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SUMMARY

We discuss the role that the null hypothesis should play in the construction of a test statistic used to
make a decision about that hypothesis. To construct the test statistic for a point null hypothesis
about a binomial proportion, a common recommendation is to act as if the null hypothesis is
true. We argue that, on the surface, the one-sample t -test of a point null hypothesis about a
Gaussian population mean does not appear to follow the recommendation. We show how simple
algebraic manipulations of the usual t-statistic lead to an equivalent test procedure consistent with
the recommendation. We provide geometric intuition regarding this equivalence and we consider
extensions to testing nested hypotheses in Gaussian linear models. We discuss an application to
graphical residual diagnostics where the form of the test statistic makes a practical difference. By
examining the formulation of the test statistic from multiple perspectives in this familiar example,
we provide simple, concrete illustrations of some important issues that can guide the formulation
of effective solutions to more complex statistical problems.

Keywords: Binomial proportion; F -test; Nested models; Null hypothesis; Orthogonal sum of
squares decomposition; Test statistic.

1. INTRODUCTION

Among the first procedures taught in an introductory statistics class are hypothesis test-
ing and confidence interval estimation for a proportion (see e g. Moore et al., 2012). For
example, students may be given data on the sexes of a sample of n babies born during
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a certain time period. They may be asked either to estimate the true proportion p of
babies born male and provide a confidence interval, or to test whether the proportion is
equal to 0.5, for example2. Typically, for large n, the distribution of the sample propor-
tion is approximated by bp ·∼ N (p, p(1− p)/n) , and two slightly different procedures
are introduced. For estimation and confidence interval construction, bp is commonly
plugged into the variance formula, and a 100(1− α)% confidence interval is calculated
as

bp ± z α
2

Æ

bp(1− bp)/n. (1)

For testing H0 : p = p0 for a pre-specified p0, students are advised to act as though the
null were true, and use the null to construct the test statistic. As a result, p0 is plugged
into the variance formula, producing the test statistic

bp − p0
p

p0(1− p0)/n
. (2)

Although many different approaches to both testing and interval estimation have been
proposed — and many commonly used statistical software packages allow the user to
apply continuity corrections to these formulas to improve the asymptotic approxima-
tion (e.g., by setting the argument correct = TRUE in the R function prop.test) — in
the authors’ experience, the above methods are still frequently taught for hand calcula-
tion in introductory statistics classes of various levels. For instance, Example 10.3.5 in
Casella and Berger (2002) discusses precisely two test procedures based on test statistics
that use bp or p0 to estimate the variance, commenting on their relative merits in terms
of a comparison of their power functions. For further discussions of procedures used
in the one-sample proportion setting, see, e.g., Agresti and Coull (1998) and Yang and
Black (2019).

Also among the first procedures taught are estimation and hypothesis testing for
the mean µ of a normal N (µ,σ2) population with unknown variance σ2. For example,
students may be given data on the heights of a random sample of U.S. women and be
asked to estimate the true mean height, or test whether it is equal to some specified
value. If our data consist of a random sample Y1, . . . ,Yn from the N (µ,σ2) population,
Ȳ ∼N

�

µ,σ2/n
�

, and a confidence interval is constructed analogously to (1), as

Ȳ ± tn−1, α2
S/
p

n,

where

S2 =
1

n− 1

n
∑

i=1

(Yi − Ȳ )2 (3)

2 There is evidence that this proportion is larger than 0.5 in most of the world (see e.g. Chao
et al., 2019).
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is the sample variance. (This follows from observing that T := (Ȳ −µ)/(S/
p

n) has a
t distribution with n− 1 degrees of freedom, accounting for the replacement of σ with
S). To test H0 :µ=µ0 for a pre-specifiedµ0, we can, analogously to (2), invoke the null.
When H0 holds, we know µ = µ0 but still need to estimate σ2. Since µ is known, the
most efficient estimator of σ2 is:

S2
0 :=

1
n

n
∑

i=1

(Yi −µ0)
2.

Our test statistic would thus be:

T0 :=
Ȳ −µ0

S0/
p

n
.

But, of course, people do not use this test statistic! Instead, they construct a statistic
that ignores the information that µ = µ0 provided by H0, and perform the standard
one-sample t -test using the test statistic

T =
Ȳ −µ0

S/
p

n
.

At first glance, one might suspect that using this test statistic would be less efficient than
using T0, since its denominator has n− 1 degrees of freedom rather than n.

We are thus led to wonder why information provided by the null is discarded in
constructing the one-sample t -test. In the remainder of the paper we clarify this question
and present a more general perspective, that we think will be of interest to colleagues
who teach this material as well as those interested in the development and implications
of some of our most fundamental statistical tools.

2. ESTABLISHING THE CONNECTION

The connection between the two methods proposed at the end of the previous section
can be established from an algebraic and from a geometric point of view. We look at
these two approaches separately.

To begin, we note that any intuition that a test based on T0 rather than T could be
more efficient is wrong: a tail-area test based on T0 and one based on T produce identical
answers. This is because T is a one-to-one, increasing function of T0,

T =
p

n− 1 T0
Æ

n−T 2
0

, (4)

over the interval (−
p

n,
p

n), which is the set of possible values for T0. Specifically, for
any fixed α, with 0≤ α≤ 1, let cα ≥ 0 be the critical value of the size α test based on T0.
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The rejection region of this test is

RT0
= {y= (y1, . . . , yn)

T : |T0(y)| ≥ cα}.

Because the transformation in Equation (4) is monotonic increasing on [0,
p

n), the set

RT = {y= (y1, . . . , yn)
T : |T (y)| ≥ (

p
n− 1 cα)/(

p

n− c2
α)}

satisfies RT = RT0
. It follows that the test that rejects if and only if

|T (y)| ≥ (
p

n− 1 cα)/(
p

n− c2
α)

has the exact same rejection region (in sample space) as the test that rejects when |T0(y)| ≥
cα. The two tests must then have the same size and power function and are therefore
equivalent.

As noted by a colleague, a simple way to establish Equation (4) is to recognize that
the one sample t -test can be derived as a likelihood ratio test that rejects H0 : µ = µ0
when the ratio

λ(Y) =
supσ2 L(µ0,σ2|Y)
supµ,σ2 L(µ,σ2|Y)

is small or, equivalently, when the ratio of sums of squares under the null and full model,

R=

∑

j=1(Y j −µ0)
2

∑n
j=1(Y j − Ȳ )2

, (5)

is large. This ratio can be expressed as

R=

∑

j=1(Y j − Ȳ )2+ n(Ȳ −µ0)
2

∑n
j=1(Y j − Ȳ )2

= 1+
T 2

n− 1

or as

R=

∑

j=1(Y j −µ0)
2

∑n
j=1(Y j −µ0)2− n(Ȳ −µ0)2

=
1

1−T 2
0 /n

.

The former expression leads to the standard t -test based on T , while the latter leads to
the test based on T0. Equating these two expressions yields the identity of Equation (4).

This relationship between T and T0 is, of course, not new: for example, it arises sub-
stantively in Lehmann’s approach for demonstrating that the one sample t -test is a uni-
formly most powerful (UMP) unbiased test of H0 : µ= µ0 vs. HA : µ 6= µ0 (Lehmann,
1986). The full details of the argument are best left to Lehmann, but, very briefly, for pa-
rameters in exponential family distributions, Lehmann’s Theorem 1 in Chapter 5 gives
a set of conditions about the form of a test statistic in relation to the family’s sufficient
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statistics. When these conditions are satisfied, a test based on the test statistic is UMP un-
biased. The set of conditions Lehmann provides is satisfied by T0 rather than T , and the
UMP unbiasedness of the t -test is then established by exhibiting that T is a one-to-one
function of T0.

Interestingly, this equivalence does not seem to be widely known (at least based on
our informal surveying of several colleagues). This is somewhat surprising. In fact, in ad-
dition to appearing in Lehmann’s book, the algebraic equivalence of the test statistics is
periodically mentioned in the literature (see e.g. Lefante, Jr. and Shah, 1986; Good, 1986;
Shah and Lefante Jr, 1987; Shah and Krishnamoorthy, 1993; LaMotte, 1994). However,
we feel that the equivalence is worth revisiting, both in the context of the t -test and in
the more general setting of nested linear models, where an analogous equivalence holds.
The geometric interpretation of the equivalence, not described in these earlier refer-
ences, provides an interesting addition to the geometric interpretation of linear models.
Moreover, despite the test statistics leading to identical conclusions in the linear models
setting, one choice naturally leads a practitioner to consider so-called studentized residu-
als while the other leads to so-called standardized residuals—and these sets of residuals do
have different properties and, when plotted, may lead to different visual interpretations.
We expand on these remarks in subsequent sections.

3. THE GEOMETRIC POINT OF VIEW

Interestingly, the equivalence of T0 and T can be understood geometrically because they
can both be viewed as trigonometric functions of the same angle, and it is possible to
express any trigonometric function in terms of any other trigonometric function, up to
sign. To see the geometric relationship, define the vectors v= (Y1−µ0,Y2−µ0, . . . ,Yn−
µ0)

T and 1= (1,1, . . . , 1)T. Then, the orthogonal projection of v onto 1 is u= (Ȳ −µ0)1,
and the Pythagorean Theorem implies:

‖v‖2 = ‖u‖2 + ‖v−u‖2,

i.e.,
n
∑

i=1

(Yi −µ0)
2 = n(Ȳ −µ0)

2 +
n
∑

i=1

(Yi − Ȳ )2,

i.e., SSTO = SST + SSE,

where we introduce analysis of variance terminology, with SSTO, SST, and SSE indicat-
ing the Sums of Squares for Total, Treatment, and Error, respectively. Thus, if we define
θ to be the angle between 1 and v, then:

T 2
0 = n

SST
SSTO

= n cos2θ and T 2 = (n− 1)
SST
SSE

= (n− 1)cot2θ.

A stylized, two-dimensional representation of the essence of these geometric relation-
ships is presented in Figure 1. Using basic trigonometric expressions it is easy to derive
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v

u

v-u

�

a

b

c

a = ‖v‖=
p

SSTO,
b = a cosθ= ‖u‖=

p
SST,

c = a sinθ= ‖v−u‖=
p

SSE,
T 2

0 = n (b 2/a2) = n cos2θ,
T 2 = (n− 1) (b 2/c2) = (n− 1)cot2θ.

Figure 1 – Geometric representation of the test statistics T0 and T .

the stated algebraic relationship between T and T0. In fact,

T 2 = (n− 1)cot2θ= (n− 1)
cos2θ

sin2θ
= (n− 1)

cos2θ

1− cos2θ
.

Substituting cos2θ = T 2
0 /n into this expression and taking square roots on both sides

(making sure the signs match, as they should) yields Equation (4).

4. EXTENSION TO LINEAR MODELS

The results presented in the previous sections are not specific to the t -test setting. In
fact, constructing a test statistic by invoking the null hypothesis and constructing it in
the “traditional” way produces equivalent test procedures across a range of linear mod-
els. This connection can be established by rewriting the two statistics as functions of
different terms in the orthogonal decomposition of the sum of squares.

4.1. Nested models

For instance, consider the standard linear model

Y=Xβ+ ε,

where Y = (Y1, . . . ,Yn)
T is a vector of observations, Xn×p is a design matrix of rank

p < n, β = (β1, . . . ,βp )
T is a vector of regression parameters, and ε = (ε1, . . . ,εn)

T is

an error vector with elements εi
iid∼N (0,σ2). Suppose we wish to determine if a specific

collection of p2 covariates in X does not significantly contribute to the prediction of
Y in the linear model. We can formulate this question as a testing problem in which
the null hypothesis states that the p2 regression coefficients for these covariates are all
zero. Without loss of generality we can assume that the parameters of interest are the
last p2 < p and rewrite the model as

Y=X1β1+X2β2+ ε,
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where X = [X1|X2] and β = (βT

1,βT

2)
T, with βi of dimension pi for i = 1,2, and p1 +

p2 = p. The testing problem concerning the nested model can then be stated as

H0 :β2 = 0 vs. HA :β2 6= 0.

Both the “traditional” and the “null hypothesis” testing procedures try to quantify
the importance of the reduction in error sums of squares that ensues from entertaining
the full model rather than the reduced model, but they differ in the comparison yardstick
they use. The “traditional” procedure uses a yardstick based on the full model. The “null
hypothesis” procedure uses a yardstick based on the reduced model with β2 = 0.

Geometrically, the statistics arise from a sequence of projections. Specifically, define:

P1 =X1(X
T

1X1)
−1XT

1, Q1 = I−P1,

and
P12 =X(XTX)−1XT, Q12 = I−P12.

The matrix P1 operates an orthogonal projection onto the space spanned by the columns
of the reduced design matrix X1 and the matrix P12 operates an orthogonal projection
onto the space spanned by the columns of the full design matrix X. Under the reduced
model, the vector of predicted values is

bY1 = P1Y,

the vector of residuals is
r1 =Y− bY1 =Q1Y,

and the residual sum of squares is

SSE1 =YTQT

1Q1Y=YTQ1Y.

Similarly, under the full model, the vector of predicted values is

bY12 = P12Y,

the vector of residuals is
r=Y− bY12 =Q12Y,

and the residual sum of squares is

SSE12 =YTQ12Y.

The reduction in sums of squares ensuing from fitting the larger model is given by

SS2|1 = SSE1− SSE12 =YT(Q1−Q12)Y=YT(P12−P1)Y.

The “traditional” procedure compares SS2|1 to SSE12, the error sum of squares for the
full model, while the “null hypothesis” procedure compares SS2|1 to SSE1 = SS2|1+SSE12,
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�
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c

1

1

a = ‖r1‖=
p

SSE1,
b = a cosθ= ‖r1− r‖=

Æ

SS2|1,

c = a sinθ= ‖r‖=
p

SSE12,
Fnull = [(n− p1)/p2] (b

2/a2) = [(n− p1)/p2]cos2θ,
Ftrad = [(n− p)/p2] (b

2/c2) = [(n− p)/p2]cot2θ.

Figure 2 – Geometric representation of the decomposition of the sums of squares for testing a
nested hypothesis in the general linear model.

the error sum of squares for the reduced model envisioned to hold under the null. After
adjusting for the degrees of freedom of the various sums of squares, the resulting test
statistics are

Ftrad =
SS2|1/p2

SSE12/(n− p)

and

Fnull =
SS2|1/p2

SSE1/(n− p1)
=

SS2|1/p2

(SS2|1+ SSE12)/(n− p1)
,

respectively.

4.2. Algebra, geometry, and distributional results

The orthogonal decomposition at play in this setting is analogous to the one presented in
Section 2 and is described in a stylized, two-dimensional display in Figure 2, along with
the relationships between its various elements. Algebraic and trigonometric manipu-
lations similar to those outlined in Section 2 show that Ftrad is a one-to-one, increasing
function of Fnull over (0, (n− p1)/p2), the set of possible values for Fnull:

Ftrad =
(n− p)Fnull

n− p1− p2Fnull
. (6)

Thus, as in the case of the t -test, tail-area tests using Ftrad and Fnull are identical. Note
that, when p = 1, p1 = 0, and p2 = 1, the relationship between Ftrad and Fnull given in
Equation (6) reduces to the relationship between T 2 and T 2

0 implied by Equation (4).
The implementation of either test procedure requires knowledge of the distribution

of the corresponding test statistic under the null hypothesis. Using the notation intro-
duced in Figure 2, standard distributional results imply that, under the null hypothesis,

b 2/σ2 = SS2|1/σ
2 ∼ χ 2

p2
,

c2/σ2 = SSE12/σ
2 ∼ χ 2

n−p ,
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with b 2 independent of c2.
Then,

Ftrad =
b 2/p2

c2/(n− p)
∼ Fp2,n−p ,

as it is the ratio of two independent chi-square random variables divided by their degrees
of freedom. Also,

p2

n− p1
Fnull =

b 2

b 2+ c2
∼ Beta

�

1
2

p2,
1
2
(n− p)

�

,

as it is the ratio between a chi-square random variable and the sum of that chi-square
random variable and an independent chi-square random variable.

4.3. Does the difference ever matter?

While the test procedures based on Ftrad and Fnull produce identical inferences, the real-
ized values of the test statistics are different. In this section we consider a situation in
which, arguably, it is preferable to work with one of the two statistics rather than the
other.

Residual plots are effective graphical devices for assessing the quality of the fit of a
linear regression model and for detecting potential outliers. As noted in Section 9.4.1 of
Weisberg (2014), a simple test for determining if observation i is an outlier in a regres-
sion model that includes p1 predictors is to include an additional predictor which is an
indicator of the observation in question (i.e., a 0-1 vector whose only element equal to
1 is the i -th one) and to test if the regression coefficient of the indicator is equal to zero.

Assuming normal errors for the regression model and letting p2 = 1, it is natural to
cast this problem into the framework of Section 4.1 and compare the full model with
p = p1 + p2 predictors (the original predictors and the indicator of observation i ) and
the nested model that omits the indicator variable. Observation i is declared an outlier
if the null hypothesis that the coefficient of its indicator variable is zero is rejected.

The traditional statistic for this problem is Ftrad, which has an F1,n−p distribution
under the null. The square root of Ftrad (with sign matching the sign of the regression
residual for observation i ) is the usual t statistic for outlier detection described by Weis-
berg (2014). It is also a quantity known as the studentized residual for observation i ,
a normalized version of the raw residual, êi , computed using an estimate of the error
variance, σ̂2

(i), that omits observation i from the calculation. Conceptually, this point of
view is appealing because, if the null hypothesis were violated and observation i were
indeed an outlier, its inclusion in the calculation would inflate the estimate of the error
variance. As stated in Weisberg (2014), the studentized residual can be expressed as

ti =
êi

σ̂(i)
p

1− hi i

,
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where hi i denotes the leverage of observation i given by the i -th diagonal element of the
projection (or hat) matrix P12 for the full model.

On the other hand, as seen in Section 4.1, the same test could also be performed
using the statistic Fnull. The signed square root of Fnull turns out to be what is called
the standardized residual for observation i , a normalized version of the raw residual,
êi , computed using an estimate of the error variance, σ̂2, that uses all observations, in-
cluding observation i . This would be the natural calculation to perform if one were to
assume that the null hypothesis were true. As stated in Weisberg (2014), the standardized
residual can be expressed as

ri =
êi

σ̂
p

1− hi i

,

and the deterministic relationship between studentized and standardized residuals is
given by

ti = ri

√

√

√

n− p
n− p + 1− r 2

i

.

This deterministic relationship mirrors, on the square root scale, the deterministic rela-
tionship between Ftrad and Fnull. Ultimately, because of the deterministic relationships
relating Ftrad, Fnull, and the two residual test statistics, an outlier test based on any of
these four statistics leads to the same decision.

Residual plots are often used to conduct an exploratory assessment of the fit of the re-
gression model. In this type of analysis, the plots are scanned visually for the existence of
identifiable patterns and idiosyncratic features that might reveal violations of the mod-
eling assumptions. With regard to outlier detection specifically, plots of residuals vs.
fitted values are inspected to reveal the presence of unusually large residuals. We argue
that, owing to the nonlinearity of the transformation that relates standardized residuals
to studentized residuals, a studentized residual plot is better suited than a standardized
residual plot to achieve this goal.

We illustrate this point with an example based on a subset of the data on brain and
body weights for 100 species of placental mammals reported in Sacher and Staffeldt
(1974). Here, for the measurements on the 21 species of primates included in the data
set, we consider the simple linear regression of the natural logarithm of brain weight on
the natural logarithm of body weight. Standardized and studentized residual plots are
presented in the top row of Figure 3. Two species stand out: Homo Sapiens (with large
positive residuals) and Gorilla Gorilla (with large negative residuals). Both are flagged
as outliers at the 0.05 level with respective p-values of 0.0034 and 0.0301 (unadjusted for
multiplicity of comparisons).

The extent to which these two species lie out compared to the other 19 species is
clearly different. As evidenced visually in both plots, the residual for Homo Sapiens is
further removed from the bulk of the residuals than the residual for Gorilla Gorilla and
this impression is more notably accentuated in the studentized residual plot. This is
due to the nonlinear relationship between standardized and studentized residuals which
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Figure 3 – Standardized and studentized residuals vs. fitted values for the primates data (top row)
and their squared counterparts (bottom row).

causes the difference in absolute size between the two to increase monotonically as the
absolute size of the standardized residual goes from 1 to infinity. In particular, as shown
in Figure 4, the size of such difference becomes very noticeable when the absolute value
of the standardized residual exceeds a value of about 2.5.

In our example, the absolute difference between studentized and standardized resid-
uals is 0.6563 (very noticeable) for Homo Sapiens, 0.2394 (noticeable) for Gorilla Gorilla,
and between 0.0011 and 0.0273 (hardly noticeable) for all other species. The displays in
the bottom line of Figure 3, being based on Fnull and Ftrad which are the squared ver-
sions of the standardized and studentized residuals, emphasize even more the features
just described. In summary, the displays based on the studentized residuals and on Ftrad
can focus the analyst’s attention on the most extreme cases more effectively than those
based on the standardized residuals and on Fnull.
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Figure 4 – Differences between studentized and standardized residuals vs. standardized residuals
for the primates data. The solid line traces the deterministic relationship linking the plotted quan-
tities.

5. THE ROLE OF THE NULL HYPOTHESIS IN THE CONSTRUCTION OF A TEST
STATISTIC

The fundamental question raised by the examples we presented in this article concerns
the role that the null hypothesis should play in the testing paradigm. By assumption,
the null hypothesis is assumed true in order to assess statistical significance, but to what
extent should one rely on it to construct the test statistic? When confronted with a
new statistical model and a new parameter of interest, it can be something of an art to
determine a good choice of test statistic. Three common “automatic” approaches for
constructing test statistics from likelihoods privilege the null differently: score tests are
typically built under the null; Wald tests are typically built under the alternative; and
likelihood ratio tests compare the null and the alternative somewhat equally.

We consider first the case of an i.i.d. sample of size n from f (x |θ), a distribution in-
dexed by a single parameter, θ, and rely on the results and examples presented in Casella
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and Berger (2002). We denote by L(θ |X) = f (X |θ) the likelihood function.
The score is defined as S(X |θ) = d/d θ log f (X |θ). It can be shown that, for

all θ, ES(X |θ) = 0 and VarS(X |θ) = In(θ), the expected Fisher information in the
sample. The point null hypothesis H0 : θ = θ0 is tested using the score test statistic
S(X |θ0)/

p

In(θ0), which has mean 0 and variance 1 for all n, and, under appropriate
regularity conditions, converges in distribution under the null to a standard normal as
n goes to infinity, enabling the derivation of approximate cut-off values. Equivalently,
the test can be based on the square of the score test statistic which has an asymptotic χ 2

1
distribution.

For n independent Bernoulli(p) observations yielding y successes, bp = y/n and the
resulting score test statistic for testing H0 : p = p0 is the one given in Eq. (2). Its squared
version is therefore

US (y, n; p0) =
(bp − p0)

2

p0(1− p0)/n
.

Suppose that, for all θ, Wn(X) is a consistent sequence of estimators of θ, having
standard error Sn(X). The Wald statistic for testing H0 : θ = θ0 is constructed as
(Wn(X)−θ0)/Sn(X) and, if asymptotic normality holds, approximate cut-off values can
again be derived under the null based on the quantiles of a standard normal. If the
square of the Wald statistic is used for testing, approximate cut-offs should be based on
the quantiles of a χ 2

1 distribution. Often Wn(X) is taken to be the maximum likelihood
estimator of θ, with Sn(X) = 1/

p

In(Wn(X)). Upon observing y successes out of n in-
dependent Bernoulli(p) trials, this recipe yields the statistic of formula (2), but with p0
replaced by p̂ = y/n in the denominator of that expression. The squared version of the
statistic is therefore

UW (y, n; p0) =
(bp − p0)

2

bp(1− bp)/n
.

The likelihood ratio test statistic for testing H0 : θ= θ0 is defined as

λ(X) =
L(θ0 |X)

supθ L(θ |X)
.

Assuming appropriate regularity conditions, −2 logλ(X) has an asymptotic χ 2
1 distri-

bution under the null that can be used to obtain approximate cut-offs for the test. For
the case of n independent Bernoulli(p) observations, denoting by y the total number of
successes, the resulting likelihood ratio test will reject for large values of

UL(y, n; p0) =−2 log
�

py
0 (1− p0)

n−y

p̂y (1− p̂)n−y

�

.

Engle (1984) defines these three types of tests for the more general situation in which
the parameter vector is multidimensional, including the case in which only a subset of
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the parameters are of inferential interest while the remaining ones are regarded as nui-
sance parameters. A detailed recount of the insightful results presented there is beyond
the scope of this article, but an important message is that, quite generally, the three types
of tests will behave asymptotically similarly under the null and under local alternatives,
although the asymptotic behavior for alternative values away from θ0 will typically dif-
fer.

For finite samples the three statistics may yield different tests. The reason for this is
illustrated in Figure 5 which presents scatter plots of the squared score, US , and squared
Wald, UW , statistics against the log-likelihood statistic, UL, and of the squared score
statistics, US , against the squared Wald statistic, UW , for n = 30 and p0 = 1/3. While
these statistics are, separately, related monotonically for p̂ ≤ 1/3 and p̂ > 1/3, the overall
relationships are not monotonic. An examination of the rejection regions for these tests
shows that the order in which the total number of successes enters the rejection region
(as the size of the tests increase) differs among them. This is a situation in which the
choice of which statistic to use matters.

As an example of a multidimensional situation including parameters of inferential
interest and nuisance parameters, consider again the problem of testing a nested reduced
model against the full model in the Gaussian linear model setting. There, the likelihood
ratio test rejects the null hypothesis that the reduced model holds when the ratio

λ(Y,X) =
supβ1,σ2 L(β1,σ2|Y,X1)

supβ,σ2 L(β,σ2|Y,X)

is small, or, equivalently, when the ratio SSE1/SSE12 of the error sum of squares under
the reduced (null) model and the full model is large, ultimately leading to the equivalent
tests based on Fnull (a multiple of the score statistic as defined in Engle, 1984) and Ftrad (a
multiple of the Wald statistic as defined in Engle, 1984). This structure of the likelihood
ratio test for nested models had already been noticed for the special case presented in
Section 2, when discussing the derivation of the t -test in its two equivalent forms based
on the ratio of Equation (5). Using the multiparameter definitions of the three types of
test statistics, their deterministic functional relationships, and considering their asymp-
totic and finite sample distributions, Engle (1984) shows that the resulting tests are, in
this case, equivalent both asymptotically and in finite samples.

6. DISCUSSION

The idea of constructing a test statistic by pretending that the null hypothesis is true
is routinely presented as a general guideline when using binomial data for testing the
hypothesis that a population proportion is equal to a given value. Yet, this guideline
is not followed, at least on the surface, when normal data are used to build the t -test
for testing the hypothesis that the population mean is equal to a given value. As we
noted in the paper, the t -test is actually equivalent to a procedure based on a test statistic
derived by following the guideline, but making the connection requires a little algebra,
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Figure 5 – Relationships between the squared score, US , squared Wald, UW , and log-likelihood,
UL, test statistics for the case of independent Bernoulli data with n = 30 and p0 = 1/3. The
open plotting symbols correspond to values of y such that bp ≤ 1/3. The solid plotting symbols
correspond to values of y such that bp > 1/3. The statistics are not plotted for y = 0 and y = 30 to
avoid cases where the Wald statistic is undefined.

and is, to our knowledge, not typically made in introductory statistics classes, even at
the graduate level. We have also noted that the the same considerations presented for
the t -test extend to the use of the F -test for testing hypotheses concerning nested linear
models with Gaussian errors.

So, we are left to speculate why, in the case of the t -test and of the F -test, the “tra-
ditional” procedure is preferred to the “null hypothesis” procedure. If a formal com-
parison is required, there is no clear distributional advantage of one approach over the
other. For the comparison of nested linear models, under the null, the “traditional” pro-
cedure requires calculation of the tail area of an F distribution and the “null hypothesis”
procedure requires calculation of the tail area of a Beta distribution. If a power calcu-
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lation has to be performed under some alternative, it can be based on the non-central
F -distribution for the traditional procedure and on the Type I non-central Beta distribu-
tion for the “null hypothesis” procedure, again with no clear advantage of one approach
over the other. Similar considerations apply to the case of the t -test.

An appealing aspect of the “traditional” procedures is that the t -statistic T and the F -
statistic Ftrad are both constructed as ratios of independent quantities. Because, in both
cases, the decision rule is based on an assessment of the relative size of the numerator
and denominator, it is conceivable that independence may have been a key factor in es-
tablishing the tradition, as an informal comparison of independent quantities is easier.
Under the null, the denominators of the “null hypothesis” test statistics are more effi-
cient estimators of variability (have more degrees of freedom) than their “traditional”
counterparts. However, this gain in efficiency is offset by the dependence between nu-
merator and denominator (see LaMotte, 1994, for a related discussion).

In addition to the basic guiding principles, other considerations may be at play when
a certain tradition is established of preferring one form of a test procedure over another
for a given problem. For the nested model comparison, we already noted one desirable
feature exhibited by Ftrad, namely that its numerator and denominator are independent.
Another feature worth noting is that the denominator of Ftrad does not depend on the
particular reduced model under consideration while the denominator of Fnull does. Al-
though this is not much of a computational burden, it is intuitively appealing to be
able to use the same yardstick in the denominator when testing different nested models
against the same full model. Further, the graphical example of Section 4.3 illustrates that
when the value of the statistic itself is of interest, rather than the formal testing decision,
there may be practical reasons for preferring the use of one statistic over the other.

In Section 5 we reviewed three popular methods for building test statistics (the score,
Wald, and likelihood ratio methods), discussing the different emphasis that they place on
the null and alternative hypotheses. For all cases examined in this paper, the three meth-
ods yield asymptotically equivalent procedures while emphasizing different features of
the testing problem. As noted in Engle (1984) this is related to the different metrics used
to evaluate discrepancy between the null and the alternative. The Wald test accounts
directly for differences in the parameter values, the likelihood ratio test measures differ-
ences in the log-likelihoods, and the score test assesses how steep the slope of the log-
likelihood is at the null value. While under very general conditions the three methods
yield procedures that are asymptotically equivalent, we have noticed that the resulting
finite sample tests may differ for independent Bernoulli data. Engle (1984) presents addi-
tional examples where finite-sample conclusions might differ, comments on the different
insight that the various formulations might bring to bear for specific models, and sug-
gests that potential computational considerations might induce the analyst to opt for
one of the tests over the other two.

In sum, while we do not have a conclusive explanation as to why certain traditions
have established themselves as the standard of practice for specific problems, we believe
that these issues, often overlooked, are worth ruminating on, as they help us better
see what considerations lead to the preference of one statistical procedure over another.
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Choosing the right test statistic for a particular problem can be somewhat of an art, and
understanding the similarities, differences, advantages, and disadvantages of the choice
in the simple settings we considered may be helpful when turning to more complicated
settings.
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