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1. INTRODUCTION

Suppose that {Xt } is a Gaussian stationary process, and XT = (X1,X2, . . . ,XT )
′ is an

observed stretch from {Xt }. The likelihood function based on XT is expressed in terms
of the inverse matrix and the determinant of the variance-covariance matrix V of XT . If
T is large, the calculation for the exact likelihood and the maximum likelihood estimator
(MLE) becomes very difficult. Whittle (1961) introduced a feasible approximation of the
log-likelihood for avoiding expensive matrix inversions in terms of the spectral density
fθ, which is defined by

W (θ)≡−1
2

T
∑

s=1

�

log fθ (λs )+
IT (λs )
fθ(λs )

�

(1)

where IT (λs ) =
1

2πT

�

�

�

∑T
t=1 Xt e i tλs

�

�

�

2
is the periodogram and λs =

2πs
T .

The Whittle estimator is defined by the maximiser of W (θ) with respect to θ. The
inference by W (θ) has been developed for variety of directions. For example, among
many others, Hosoya and Taniguchi (1982) elucidated the asymptotics of Whittle esti-
mator for vector-valued non-Gaussian processes permitted to the case when the spectral
model is misspecified. Taniguchi and Kakizawa (2000) investigated the higher-order ef-
ficiency of Whittle estimators in autoregressive moving average process. Giraitis and
Taqqu (1999) derived the properties of Whittle estimation in long-memory Gaussian
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processes and nonlinear processes. It is known that MLE and Whittle estimator are
asymptotically efficient. However, evidently, for finite sample size, the exact likelihood
and Whittle likelihood are different, and so are MLE and Whittle estimator. In this
paper we aim to evaluate these differences numerically. For moving average process of
first order (MA(1)), Anderson (1971) derived a useful explicit form of V−1, see also An-
derson (1977). Using this we evaluated the differences of exact likelihood and Whittle
likelihood as well as the asymptotics of the corresponding estimators by simulation for
MA(1) with coefficient θ. In fact, for autoregressive process of first order (AR(1)), An-
derson (1971) derived a third-order polynomial equation which describes the exact MLE.
However, the equation does not have a simple solution. Anderson (1971) then proposed
an estimator which is the third-order approximation. Fujikoshi and Ochi (1984) inves-
tigated the third-order asymptotics of the estimator and compared it with the Whittle
estimator, which becomes the Yule-Walker estimator (see Taniguchi, 1983). For MA(1),
Anderson (1971, pp. 292-293) derived the exact form of the inverse matrix of the co-
variance matrix of an observed stretch. Based on this, in this paper, we investigate some
behaviors of the exact likelihood and MLE of MA(1), and compare with the Whittle
likelihood and Whittle estimator respectively.

Researchers have noticed and exploited the unique properties of estimators or test
statistics when the true value of parameter vector nears or is at the boundary compared
with the interior of the parameter space (Ketz, 2018). For example, Monti and Taniguchi
(2018) developed the higher-order asymptotics for a class of test statistics when the pa-
rameter of interest is on the boundary of the parameter space. In this work, we also
compare the performance of MLE and Whittle estimator when θ is close to the bound-
ary, i.e. ±1. We observed definite difference in the two likelihood functions and esti-
mators, especially if θ nears 1 (unit root case) or −1, Whittle estimator deteriorates in
comparison with MLE. Hence this is an important warning for using Whittle estimator
when the parameter of moving average process nears the boundary of space.

This paper is organized as follows. Section 2 introduces the exact log likelihood and
Whittle likelihood for MA(1), based on Anderson’s explicit expression for variance ma-
trix and the periodogram, respectively. In Section 3 we evaluate the expectation of the
exact likelihood and Whittle likelihood. Section 4 discusses the numerical comparisons
among the exact value, expectation, and estimators of the two likelihood functions. The
results show that, if the parameter of moving average process nears the boundary of pa-
rameter space, the Whittle estimator becomes worse in comparison with MLE. Section
5 concludes.

2. LIKELIHOOD FUNCTION

Suppose that {Xt } is generated by

Xt = εt +θεt−1, (|θ|< 1), (2)
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where εt follows independent standard normal distribution. Let XT = (X1, . . . ,XT )
′ de-

note an observed stretch from {Xt }, and denote the covariance matrix by V≡Var (XT ) .
The exact likelihood function for XT , denoted by L(θ), is

L(θ) =−1
2

logdetV− 1
2

X′T V−1XT −
T
2

log2π, (3)

where
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and IT is the T ×T identity matrix. Let

PT =

√
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√ 2
T + 1
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which is an orthogonal matrix. Anderson (1971) evaluated the form of covariance ma-
trix as

LT = PT







2cos π
T+1 0

. . .
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T+1
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Hence
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PROPOSITION 1. The exact log likelihood in (3) is equal to

L(θ) =− 1
2

T
∑

s=1

log
§

1+θ2+ 2θ cos
πs

T + 1

ª

− 1
2

T
∑

s=1

ξ (s)2

1+θ2+ 2θ cos πs
T+1

− T
2

log2π,

(4)

where

ξ (s) =

√

√

√ 2
T + 1

T
∑

t=1

Xt sin
πt s

T + 1
.

Whittle likelihood (Whittle, 1961) is known as a frequency-domain approximation
for the actual likelihood in parametric spectral analysis. Given the observed time series
XT , the Whittle likelihood, denoted by LW (θ), is

LW (θ) =−
1
2

T
∑

s=1

�

log fθ (λs )+
IT (λs )
fθ(λs )

+ log(2π)
�

, (5)

where fθ (λs ) =
1

2π

�

�

�1+θe iλs

�

�

�

2
, IT (λs ) =

1
2πT

�

�

�

∑T
t=1 Xt e i tλs

�

�

�

2
, and λs =

2πs
T .

3. EXPECTATION OF THE LOG-LIKELIHOOD

In this section we evaluate the expectation of the two log-likelihood L(θ) and LW (θ),
denoted by E(L) and E(LW ) respectively. To evaluate E(L) we have

E
�

ξ (s)2
	

= E

�

2
T + 1

T
∑

t=1

T
∑

t ′=1

Xt Xt ′ sin
πt s

T + 1
sin

πt ′ s
T + 1

�

=
2

T + 1

n T
∑
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E(X 2
t )(sin

πt s
T + 1

)2

+
T−1
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E
�

Xt Xt−1

�

sin
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T + 1
sin
π(t + 1)s

T + 1

+
T
∑
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E
�

Xt Xt−1

�

sin
π+ s
T + 1

sin
π(t − 1)s

T + 1

o

,

(6)

where E
�

X 2
t

�

= 1+θ2 and E
�

Xt Xt−1

�

= θ.
From (6) we can obtain the following result.
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PROPOSITION 2. The expectation of the exact log-likelihood L(θ) is

E(L) =−1
2

T
∑

s=1

h

log
�

1+θ2+ 2θ cos
πs

T + 1

�

+
1+θ2+ 2 T

T+1θ cos πs
T+1

1+θ2+ 2θ cos πs
T+1

+ log2π
i

.

(7)

Next we evaluate E(LW ). For this, note that

E(IT (λs )) =
1

2π

T−1
∑

`=−T+1

E(R̂(`))e−i`λs ,

where R̂(`) = 1
T
∑T−|`|

t=1 Xt Xt+|`|.
Because

E(R̂(0)) = 1+θ2, E(R̂(±1)) = θ, and E(R̂(`)) = 0 for |`| ≥ 2,

we then obtain

E(IT (λs )) =
1

2π

�

1+θ2+ 2θ cosλs

�

.

Hence, we have the following result.

PROPOSITION 3. The expectation of the Whittle likelihood LW (θ) is

E(LW ) =−
1
2

T
∑

s=1

h

log
�

�

�1+θe iλs

�

�

�

2
+ 1+ log2π

i

. (8)

4. NUMERICAL STUDIES

As stated before, the exact likelihood includes the determinant and inverse of covariance
matrix V ∈RT ×RT . If T is large, the exact likelihood is intractable. Whittle likelihood
defined in Eq.(5) is a feasible approximation in a frequency-domain. However, for finite
T , Whittle likelihood and the exact likelihood are different. In this section, we illustrate
this difference numerically. We firstly consider various MA(1) processes with the true
values of the parameter setting as θ ∈ {±0.1,±0.2, · · · ,±0.9}. We also investigate the
performance when θ nears the boundary (±1) and set the true values of the parameter
as θ ∈ {±0.91,±0.92 · · · ,±0.99}. We repeat the experiments 500 times with various
sample sizes T = {30,50,100}.
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TABLE 1
The values of exact likelihood and Whittle likelihood functions and their difference under sample size

30, and the “Diff” column refers to L(θ)− LW (θ).

T = 30 T = 50 T = 100

θ L(θ) LW (θ) Diff L(θ) LW (θ) Diff L(θ) LW (θ) Diff

0.1 -14.891 -14.893 0.002 -24.844 -24.850 0.006 -49.736 -49.743 0.007
0.2 -14.769 -14.794 0.025 -24.916 -24.944 0.028 -50.359 -50.387 0.028
0.3 -15.045 -15.097 0.052 -24.882 -24.923 0.041 -49.909 -49.982 0.073
0.4 -15.049 -15.146 0.097 -25.598 -25.751 0.154 -50.451 -50.564 0.113
0.5 -15.089 -15.298 0.209 -24.821 -25.032 0.210 -50.084 -50.281 0.196
0.6 -15.582 -15.905 0.324 -25.403 -25.763 0.360 -50.211 -50.568 0.356
0.7 -15.258 -15.935 0.676 -25.558 -26.142 0.585 -50.758 -51.373 0.615
0.8 -15.217 -16.490 1.273 -25.760 -27.205 1.445 -50.814 -52.241 1.427
0.9 -16.022 -20.240 4.218 -25.668 -29.132 3.463 -51.694 -54.667 2.973
0.91 -15.877 -20.339 4.462 -25.825 -29.643 3.818 -51.588 -55.669 4.081
0.92 -16.034 -21.655 5.620 -25.904 -30.803 4.900 -51.009 -55.317 4.308
0.93 -16.221 -23.637 7.416 -26.045 -30.943 4.898 -50.972 -56.242 5.270
0.94 -16.098 -24.141 8.043 -26.278 -33.740 7.462 -51.230 -58.103 6.873
0.95 -16.230 -30.256 14.026 -26.600 -38.328 11.727 -51.066 -60.315 9.249
0.96 -16.232 -36.165 19.933 -26.260 -41.032 14.772 -51.530 -62.931 11.401
0.97 -16.213 -51.962 35.749 -26.641 -49.572 22.930 -50.831 -66.675 15.844
0.98 -16.613 -92.643 76.030 -26.754 -77.134 50.380 -51.115 -85.095 33.980
0.99 -16.360 -380.252 363.892 -27.485 -222.605 195.120 -52.158 -146.903 94.745

-0.1 -14.890 -14.899 0.009 -24.792 -24.785 -0.007 -50.076 -50.077 0.002
-0.2 -14.785 -14.817 0.032 -25.313 -25.330 0.017 -49.914 -49.924 0.010
-0.3 -15.031 -15.071 0.040 -24.915 -24.956 0.041 -49.301 -49.395 0.094
-0.4 -15.060 -15.146 0.086 -25.031 -25.159 0.127 -49.807 -49.885 0.079
-0.5 -15.144 -15.313 0.169 -24.832 -25.009 0.177 -50.687 -50.881 0.194
-0.6 -15.598 -15.956 0.357 -24.878 -25.140 0.263 -50.920 -51.289 0.369
-0.7 -15.302 -15.962 0.660 -25.524 -26.129 0.604 -50.312 -50.916 0.605
-0.8 -15.216 -16.600 1.384 -25.002 -26.462 1.459 -51.004 -52.269 1.265
-0.9 -16.016 -20.159 4.143 -26.368 -30.162 3.794 -51.162 -54.653 3.491
-0.91 -15.873 -20.641 4.768 -25.944 -29.700 3.756 -50.674 -54.199 3.525
-0.92 -16.098 -21.504 5.406 -26.255 -31.589 5.334 -51.353 -55.907 4.554
-0.93 -16.212 -23.603 7.391 -26.322 -32.154 5.832 -50.809 -55.660 4.851
-0.94 -16.107 -24.460 8.353 -26.079 -33.312 7.233 -51.310 -57.683 6.373
-0.95 -16.164 -30.325 14.161 -26.131 -34.757 8.626 -50.865 -59.987 9.122
-0.96 -16.238 -35.990 19.753 -26.487 -40.409 13.923 -51.050 -60.834 9.783
-0.97 -16.244 -52.579 36.335 -26.697 -49.849 23.152 -51.740 -66.725 14.985
-0.98 -16.626 -92.263 75.637 -26.806 -76.500 49.694 -51.301 -85.415 34.114
-0.99 -16.303 -380.636 364.333 -26.711 -234.113 207.403 -52.065 -143.982 91.917
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4.1. Likelihood function comparison

We compare the value of exact likelihood L(θ) in (4) and Whittle likelihood function
LW (θ) in (5) and the corresponding expectation defined in (7) and (8) respectively.

Table 1 reports the average values of L(θ) and LW (θ) over 500 repetitions with var-
ious parameters and sample sizes. It is shown that L(θ) is larger than LW (θ) among
different values of θ and various sample sizes. When the absolute value of θ is not too
large, e.g., smaller than 0.7, the difference of L(θ) and LW (θ) is smaller than 1 for all the
three T cases, which is not very significant. While when θ increases from 0.9 to 0.99 or
decreases from -0.9 to -0.99, that is |θ| approaches to 1, the deviation of L(θ) to LW (θ)
dramatically increases from around 4 to 360 at T=30, from about 3.5 to 200 at T =50,
and from about 3 to 91 when T=100. That is, the difference greatly increases when the
absolute value of θ becomes closer to 1 and larger sample size shows some benefits for re-
ducing such difference. The sign of θ does not have significant effect to the performance
of likelihoods. We conclude that Whittle likelihood is a good approximate to the exact
likelihood with similar performance when the absolute value of θ is not too large, while
if a moving average parameter is close to ±1, this difference becomes dramatic. This is
a big warning when we use Whittle likelihood and estimator for the MA process.

Table 2 reports the comparison of performance between the expectations E(L) and
E(LW ) under different parameter values of θ, and sample size T equals 30, 50, and 100
respectively. From Eq.(7) and Eq.(8), it is not difficult to prove that the sign of θ does
not affect the value of E(L) and E(LW ), thus in Table 2 we report a single result for±θ in
one row. It is shown that E(LW ) is always larger than E(L) for all the scenarios. When
the absolute value of θ increases from 0.8 to 0.99, the deviation of E(L) and E(LW )
also exhibits large increments from around 1.97∼ 2.19 to 7.56∼ 17.63 among different
sample sizes. That is, the difference greatly increases when the MA(1) process has near
unit root (θ→−1) or θ→ 1. It also shows that the value of E(LW ) is quite stable for
all θ, which differs from the poor performance of LW (θ) at θ > 0.90 shown in Table 1.
The stable performance of E(LW ) is because that E(LW ) is less sensitive to the changing
of θ than E(L).

4.2. Estimation accuracy comparison

In this part we compare the parameter estimation accuracy of MLE denoted by θ̂ and
the Whittle likelihood estimator denoted with θ̃W for the MA(1) process in model (2).
We evaluate the performance of two estimators in terms of the estimation bias (Bias), the
mean of absolute error (MAE) and mean squared error (MSE), which are respectively
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TABLE 2
Comparison between the expectations of exact likelihood E(L) and Whittle likelihood E(LW ), and

the “Diff” column refers to E(L)− E(LW ).

T=30 T=50 T=100
θ E(L) E(LW ) Diff E(L) E(LW ) Diff E(L) E(LW ) Diff

±0.1 -15.014 -15.000 -0.014 -25.015 -25.000 -0.015 -50.015 -50.000 -0.015
±0.2 -15.059 -15.000 -0.059 -25.060 -25.000 -0.060 -50.061 -50.000 -0.061
±0.3 -15.139 -15.000 -0.139 -25.142 -25.000 -0.142 -50.144 -50.000 -0.144
±0.4 -15.263 -15.000 -0.263 -25.269 -25.000 -0.269 -50.273 -50.000 -0.273
±0.5 -15.449 -15.000 -0.449 -25.460 -25.000 -0.460 -50.468 -50.000 -0.468
±0.6 -15.729 -15.000 -0.729 -25.751 -25.000 -0.751 -50.768 -50.000 -0.768
±0.7 -16.176 -15.000 -1.176 -26.224 -25.000 -1.224 -51.260 -50.000 -1.260
±0.8 -16.970 -14.999 -1.971 -27.095 -25.000 -2.095 -52.191 -50.000 -2.191
±0.9 -18.659 -14.957 -3.702 -29.214 -24.995 -4.219 -54.649 -50.000 -4.649
±0.91 -18.919 -14.939 -3.980 -29.599 -24.991 -4.608 -55.143 -50.000 -5.143
±0.92 -19.198 -14.914 -4.284 -30.043 -24.984 -5.058 -55.737 -50.000 -5.737
±0.93 -19.495 -14.880 -4.615 -30.553 -24.973 -5.580 -56.464 -49.999 -6.465
±0.94 -19.805 -14.830 -4.975 -31.137 -24.954 -6.184 -57.375 -49.998 -7.377
±0.95 -20.121 -14.758 -5.362 -31.799 -24.920 -6.880 -58.541 -49.994 -8.547
±0.96 -20.432 -14.652 -5.780 -32.527 -24.861 -7.667 -60.065 -49.983 -10.082
±0.97 -20.728 -14.487 -6.241 -33.286 -24.754 -8.532 -62.069 -49.951 -12.118
±0.98 -20.994 -14.211 -6.783 -34.007 -24.547 -9.460 -64.582 -49.858 -14.724
±0.99 -21.219 -13.654 -7.565 -34.598 -24.071 -10.527 -67.172 -49.544 -17.628

defined as:

Bias=
1
S

S
∑

i=1

�

θ̂(i)T −θ
�

,

MAE=
1
S

S
∑

i=1

�

�

�θ̂(i)T −θ
�

�

� ,

MSE=
1
S

S
∑

i=1

�

θ̂(i)T −θ
�2

,

where θ̂(i)T denotes the estimator θ̂ or θ̃W in the i -th simulation. And θ is the true
value of the parameter, which varies from {±0.1,±0.2, · · · ,±0.9,±0.91, · · · ,±0.99}, and
sample size T = {30,50,100}. We repeat the experiment S = 500 times.

Table 3 reports the accuracy comparison results of the MLE and Whittle estimator
with T=50, and the results of T=30 and 100 are reported at Supplementary Materials.

It shows that θ̃W has very small advantage when the absolute value of true parame-
ter θ is smaller than 0.5, which exhibits slightly smaller values of Bias, MAE and MSE.
However, the MLE θ̂ performs much better than θ̃W when the absolute θ is larger than
0.7, which presents much smaller values of Bias, MAE and MSE. Especially θ̃W per-
forms very poorly when the absolute θ is larger than 0.9. This indicates that when the
parameter of MA(1) nears the boundary (±1), the difference between MLE and Whittle
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TABLE 3
Accuracy performance of MLE and Whittle likelihood estimator for T=50. The better performances

with smaller absolute value of Bias, smaller MAE and MSE are marked in bold.

Estimate Bias MAE MSE

θ θ̂ θ̃W θ̂ θ̃W θ̂ θ̃W θ̂ θ̃W

0.1 0.128 0.126 0.028 0.026 0.101 0.099 0.017 0.017
0.2 0.222 0.217 0.022 0.017 0.116 0.115 0.020 0.020
0.3 0.305 0.296 0.005 -0.004 0.113 0.110 0.020 0.019
0.4 0.415 0.403 0.015 0.003 0.120 0.116 0.023 0.022
0.5 0.513 0.496 0.013 -0.004 0.116 0.111 0.022 0.020
0.6 0.608 0.587 0.008 -0.013 0.101 0.102 0.017 0.016
0.7 0.709 0.679 0.009 -0.021 0.094 0.100 0.016 0.017
0.8 0.824 0.769 0.024 -0.031 0.086 0.096 0.011 0.016
0.9 0.914 0.831 0.014 -0.070 0.062 0.099 0.005 0.019
0.91 0.919 0.849 0.009 -0.061 0.061 0.088 0.005 0.012
0.92 0.929 0.840 0.009 -0.080 0.059 0.099 0.005 0.015
0.93 0.936 0.852 0.006 -0.078 0.055 0.098 0.005 0.015
0.94 0.938 0.845 -0.002 -0.095 0.054 0.105 0.005 0.017
0.95 0.945 0.848 -0.006 -0.102 0.049 0.110 0.004 0.019
0.96 0.954 0.851 -0.006 -0.109 0.043 0.116 0.003 0.021
0.97 0.962 0.854 -0.008 -0.116 0.036 0.119 0.003 0.022
0.98 0.961 0.861 -0.019 -0.119 0.037 0.121 0.004 0.023
0.99 0.969 0.855 -0.021 -0.135 0.030 0.135 0.003 0.027

-0.1 -0.099 -0.100 0.001 0.000 0.114 0.114 0.022 0.022
-0.2 -0.209 -0.204 -0.009 -0.004 0.119 0.117 0.023 0.022
-0.3 -0.306 -0.300 -0.006 0.000 0.119 0.119 0.023 0.024
-0.4 -0.411 -0.396 -0.011 0.004 0.121 0.121 0.025 0.025
-0.5 -0.509 -0.492 -0.009 0.008 0.111 0.108 0.021 0.020
-0.6 -0.616 -0.594 -0.016 0.006 0.101 0.101 0.017 0.017
-0.7 -0.717 -0.681 -0.017 0.019 0.094 0.096 0.015 0.015
-0.8 -0.816 -0.761 -0.016 0.039 0.084 0.106 0.012 0.019
-0.9 -0.918 -0.830 -0.018 0.070 0.067 0.102 0.006 0.019
-0.91 -0.927 -0.836 -0.017 0.074 0.062 0.100 0.005 0.018
-0.92 -0.928 -0.827 -0.008 0.093 0.059 0.113 0.005 0.022
-0.93 -0.938 -0.836 -0.008 0.094 0.058 0.114 0.005 0.024
-0.94 -0.947 -0.845 -0.007 0.095 0.050 0.110 0.004 0.022
-0.95 -0.945 -0.843 0.005 0.107 0.049 0.116 0.005 0.026
-0.96 -0.956 -0.843 0.004 0.117 0.043 0.124 0.004 0.027
-0.97 -0.958 -0.843 0.012 0.127 0.040 0.130 0.004 0.030
-0.98 -0.964 -0.846 0.016 0.134 0.035 0.135 0.003 0.030
-0.99 -0.970 -0.843 0.020 0.147 0.029 0.148 0.004 0.036
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estimator becomes large, and the performance of Whittle becomes very poor compared
with MLE. Again these findings indicate that it is a big warning to use the Whittle like-
lihood and estimator when MA(1) has θ→±1. In fact, Taniguchi (1983) evaluated the
expectation of MLE and Whittle likelihood in higher-order cases, and showed that the
expected Whittle likelihood diverges to infinity as the true value of MA parameter goes
to one, while it is not so for MLE method. This helps explain the poor performance of
Whittle estimator when the process is close to the non-invertibility region.

5. CONCLUSION

This paper investigates the difference between the exact likelihood and Whittle likeli-
hood for moving average process of order one. We elucidate the theoretical expressions
of two likelihood functions and their expectations. We conduct numerical simulation
to compare the finite sample performance of exact likelihood and Whittle likelihood
in terms of actual likelihood function value, expectation, and parameter estimation ac-
curacy, respectively. It shows that the exact likelihood and Whittle likelihood deliver
similar performance in the likelihood value and parameter estimation accuracy when
the true value of parameter is small (i.e. close to 0), while the difference of two likeli-
hoods becomes large and Whittle estimator performs poorly when parameter nears the
boundary (±1). The results indicate a big warning for using the Whittle likelihood and
estimator when moving average process is close to the non-invertibility region.
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SUMMARY

For Gaussian stationary processes, the likelihood functions include the inverse and determinant
of the covariance matrices, and Whittle likelihood is considered as a standard technique to avoid
expensive matrix determinant and inversions under large sample size. In this paper, we investi-
gate the difference between the exact likelihood and Whittle likelihood with finite sample size
for moving average processes of order one. We elucidate the theoretical expressions of two likeli-
hood functions and their expectations and evaluate the performance between exact likelihood and
Whittle likelihood numerically. We find that the exact likelihood and Whittle likelihood perform
similarly when the true value of parameter is close to zero, while the difference becomes large and
Whittle estimator performs poorly when absolute value of parameter gets close to one. This is an
important warning when we use the Whittle likelihood and estimator if the parameter of moving
average process nears the boundary of parameter space.

Keywords: Gaussian stationary process; Spectral density; Likelihood function; Whittle likeli-
hood; Moving average process.
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