of T is given by F (t ) = P (T ≤ t ) =
k
∑

r=1
Fr (t ). The cause-specific hazard

rate function, which gives the instantaneous rate of failure due to cause r is specified by

λr (t ) =
fr (t )

F̄ (t )
, r = 1,2, . . . , k ,

where fr (t ) is the cause-specific density function and F̄ (t ) = 1−F (t ) is the survival func-
tion of T . For more details on competing risks data analysis, one can refer to Prentice
et al. (1978), Kalbfleisch and Prentice (2011), Lawless (2011) and Crowder (2012) among
others.

In the literature, competing risks data are either analysed through a latent failure time
approach or by considering it as a bivariate random pair (T , J ). The approach based on
the observable random pair (T , J ) helps to overcome the identifiability issue that may
arise with the latent failure time approach. The nature of dependence between T and J
is very important in modeling competing risks data using the observable random vector
(T , J ). If T and J are independent, then Fr (t ) = P (J = r )F (t ) and thus T and J can
be studied separately (Anjana et al., 2019). Furthermore, the time to failure and the
cause of failure are independent if and only if the cause-specific hazard rate functions are
proportional (Crowder, 2012). The test for the independence of T and J is studied by
many authors, including Dykstra et al. (1998), Dewan et al. (2004), Dewan et al. (2013),
Sankaran et al. (2017), Anjana et al. (2019) and references therein.

Empirical likelihood (EL) is a non-parametric inference tool, introduced by Thomas
and Grunkemeier (1975). The general methodology of the EL approach is developed in
the pioneering papers by Owen (1988) and Owen (1990). This approach enjoys wide ac-
ceptance among researchers, as it combines the effectiveness of the likelihood approach
with the reliability of a non-parametric procedure. Empirical likelihood finds applica-
tions in regression, econometrics and survival analysis. For more details on EL-based
works in survival analysis, one can refer to Wang and Jing (2001), Li and Wang (2003),
Zhou (2015), Huang and Zhao (2018), Yu and Zhao (2019). Recently, Variyath and
Sankaran (2020) developed a test to compare the cumulative incidence functions of com-
peting risks data using empirical likelihood.

However, in the EL approach, we need to maximize the non-parametric likelihood
function subject to some constraints. When the constraints are non-linear, it is diffi-
cult to apply the EL procedure. Thus, Jing et al. (2009) introduced the jackknife em-
pirical likelihood (JEL) approach, which combines the two popular non-parametric ap-
proaches, the jackknife method and the empirical likelihood approach. In spite of the
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technical feasibility and lucidity of the JEL method, it is less explored in competing risks
analysis. This motivates us to revisit the problem of testing the independence of time
to failure and cause of failure and propose a new U -statistic based JEL ratio test statistic
for the problem. To the best of our knowledge, this is the first attempt to employ the
JEL ratio test methodology in the analysis of competing risks.

The rest of the paper is organized as follows. Section 2 presents a JEL ratio test for
determining the independence of time to failure T and the cause of failure J . We show
that, the JEL ratio test statistic is asymptotically distributed as the standard chi-square
distribution. A Monte Carlo simulation study is carried out in Section 3 to assess the
finite sample performance of the proposed test. The procedure is illustrated by applying
it to two real data sets, and the results are reported in Section 4. Finally, Section 5
summarizes the major conclusions of the study.

2. TEST STATISTIC
In this study, we consider the situation with two causes of failure. In the analysis of
competing risks, often the interest is focused on a particular event type, where the events
due to all other causes can be combined into one. Hence, the above assumption has no
impact on the study. Let (Ti , Ji ), i = 1, ..., n represent n independent and identically
distributed observations from (T , J ). We are interested in testing the null hypothesis

H0 : T and J are independent

against the alternative hypothesis

H1 : T and J are not independent.

To develop the test, we consider the conditional probabilities

φr (t ) = P (J = r |T > t ), r = 1,2. (1)

Following Dewan et al. (2004), T and J are independent if and only ifφ1(t ) is a constant,
and T and J are not independent whenever φ1(t ) is a non-decreasing function of t .
Consequently, the null hypothesis H0 and the alternative hypothesis H1 can be expressed
as

H0 :φ1(t ) is a constant

and
H1 :φ1(t ) is non-decreasing in t .

We now propose a measure of deviation from H0 towards H1, using the fact that φ1(t )
is non-decreasing under H1. Define the sub-survival functions Sr (t ) = P (T > t , J =
r ), r = 1,2. Then the overall survival function of T is given by S(t ) = P (T > t ) =
S1(t )+ S2(t ). Now, the conditional probability φ1(t ) can be written as

φ1(t ) =
S1(t )
S(t )

=
1

1+ S2(t )
S1(t )

.



30 Sreelakshmi N. and Sreedevi E. P.

Hence, φ1(t ) is non-decreasing in t if and only if S2(t )
S1(t )

is non-increasing. Now, we con-
sider the quantity δ(t ) given by

δ(t ) = S1(t ) f2(t )− S2(t ) f1(t ).

Clearly, δ(t ) is zero under H0 and positive under H1. A large value of δ(t ) implies the
departure from H0 towards H1. We now propose a departure measure∆ given by

∆=
∫ ∞

0
(S1(t ) f2(t )− S2(t ) f1(t ))d t . (2)

After simplification, we can rewrite∆ as

∆= P (T1 > T2, J1 = 1, J2 = 2)− P (T1 > T2, J1 = 2, J2 = 1).

We propose a U -statistic estimator of∆, to develop the JEL ratio test. Define the kernel

ψ∗((T1, J1), (T2, J2)) =











1 if T1 > T2, J1 = 1, J2 = 2
−1 if T1 > T2, J1 = 2, J2 = 2
0 otherwise.

Clearly, E(ψ∗((T1, J1), (T2, J2))) =∆. Let ψ((T1, J1), (T2, J2)) be the symmetric version of
the kernel ψ∗((T1, J1), (T2, J2)). A U -statistic estimator for∆ given by

Ò∆=
2

n(n− 1)

n
∑

i=1

n
∑

l=1,l<i

ψ((Ti , Ji ), (Tl , Jl )). (3)

Observe that, Ò∆ is a consistent estimator of ∆ (Lehmann, 1951). Next, we find the
asymptotic distribution of Ò∆.

THEOREM 1. As n →∞,
p

n
�

Ò∆−∆
�

converges in distribution to a Gaussian ran-
dom variable with mean 0 and variance 4σ2, where σ2 is given by

σ2 =Var [E(ψ((T1, J1), (T2, J2))|T1, J1)] .

The proof for the above theorem follows from the central limit theorem for U -statistics
(Lee, 2019). In this case, it is difficult to find the asymptotic null variance. In these sit-
uations, the implementation of the normal-based test is not advisable. The implemen-
tation of the empirical likelihood inference is also very difficult as we have non-linear
constraints (U -statistics of degree 2) in the optimization problem. This motivates us to
develop a jackknife empirical likelihood (JEL) ratio test for testing the independence of
the cause of failure and the time to failure.

Next, we derive the jackknife empirical likelihood ratio test based on ∆. The jack-
knife pseudo-values for∆ are given by

ÒVi = nÒ∆− (n− 1)Ò∆n−1,i , i = 1,2, . . . , n, (4)
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where Ò∆n−1,i is the estimator of∆ obtained using Eq. (3) based on (n−1) observations
X1, X2, ..., Xi−1, Xi+1,..., Xn ; i = 1,2, .., n. Then, the jackknife estimator Ò∆jack of ∆ is
given by

Ò∆jack =
1
n

n
∑

i=1

ÒVi .

Now, the jackknife empirical likelihood for∆ is defined as

J (∆) = sup
p

�

n
∏

i=1

pi ;
n
∑

i=1

pi = 1;
n
∑

i=1

pi (ÒVi −∆) = 0

�

, (5)

with each pi > 0 where p= (p1, p2, ..., pn) is a probability vector. The maximum of Eq.
(5) occurs at

pi =
1
n

�

1+λ(ÒVi −∆)
�−1

, k = 1,2, ..., n,

where λ is the solution of

1
n

n
∑

i=1

ÒVi −∆
1+λ(ÒVi −∆)

= 0, (6)

provided
min

1≤i≤n
ÒVi <Ò∆< max

1≤i≤n
ÒVi .

Also note that,
n
∏

i=1
pi , subject to

n
∑

i=1
pi = 1, attains its maximum n−n at pi = n−1. Hence,

the jackknife empirical log-likelihood ratio for∆ is given by

l (∆) =−
n
∑

i=1

log
�

1+λ(V̂i −∆)
�

. (7)

We reject the null hypothesis H0 against H1, for large values of l (∆). The following
theorem explains the limiting distribution of l (∆), which can be used to construct the
JEL ratio test for testing the independence of T and J . Now, using Theorem 1 of Jing
et al. (2009), as an analog to Wilk’s theorem, we have the following result.

THEOREM 2. Suppose E(ψ((T1, J1), (T2, J2)))
2 <∞ and σ2 > 0. As n→∞, −2l (∆)

converges in distribution to a χ 2 random variable with one degree of freedom.

A rigorous proof is omitted here, as it comes directly from the Lemmas and Corollaries
of Jing et al. (2009). Theorem 2 is true in general, as the asymptotic distributions of
the U -statistics are normal. Let −2l (∆0) be the jackknife empirical likelihood ratio
evaluated under H0. We reject H0 in favor of H1, if

−2l (∆0)>χ
2
1,α,

where χ 2
1,α is the upper α percentile point of the standard χ 2 distribution.
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3. SIMULATION STUDY

In this section, we conduct a Monte Carlo simulation study to evaluate the fine sample
performance of the proposed JEL ratio test. For generating competing risks data with
two causes, we consider the family of sub-distribution functions proposed by Dewan
and Kulathinal (2007). Let

F1(t ) = p1F a(t ), F2(t ) = F (t )− p1F a(t ), (8)

where 0 ≤ p1 ≤ 0.5, 1 ≤ a ≤ 2 and F (t ) is a proper distribution function. The restric-
tions on the parameters of the model are imposed due to the non-negativity condition
of the cause-specific density function. It is clear that the time to failure and the cause of
failure are independent when a = 1 and T and J are dependent for all other values of a.
We use the exponential distribution with F (t ) = 1− exp(−λt ), λ > 0, t ≥ 0. to gener-
ate lifetimes and corresponding causes. We simulate 10000 replications of random sam-
ples of sizes n = 20,40,60,80,100 by considering different combinations of (λ, p1,a).
As the results are similar, we only present the results for the parameter combinations
(λ, p1) = (0.5,0.3) and (1,0.5) for various choices of a. We compare the performance of
the newly proposed test with the test proposed by Dewan et al. (2004) based on Kendall’s
tau. Under H0, their test statistic is asymptotically distributed as normal with mean zero
and variance (4/3)p1(1− p1). The results of the simulation study are presented in Ta-
ble 1 and Table 2. In Table 1 and Table 2, ‘JEL’ represents the newly proposed test and
‘DDK’ represents the test proposed by Dewan et al. (2004).
For finding the type I error rate, we set a = 1. The type I error rate of the proposed
test along with the type I error rate of the test statistic proposed by Dewan et al. (2004)
is reported in Table 1. It can be observed from Table 1 that, the type I error rate of
the proposed test converges to the desired significance level as in the case of the test by
Dewan et al. (2004).

TABLE 1
Empirical type I error rate of the test compared with that of Dewan et al. (2004).

(λ, p1) = (0.5,0.3) (λ, p1) = (1,0.5)

JEL DDK JEL DDK

n/α 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

20 0.011 0.055 0.011 0.049 0.011 0.051 0.011 0.052
40 0.011 0.053 0.011 0.049 0.009 0.046 0.009 0.049
60 0.010 0.048 0.009 0.051 0.010 0.047 0.009 0.049
80 0.010 0.049 0.009 0.050 0.010 0.047 0.009 0.049
100 0.010 0.050 0.010 0.050 0.010 0.049 0.009 0.050

Next, we compare the power of our test with the test proposed by Dewan et al.
(2004). We consider different choices of a and the results of the power comparison study
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are given in Table 2.

TABLE 2
Empirical power of the test compared with that of Dewan et al. (2004).

(λ, p1) = (0.5,0.3) (λ, p1) = (1,0.5)

JEL DDK JEL DDK

n/α 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
a = 1.3

20 0.034 0.099 0.056 0.134 0.039 0.109 0.059 0.144
40 0.042 0.149 0.075 0.189 0.057 0.176 0.091 0.219
60 0.077 0.225 0.129 0.264 0.096 0.241 0.158 0.329
80 0.109 0.277 0.167 0.355 0.156 0.356 0.230 0.438
100 0.143 0.331 0.205 0.422 0.189 0.427 0.274 0.559

a = 1.5

20 0.155 0.214 0.168 0.224 0.178 0.249 0.189 0.256
40 0.205 0.437 0.195 0.449 0.209 0.447 0.214 0.468
60 0.299 0.583 0.286 0.578 0.344 0.641 0.368 0.634
80 0.388 0.610 0.398 0.627 0.445 0.710 0.469 0.762
100 0.479 0.753 0.473 0.759 0.547 0.772 0.561 0.796

a = 1.7

20 0.208 0.268 0.187 0.276 0.209 0.328 0.219 0.356
40 0.246 0.532 0.215 0.494 0.324 0.617 0.306 0.590
60 0.398 0.679 0.363 0.642 0.548 0.824 0.497 0.778
80 0.503 0.790 0.469 0.748 0.675 0.890 0.644 0.867
100 0.611 0.862 0.588 0.812 0.798 0.920 0.739 0.904

a = 1.9

20 0.239 0.348 0.229 0.330 0.289 0.488 0.260 0.409
40 0.321 0.632 0.277 0.554 0.421 0.757 0.378 0.678
60 0.456 0.790 0.423 0.738 0.601 0.875 0.578 0.833
80 0.602 0.892 0.576 0.839 0.807 0.926 0.746 0.914
100 0.749 0.953 0.691 0.892 0.879 0.983 0.839 0.955

From Table 2, it is clear that our test has good power. As a increases, the power of
the test also increases. We can see that when a = 1.3, the test proposed by Dewan et al.
(2004) yields good power; but as a increases, our test performs more efficiently. The
power of both tests increases with increase in a and the sample size. This ensures the
efficiency of the proposed method. In some cases, the DDK method gives slightly better
power than the JEL method (As noted in some cases for a=1.3 and a=1.5 and for sample
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size n = 20). But, in most situations both are competent. As n increases, we can see that
the JEL method offers better power. This may be due to the fact that the JEL test is based
on chi-square approximation and the DDK test is based on normal approximation. We
also observe that, for small samples the computational time for the JEL and the DDK
methods are similar, but as the sample size increases the computational cost of the JEL
test is more than that of the DDK method. Being a re-sampling technique, in the JEL
test, at each step we have to calculate the JEL replicates which demands more intensive
computation. However, the power of the JEL test is higher than that of the DDK test
for larger samples, which is evident from the simulation studies.

4. DATA ANALYSIS

The proposed testing procedure is applied to two real data sets for illustration.
Example 1. We consider the ‘fourD’ data discussed in Beyersmann et al. (2011). The data
is available in the R-package ‘etm’ which is analysed by Schulgen et al. (2005). In this data,
the event of interest is defined as the composite of death from cardiac causes, stroke, and
non-fatal myocardial infarction, whichever occurred first and death from other causes is
considered to be the other competing event. In the available data of patients included in
the ‘placebo’ group, there are 243 observed events of interest, 129 observed competing
events and 264 events with censoring times. We consider 372 observed lifetimes for the
analysis. The value of the test statistic for this data is obtained as 0.01. Accordingly, we
accept the null hypothesis of independence of the time to failure and the cause of failure
at 5% of significance. The plots of cumulative incidence functions are given in Figure 1.

From Figure 1, it is clear that the probability of death due to other causes is always
less than the probability of death due to the event of interest. This clearly implies that
the time to failure and the cause of failure are independent.
Example 2. Now, we illustrate the use of the proposed test using the data given in Hoel
(1972). The data contain information about the survival time of mice, kept in a conven-
tional germ-free environment and which were all exposed to a fixed dose of radiation at
an age of 5 to 6 weeks. For each failure, the cause is either thymic lymphoma (cause 1),
reticulum cell sacroma (cause 2) or other causes (cause 3). For each of the 181 mouse, we
observe the exact failure time and associated cause of failure. We combine the two types
of cancer as a single cause while keeping the third cause as such. The test statistic is esti-
mated as 6.08. We reject H0, that the time to failure and cause of failure are independent,
based on the test statistic value obtained. We can note that for this data, Dewan et al.
(2004) also arrived at the same conclusion.
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Figure 1 – Cumulative incidence functions of death due to event of interest and other competing
cause.

The plots of cumulative incidence functions due to thymic lymphoma or reticulum
cell sarcoma and other causes are given in Figure 2. It is clear from Figure 2, that the two
causes are progressing differently over time. This shows that the time to failure and the
cause of failure are not independent.

5. CONCLUDING REMARKS

In this article, we developed a new test for the independence of time to failure and the
cause of failure for competing risks data. We employed the U -statistics theory and the
recently developed jackknife empirical likelihood ratio test methodology to develop the
test statistic. The finite sample performance of the proposed JEL procedure is validated
through a Monte Carlo simulation study. We also compared the power of the proposed
test with the test proposed by Dewan et al. (2004). The practical applicability of the
proposed test procedure is illustrated using two real life data sets.
The proposed test procedure does not incorporate the right censored observations. JEL
methods to incorporate censored observations are being developed. Accordingly, a JEL



36 Sreelakshmi N. and Sreedevi E. P.

Figure 2 – Cumulative incidence functions of death due to the event of interest and other compet-
ing cause

ratio test for right censored observations will be reported in a separate study. Testing
the equality of cumulative incidence functions is an important research question in com-
peting risks analysis. A JEL ratio test can be proposed to address this problem.
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APPENDIX

The R-code for Data Analysis (Example 1)
rm(list=ls())

library(emplik)

library(cmprsk)

library(etm)
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data(fourD)

t=fourD$time

c=fourD$status

dat=data.frame(t,c)

dat1=subset(dat,c !=0)

t1=dat1$t

c1=dat1$c

n=length(t1)

k1=2/(n*(n-1))

Jkn=rep()

delta=rep()

delta1=0

delta2=0

for(i in 2:n){

for(j in 1:(i-1)){

delta1=delta1+as.integer((t[i]$>$t[j])&(c[i]==1)&(c[j]==2))

delta2=delta2+as.integer((t[i]$>$t[j])&(c[i]==2)&(c[j]==1))}}

delta=k1*(delta1-delta2)

v=rep()

deltak=rep()

for(k in 1:n){

delta1k=0

delta2k=0

t1=t[-k]

c1=c[-k]

for(i in 2:(n-1)){

for(j in 1:(i-1)){

delta1k=delta1k+as.integer((t1[i]$>$ t1[j])&(c1[i]==1)&(c1[j]==2))

delta2k=delta2k+as.integer((t1[i]$>$ t1[j])&(c1[i]==2)&(c1[j]==1))}}

deltak[k]=(2/((n-1)*(n-2)))*(delta1k-delta2k)

v[k]=n*delta-(n-1)*deltak[k]

}

Jkn=el.test(v,mu=0)\$'-2LLR'
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