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SUMMARY

A new set of ordered random variables generated from a sample from a scale dependent Cauchy
distribution known as Absolved Order Statistics (AOS) of the sample forms the problem of in-
vestigation in this paper. The distribution theory of these AOS is developed. The vector of AOS
is found to be the minimal sufficient statistic for the Cauchy distribution, which is contrary to
the existing perception that the vector of order statistics of the sample is minimal sufficient. The
best linear unbiased estimate σ̂ of σ based on AOS is derived and its variance is also explicitly
expressed. Though only n− 4 intermediate order statistics are usable to determine the BLUE of
σ based on order statistics, it is found that n − 2 AOS are usable to determine σ̂ . This makes σ̂
a more efficient estimate of σ than all of its competitors especially when the sample size is small.
Illustration for the above result is made through a real life example. It is found that censoring
based on AOS is more realistic and the estimate obtained from it for σ is more efficient than the
case of censoring with order statistics. A new ranked set sampling called Adjusted Ranked Set
Sampling which is suitable for the Cauchy distribution and results in observations distributed as
AOS is developed in this paper. Its role in producing a better estimate for σ is analyzed.

Keywords: Cauchy distribution; Logistic distribution; Order statistics; Absolved order statistics;
Minimal sufficient statistics; Best linear unbiased estimate; Estimation from censored samples;
Ranked set sampling; Adjusted ranked set sampling.

1. INTRODUCTION

The Cauchy distribution is considered an important heavy tailed statistical model, which
has the potential for applications in several areas of studies. The scale dependent Cauchy

1 Corresponding Author. E-mail: yageenthomas@gmail.com



310 P. Yageen Thomas, V. P. Anjana and M. Chacko

distribution is defined by the probability density function (pdf) given by

f (x,σ) =
1
σπ

1
(1+( x

σ )2)
,−∞< x <∞, (1)

where σ > 0 is the scale parameter of the distribution. Onen et al. (2001) have called
the above distribution a heavy tailed error distribution with scale parameter σ . A dis-
cussion on various applications of this error distribution in physics, econometrics and
engineering is also made available in Onen et al. (2001). The third Hagen’s hypothesis
on the theory of errors (see, Rao and Gupta, 1989,P.14) specifies that each component
of error has an equal chance of being positive or negative. Clearly, as the Cauchy distri-
bution defined by the pdf of Eq. (1) is symmetric about zero, it is also an error model
coming under the governance of Hagen’s third hypothesis. For details on error models
either generated from the Cauchy distribution or appearing similar to the Cauchy distri-
bution and satisfying the third Hagen’s hypothesis one may refer to Thomas and Priya
(2017, 2015). The heavy tailed Cauchy distribution is a better model to describe finan-
cial returns than the Gaussian model which fails to capture large fluctuations observed
in real assets (for details see, Nolan, 2014). Stock market return distributions involve a
sharp peak around zero but with heavy tails. This behaviour means that stock market
researchers (for example see, Mahdizadeh and Zamanzade, 2019) depend largely on the
Cauchy distribution as defined in Eq. (1) in their investigations. Some more real life
applications of the Cauchy distribution are (i) the recommendation of the Cauchy dis-
tribution by Roe (1992) to describe the distribution of the energy width of a state that
decays exponentially with time; (ii) the description by Winterton et al. (1992) to use the
Cauchy distribution for studying physical systems involving contact resistivity; (iii) the
narration of Kagan (1992), attributing the Cauchy distribution to explain well the distri-
bution of hypocentres on focal spheres of earth quakes; and (iv) the illustration by Min
et al. (1996) in using the Cauchy distribution as a good model to study the distribution
of velocity differences induced by different vortex elements.

It is textbook knowledge that the Cauchy distribution fails to admit its first two
moments. Consequently the problem of the estimation of σ by the method of moments
fails, and this makes the problem of the estimation of σ a more challenging task. For
a discussion on the maximum likelihood estimator (MLE) of σ see Copas (1975), Haas
et al. (1970) and Howlader and Weiss (1988). For details on the optimal linear rank
estimator of σ see Durbin and Knott (1972) and Kravchuk (2005). For the Hodges-
Lehmann estimator of σ see Hodges and Lehmann (1963) and Kravchuk and Pollett
(2012). Barnett (1966) has evaluated and tabulated the means, variances and covariances
of middle order statistics obtained after excluding two smallest and two largest order
statistics of a sample arising from the standard Cauchy distribution for n = 6(1)16(2)20.
Making use of these values, Thomas (1990) has derived the best linear unbiased estimate
(BLUE) of the scale parameter σ of the Cauchy distribution based on the middle order
statistics of a sample.

Suppose U = (X1:n ,X2:n , ...,Xn:n) is the order statistics of a random sample of ob-
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servations X1,X2, ...,Xn drawn from a distribution belonging to the familyF of all ab-
solutely continuous distributions. Then from Lehmann and Scheffe (1950) we observe
that the statistic U is complete sufficient forF . Some sub-families of distributions con-
tained in F may have a sufficient statistic of reduced dimension than n. But usually a
distribution of a sub-family toF that does not exhibit a reduced dimension of the suffi-
cient statistic than n, is considered as one with U = (X1:n ,X2:n , ...,Xn:n) as the minimal
sufficient statistic. In this sense the usual perception is that for the Cauchy distribu-
tion as given by Eq. (1), U = (X1:n ,X2:n , ...,Xn:n) is a minimal sufficient statistic. But
contrary to this perception, U is not a minimal sufficient statistic.

Thomas and Anjana (2022) have considered the family F1 of all absolutely contin-
uous distributions that are symmetrically distributed about zero. They defined a new
variety of ordered random variables, which is given below.

DEFINITION 1. (Thomas and Anjana, 2022). Suppose X1,X2, ...,Xn is a random sam-
ple of size n drawn from a distribution with pdf f (x) such that f (x) ∈ F1. If we take the
absolute values of the observations and order them in the increasing order of magnitude as
X(1:n) ≤ X(2:n) ≤ ...≤ X(n:n), then we say that X(1:n),X(2:n), ...,X(n:n) are the absolved order
statistics (AOS) of the given sample.

Thomas and Anjana (2022) further proved the following theorem on the minimal
sufficiency of the statistics introduced in the above definition.

THEOREM 2. See, Theorem 2.1 of (Thomas and Anjana, 2022). Suppose
X
∼
= (X1,X2, ...,Xn) is a vector of observations of a random sample of size n drawn from a

distribution with pdf f (x) ∈ F1. Let T = (X(1:n),X(2:n), ...,X(n:n)) be a statistic based on
the AOS X(1:n),X(2:n), ..., X(n:n) constructed from the observations X1,X2, ...,Xn . Then T is
minimal sufficient for the familyF1.

The remaining part of the paper is organized as given below. In Section 2, first we
describe the distribution theory of AOS arising from the Cauchy distribution, and we
also deduce from Theorem 2 the minimal sufficient statistic for the Cauchy family of
distributions defined by the pdf in Eq. (1). The method of estimating the scale parame-
ter σ involved in Eq. (1) by the best linear unbiased estimate σ̂ based on the first n− 2
AOS of the sample is described in Section 3. The explicit expression for the variance
of the estimate σ̂ as well is given in this section. The coefficients of the AOS involved
in σ̂ for each of n = 4(1)20 have been computed, and those values are provided in Ta-
ble 1. We have computed further Var(σ̂), the variance of the BLUE σ∗ based on order
statistics, the variance of the maximum likelihood estimate σ̃ of σ and the relative effi-
ciencies e(σ̂/σ∗), e(σ̂/σ̃) of σ̂ relative to σ∗ and σ̃ , respectively, for n = 4(1)20. These
are presented in Table 2. We have made a discussion of estimating σ by censored AOS
in Section 4. Section 5 deals with the estimation of σ based on a newly defined ranked
set sampling (RSS). In Section 6, we define an RSS called adjusted ranked set sampling
(ARSS) so as to make it suitable to deal with a Cauchy distribution. The estimation of
the scale parameter of the Cauchy distribution based on ARSS observations as well is
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described in this section. Section 7 shows a real life application for modelling with the
Cauchy distribution by using the AOS of a sample. Lastly the conclusions of the study
are given in Section 8.

2. MINIMAL SUFFICIENT STATISTIC FOR THE CAUCHY DISTRIBUTION

Let X1,X2, ...,Xn be a random sample of size n drawn from the Cauchy distribution
with pdf as given in Eq. (1). Suppose X(1:n),X(2:n), ...,X(n:n) are the AOS of the sample.
Then the distribution theory of AOS is given in the following theorem.

THEOREM 3. Suppose X(1:n),X(2:n), ...,X(n:n) are the AOS of a random sample of size
n drawn from the distribution with pdf f (x,σ) as given in Eq. (1). Let Z1:n ,Z2:n , ...,Zn:n
be the order statistics of a random sample of size n arising from the folded distribution with
density g (z,σ) = 2 f (z,σ), z ≥ 0. Then

(X(1:n),X(2:n), ...,X(n:n))
d= (Z1:n ,Z2:n , ...,Zn:n),

where X d= Z is the usual notation representing the identically distributed property between
two random variables X and Z.

The proof of this theorem is provided in Appendix A.1.
Now we discuss a minimal sufficient statistic for the Cauchy family of distributions

as defined by the pdf in Eq. (1). From Theorem 2 due to Thomas and Anjana (2022),
we observe that the statistic T = (X(1:n),X(2:n), ...,X(n:n)) formed from the AOS of a ran-
dom sample of size n is the minimal sufficient statistic for the familyF1 of distributions
which are all symmetric about zero. If we consider a specific member of F1 with pdf
f (x), then sometimes it is possible to get a dimension reduction in the minimal sufficient
statistic for f (x). For example some distributions belonging to the exponential family
(such as the normal distribution), which are distributed symmetrically about zero, al-
low for minimal sufficient statistic which is different from T = (X(1:n),X(2:n), ...,X(n:n))
and whose dimension is less than n. The essential point is that by merely observing
a Cauchy distribution as defined in (1) belonging to F1, we cannot claim that T =
(X(1:n),X(2:n), ...,X(n:n)) is also minimal sufficient for the restricted Cauchy distribution.
Clearly, the Cauchy family of distributions is not an exponential family, and similarly
we can verify that the Cauchy distribution is not a member to any sub-family of the
class of all continuous distributions for which an improved version of minimal suffi-
cient statistic exists with a reduced dimension compared to T = (X(1:n),X(2:n), ...,X(n:n)).
Observing the above arguments about the irreducible nature of the sufficient statistic
than T , we can prove from basic principles the following theorem.

THEOREM 4. Suppose X = (X1,X2, ...,Xn) is a random sample of size n drawn from
the Cauchy distribution with pdf f (x,σ) as given in Eq. (1). Let T = (X(1:n),X(2:n), ...,X(n:n))
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be the vector of AOS constructed from X1,X2, ...,Xn . Then T is minimal sufficient for
f (x,σ).

The proof of this theorem is similar to the proof given by Thomas and Anjana (2022)
for proving the minimal sufficiency of T = (X(1:n),X(2:n), ...,X(n:n)) for the familyF1 and
is given in Appendix A.2.

It is known in statistical inference that any inference procedure developed based on
the minimal sufficient statistic excels in performance more than those based on other
statistics. Thus, at this stage we are destined to show that the BLUE of σ based on the
AOS is better than that based on the classical order statistics. In the next section we
discuss this aspect.

3. BEST LINEAR UNBIASED ESTIMATION OF THE SCALE PARAMETER OF THE
CAUCHY DISTRIBUTION BASED ON AOS

The standard form of the Cauchy distribution as given in Eq. (1) has the pdf

f (x, 1) =
1
π

1
1+ x2

,−∞< x <∞. (2)

One can easily verify that (see Barnett, 1966) the variances of the first two and last two
order statistics of a random sample of size n arising from Eq. (2) are not finite. However,
the means, variances and covariances of the (n − 4) intermediate order statistics exist.
Barnett (1966) took this into consideration and thereby evaluated the means, variances
and covariances of the intermediate n− 4 order statistics. Those values were tabulated
in his paper for n = 6(1)16(2)20. From Thomas (1990) we observe that the BLUE based
on order statistics of the scale parameter σ of a distribution that is symmetric about
zero reduces to that based on quasi-ranges of the sample. Consequently he tabulated the
coefficients of the quasi-ranges of the middle most n − 4 observations arising from the
Cauchy distribution in Eq. (1) as an estimate of its scale parameter σ together with their
variances for n = 6(1)16(2)20. From Eq. (1) the pdf of the half-Cauchy distribution can
be written as

g (x,σ) =
2
σπ

1
1+( x

σ )2
, x ≥ 0,σ > 0. (3)

The pdf of the corresponding standard form of the half-Cauchy distribution is

g (x, 1) =
2
π

1
1+ x2

, x ≥ 0. (4)

Clearly, Equations (3) and (4) are left truncated distributions of two varieties of the
Cauchy distribution at the truncation point x = 0. Hence both Equations (3) and (4)
are long tailed only at the right tail and consequently one can easily verify that among
all order statistics of a random sample of size n arising from Eq. (4), only the largest two



314 P. Yageen Thomas, V. P. Anjana and M. Chacko

order statistics fail to admit finite variances. Then, from Theorem 3 we conclude that
among all AOS of a sample of size n arising from the Cauchy distribution in Eq. (1),
only the largest two AOS fail to admit finite variances. This leads us to conclude that for
inference purposes out of a random sample of size n arising from Eq. (1), only n−4 order
statistics are usable, whereas for the same purpose n− 2 AOS of the sample are usable.
This is one major advantage of using the minimal sufficiency established for the statistic
based on AOS when compared with the sufficient statistic based on order statistics. In
the following theorem we obtain the expression for the BLUE and its variance for the
scale parameter σ of the Cauchy distribution based on the first n− 2 AOS.

THEOREM 5. Let X
∼
= (X(1:n),X(2:n), ...,X(n−2:n))

′ be the first n − 2 AOS of a ran-
dom sample of size n drawn from the Cauchy distribution defined in Eq. (1). Suppose
Y
∼
= (Y1:n ,Y2:n , ...,Yn−2:n)

′ is the vector of first n− 2 order statistics arising from the stan-
dard half-Cauchy distribution defined by the pdf of Eq. (4). Let
E(Y
∼
) = α

∼n−2
= (α1:n ,α2:n , ...,αn−2:n)

′ and let the dispersion matrix of Y
∼

be given by

D(Y
∼
) = An−2 = ((αi , j :n)), where αi , j :n = Cov(Yi :n ,Y j :n), i , j = 1,2, ..., n − 2, for i ̸= j

and αi ,i :n =Var(Yi :n) for i = 1,2, ..., n−2. Then, the BLUE σ̂ of σ based on the first n−2
AOS is given by

σ̂ = (α
∼
′
n−2

A−1
n−2α∼n−2

)−1α
∼
′
n−2

A−1
n−2X
∼

, (5)

and its variance is given by

Var(σ̂) = (α
∼
′
n−2

A−1
n−2α∼n−2

)−1σ2. (6)

PROOF. Let X(1:n),X(2:n), ...,X(n:n) be the AOS of a random sample of size n drawn

from the Cauchy distribution with pdf in Eq. (1). Then, (
X(1:n)

σ ,
X(2:n)

σ , ...,
X(n−2:n)

σ )′ d=
(Y1:n ,Y2:n , ...,Yn−2:n)

′, where Y1:n ,Y2:n , ...,Yn−2:n are the first n − 2 order statistics of
a random sample of size n drawn from the standard half-Cauchy distribution with pdf
of Eq. (4). Clearly the means, variances and covariances of all order statistics involved
in the right side vector of above distributional identity exists finitely and they are inde-
pendent of σ . Thus for X

∼
= (X(1:n),X(2:n), ...,X(n−2:n))

′ and Y
∼
= (Y1:n ,Y2:n , ...,Yn−2:n)

′

we can write
E(X
∼
) = σE(Y

∼
) = σα

∼n−2
, (7)

and
D(X
∼
) = σ2D(Y

∼
) = σ2An−2. (8)

Then, Equations (7) and (8) together form a generalized Gauss-Markov setup, and by
least-squares theory we get

σ̂ = (α
∼
′
n−2

A−1
n−2α∼n−2

)−1α
∼
′
n−2

A−1
n−2X
∼

, (9)
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and
Var(σ̂) = (α

∼
′
n−2

A−1
n−2α∼n−2

)−1σ2. (10)

This proves the theorem. 2

The linear estimate σ̂ of σ as given in Eq. (9) may also be written as

σ̂ =
n−2
∑

i=1

ci ,nX(i :n), (11)

where ci ,n , i = 1,2, ..., n− 2 are appropriate constants.

REMARK 6. It is trivial to observe that any deletion of component random variables
from a minimal sufficient set of random variables makes the resulting set lose its minimal
sufficient property. However, the proposed BLUE based on a censored vector of AOS makes
the estimator unbiased as well as possessing least variance among all possible linear estimates
obtained from the AOS in the censored vector. One merit of the estimator is that it utilizes
the subset of variables in the minimal sufficient set of random variables that are usable for
deriving the BLUE, so the desirable condition of having smaller variance of this estimate
than other linear estimators of σ holds for this estimator.

In Eq. (11), it is strange to note that X(i :n), i = 1,2, ..., n− 2 are the first n− 2 AOS
arising from the Cauchy distribution defined in Eq. (1), while ci ,n , i = 1,2, ..., n− 2 are
the coefficients of the BLUE of σ based on the first n − 2 order statistics of a random
sample of size n arising from the half-Cauchy distribution defined by the pdf in Eq. (3)
(a consequence of Theorem 3). This leads us to conclude that provided the BLUE of
σ based on the first n − 2 order statistics of a sample of size n arising from the half-
Cauchy distribution as defined by the pdf of Eq. (3) with its variance is available, then
the BLUE of σ based on the first n−2 AOS of a sample of size n arising from the Cauchy
distribution as defined by the pdf in Eq. (1) with its variance can be obtained without
any direct evaluation of means, variances and covariances of those AOS.

Though moment relations for order statistics arising from general distributions which
are symmetrically distributed about zero such as those described in Arnold et al. (1992),
David and Nagaraja (2003) and Thomas and Samuel (1996) are useful for easy evaluation
of moments of order statistics from symmetric distributions, there is a limitation for
applying those relations as such to Cauchy order statistics. However application of The-
orem 3 helps us to deal only with the evaluation of moments of order statistics arising
from the half-Cauchy distribution for using those values for the development of infer-
ence procedures on the scale parameter σ of the Cauchy distribution. Moments of order
statistics arising from a standard half-Cauchy distribution has not been discussed in the
available literature as far as we know. Hence we have used the Mathematica software to
evaluate the means, variances and covariances of all order statistics Y1:n ,Y2:n , ...,Yn−2:n
for n = 4(1)20 arising from the standard half-Cauchy distribution defined by the pdf in
Eq. (4). Using those values we have determined the coefficients ci ,n of the AOS X(i :n) in
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the estimate σ̂ of σ as given in Eq. (11) for i = 1,2, ..., n−2; n = 4(1)20, and those values
are tabulated in Table 1. We have obtained further σ−2Var(σ̂) for n = 4(1)20, and those
values are given in Table 2.

If we depend on order statistics of a random sample of size n arising from the Cauchy
distribution with pdf of Eq. (1), then the estimate σ∗ of σ based on the intermediate
order statistics X3:n ,X4:n , ...,Xn−2:n as given by Thomas (1990) can be written as

σ∗ =
n−2
∑

i=3

di ,nXi :n , (12)

and the variance of σ∗ is given by

Var(σ∗) = (β
∼

′

n−4
V −1

n−4 β
∼ n−4

)−1σ2, (13)

where to describe the constants in Equations (12) and (13) we write Y
≈ n−4

to denote the

vector (Y3:n ,Y4:n , ...,Yn−2:n)
′ of n − 4 intermediate order statistics of a random sample

of size n drawn from the standard Cauchy distribution defined by the pdf in Eq. (2)
with E(Y

≈ n−4
) = β

∼ n−4
, D(Y

≈ n−4
) = Vn−4, and di ,n , i = 3,4, ..., n − 2, are appropriate

constants. Thomas (1990) tabulated Var(σ∗) for n = 6(1)16(2)20. As variances of σ∗

for n = 17,19 are not available in the literature, we have computed those variances as
well and tabulated Var(σ∗) for n = 6(1)20 in Table 2 with an objective of comparing the
performance of the new estimator σ̂ proposed in this paper with the already available
estimator σ∗.

If we write S(X1,X2, ...,Xn) to denote the likelihood of n observations X1,X2, ...,Xn
drawn from the Cauchy distribution with pdf in Eq. (1), then the MLE σ̃ ofσ is obtained
as a solution of

n
∑

i=1

σ2

σ2+Xi
2 =

n
2

. (14)

Although for some initial values of n, we can solve Eq. (14) for σ̃ , generally σ̃ is com-
puted by numerical methods. To discuss the large sample property of σ̃ , we obtain the
asymptotic variance of σ̃ from the second derivative of S(X1,X2, ...,Xn), and one can
easily obtain it as AV (σ̃) = 2σ2

n . Kravchuk and Pollett (2012) have carried out a com-
putational study on the MLE of σ . They commented that the MLE of σ is not consis-
tent with its asymptotic distribution. To illustrate the inappropriateness of Var(σ̃) for
the small sample cases, they pointed out a situation for n = 4 involving observations

w, x, y, z such that w < x < y < z with σ̃ =
p
(z−y)(y−x)(x−w)(z−w)
|(z−y+x−w)| and Var(σ̃) = 1.90σ2.

Using Table 1, we can estimate σ by σ̂ for n=4, by leaving the largest two AOS yield-
ing σ̂ = 1.2955X(1:4) + 0.5904X(2:4) with Var(σ̂) = 0.8007σ2. Note that for the Cauchy

distribution, the asymptotic variance of the MLE given by 2σ2

n is unattainable by any
estimator of σ in the finite sample case as it does not admit a minimum variance bound
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estimator for σ . However, to make a comparison of the estimator σ̂ with σ̃ , we have
included AV (σ̃) also in Table 2. Clearly, as σ̂ involves a larger number of observations,
which are the components of minimal sufficient statistic, than those involved in σ∗, the
estimate σ̂ is likely to be more efficient than the estimate σ∗. Thus our proposed new
estimator σ̂ of σ based on AOS is preferable, especially when the sample size is small. To
compare the performance of our estimator σ̂ , we have defined the relative efficiencies
e(σ̂/σ∗) and e(σ̂/σ̃) as e(σ̂/σ∗) = Var(σ∗)

Var(σ̂) , and e(σ̂/σ̃) = AV (σ̃)
Var(σ̂) , respectively. We have

calculated the above relative efficiencies for n = 6(1)20, and they are presented in Table
2.

TABLE 2
Variances of (i) BLUE σ̂ based on AOS (ii) BLUE σ∗ based on order statistics (iii) Asymptotic

variance of MLE σ̃ of the scale parameter σ of the Cauchy Distribution, the relative efficiencies :
e(σ̂/σ∗) and e(σ̂/σ̃) for n = 4(1)20.

n σ−2Var(σ̂) σ−2Var(σ∗) σ−2AV (σ̃) e(σ̂/σ∗) e(σ̂/σ̃)
4 0.88 - 0.50 - 0.57
5 0.61 - 0.40 - 0.66
6 0.46 1.76 0.33 3.78 0.72
7 0.38 1.00 0.29 2.67 0.76
8 0.32 0.68 0.25 2.16 0.79
9 0.27 0.52 0.22 1.90 0.81
10 0.24 0.42 0.20 1.73 0.83
11 0.21 0.35 0.18 1.62 0.85
12 0.19 0.30 0.17 1.53 0.86
13 0.18 0.26 0.15 1.47 0.87
14 0.16 0.23 0.14 1.42 0.88
15 0.15 0.21 0.13 1.38 0.89
16 0.14 0.19 0.13 1.35 0.90
17 0.13 0.17 0.12 1.28 0.90
18 0.12 0.16 0.11 1.30 0.91
19 0.12 0.14 0.11 1.23 0.91
20 0.11 0.14 0.10 1.26 0.92

REMARK 7. It is clear that the asymptotic variance of the MLE is also equal to the vari-
ance of the minimum variance bound (unbiased) estimator of σ . In the case of the Cauchy
distribution such an estimator is unattainable. However, for efficiency comparison, this
variance is usually taken and used as a basic scale to observe the efficiency of other unbiased
estimators. As the estimator σ̂ proposed by us is unbiased for σ , it is natural to obtain the rel-
ative efficiency of this estimator when compared with the minimum variance bound (which
is the asymptotic variance of the MLE). It may be noted that as the MLE is only evaluated
numerically, the exact variance of the MLE is not derived in the existing literature. From
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Table 2, it is clear that our estimator σ̂ is more efficient than σ∗, the BLUE based on usable
order statistics.

From Table 2, we conclude that the estimate σ̂ based on AOS is remarkably better
than σ∗ based on order statistics. The gain in efficiency observed in σ̂ when compared
with σ∗ ranges from 25% to 277%. The relative efficiency e(σ̂/σ̃) steadily increases as
n increases, and this relative efficiency approaches 0.9166 for n = 20.

4. ESTIMATION OF THE SCALE PARAMETER FROM CENSORED SAMPLES

When an outlier occurs in a sample drawn from a distribution which is symmetric about
zero, it must be far away from zero either on the positive side or on the negative side.
It is quite curious to know that unlike order statistics of the data, AOS capture that far
off observation uniquely as the largest absolved order statistic X(n:n). But while working
with order statistics this uniqueness is not materialized, as the farthest observation from
zero may be either the smallest order statistic X1:n or the largest order statistic Xn:n . So
to eliminate the effect of a suspected outlier from the sample with ordered data, theoret-
ically a double censoring with one observation in the left (X1:n) and one observation in
the right (Xn:n) is required. Although for the Cauchy distribution the above descriptions
applies as well, the BLUE σ̂ of σ based on AOS as given in Eq. (9) has not included the
largest two AOS, X(n−1:n) and X(n:n), and hence the estimate σ̂ has the inbuilt capacity
to eliminate the effect of two possible outliers in the data.

If we suspect more than two outliers in the data, then we have to generalize the
estimate of σ by modifying the censoring scheme appropriately. In particular if we
have the reason to believe that there are k outlying observations in the data, then we go
for right censoring of k of the AOS (those corresponding to the k observations in the
data which lie most far away from zero) and then estimate σ by using the available AOS
X(1:n),X(2:n), ...,X(n−k:n) where k is any positive integer such that 3 ≤ k ≤ n − 2. The
estimation procedure for σ for the censoring scheme then follows from the theorem
given below.

THEOREM 8. Suppose X(1:n),X(2:n), ...,X(n:n) are the AOS of a random sample of size
n drawn from the Cauchy distribution with pdf defined in Eq. (1). Let Y1:n ,Y2:n , ...,Yn:n
be the order statistics of a random sample of size n drawn from the standard half-Cauchy
distribution given in Eq. (4). Suppose the k observations with largest k absolute values are
censored so that the vector of the remaining AOS is X

∼ n−k
= (X(1:n),X(2:n), ...,X(n−k:n))

′.

Define Y
∼ n−k

= (Y1:n ,Y2:n , ...,Yn−k:n)
′, E(Y

∼ n−k
) = α
∼n−k

= (α1:n ,α2:n , ...,αn−k:n)
′, and let

the dispersion matrix of Y
∼ n−k

be denoted by An−k . In this case we write E(X
∼ n−k

) = α
∼n−k

σ ,

D(X
∼ n−k

) =An−kσ
2. Then the BLUE σ̂k ,n of σ based on the censored AOS is given by

σ̂k ,n = (α∼
′
n−k

A−1
n−kα∼n−k

)−1α
∼
′
n−k

A−1
n−k X
∼ n−k

. (15)
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The variance of σ̂k ,n is given by

Var(σ̂k ,n) = (α∼
′
n−k

A−1
n−kα∼n−k

)−1σ2. (16)

PROOF. The proof of the above theorem follows easily by application of the Gauss-
Markov theorem. 2

REMARK 9. One can write Eq. (15) as a linear function of X(1:n),X(2:n), ..., X(n−k:n) as

σ̂k ,n =
n−k
∑

i=1

c (k)i ,n X(i :n), (17)

where c (k)i ,n , i = 1,2, ..., n− k are appropriate constants.

The method of estimation of σ by σ̂k ,n as described in Theorem 8 using censored
AOS arising from the Cauchy distribution is attempted for a sample of size 10 and for
each of k = 2,3, ..., 8. We have for each k = 2,3, ..., 8 computed the numerical value of
the coefficient c (k)i ,10 of X(i :10) involved in σ̂k ,10 for i = 1,2, ..., 10− k, and σ−2Var(σ̂k ,10).

These computed values are given in Table 3. The relative efficiency e(σ̂k ,10/σ̂) =
Var(σ̂)

Var(σ̂k ,10)

of σ̂k ,10 when compared with the BLUE σ̂ as derived in Eq. (11) is again computed for
each k = 2,3, ..., 8, and the computed values are also presented in Table 3. Note that
when k = 2, the estimate σ̂2,10 is the same as σ̂ as given in Eq. (11) for n = 10.

From Table 3 we observe that initially for k = 3,4,5, there is not much reduction
noticed on the relative efficiencies, as in all those cases the relative efficiency exceeds
93%. However the reduction noticed in the relative efficiencies becomes a little more but
changes at a sluggish rate when a larger number of extreme absolved order statistics are
censored. For example, if n = 10 and k = 8, then in the estimator σ̂8,10 altogether eight
AOS are censored, and hence it utilizes only two AOS, X(1:10) and X(2:10) for estimating
σ . From these two AOS, the efficiency observed on ˆσ6,10 relative to the estimator σ̂ (in
which 8 out of 10 AOS are involved) is more than 49%. This prompts us to comment
that the AOS based estimator for the scale parameter σ of Cauchy distribution appears
to be robust.

5. A NEW RANKED SET SAMPLING AND ITS APPLICATION IN ESTIMATING THE
SCALE PARAMETER OF DISTRIBUTIONS OF F1.

McIntyre (1952) has introduced Ranked Set Sampling (RSS) to find a more efficient es-
timate of the yield of pastures. This method consists in first selecting at random n2

units and arranging them randomly in n sets of n units each. Next the units in the i th

set are ranked using a judgement method or by a method not involving any cost, and
the i th ranked unit is selected and measured for the characteristic of interest for each
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i = 1,2, ..., n. This method of collecting n units from the population is known as RSS,
and the sample of observations measured on the selected units is known as the ranked
set sample.

For a discussion on the initial developments of RSS, one may refer to Chen and
Wang (2004). When the population of interest is infinite and the variable of interest mea-
sured follows a continuous distribution, then again RSS is applied successfully to draw
inferences on the parameters of the distribution of the variable of interest. For some
recent discussion on the above application of RSS see Lam et al. (1994, 1996), Lesitha
and Thomas (2013); Lesitha et al. (2010), Sinha et al. (1996) and Wolfe (2004). For some
new variants of RSS one may refer to Al-Saleh and Al-Omari (2002), Muttlak (1998),
Paul and Thomas (2017), Priya and Thomas (2016), Salehi and Ahmadi (2014), Thomas
and Priya (2016) and Thomas and Philip (2018).

If F1 is the family of distributions that are all symmetrical about zero, then from
Thomas and Anjana (2022) we observe that the AOS of the sample is minimal sufficient
forF1. Hence, if we rely on the classical method of RSS as defined by McIntyre, then it
does not have a ranking system which utilizes the advantages of the minimal sufficient
statistic. Hence, for distributions belonging toF1, in order to explore higher efficiency
on the methods for inference problems using RSS, we require a modification on it by
using the judgement by an expert in advance about the relative largeness of the possible
absolute values that will be measured on the units with respect to the variable of inter-
est. In particular, we have to modify the RSS, which involves a ranking of units, which
when performed without any ranking error results in observations each of which is an
absolved order statistic. If such an RSS is developed, then from it we can modify an
appropriate RSS that can be performed for a population random variable which follows
a Cauchy distribution with pdf in Eq. (1). With this objective in this mind, we define
the following.

DEFINITION 10. Suppose the variable of interest on which we make measurements on
the units of an infinite population follows a distribution belonging to F1. Let n2 units be
drawn randomly and those units arranged randomly in n sets each with n units. Suppose
without direct measurement that an expert’s judgement gives a perfect ranking on the relative
largeness of the absolute values of the possible measurement values that one may obtain on
the units. Now from the i th set choose the unit ranked i and make the measurement on the
variable of interest from this unit, take its absolute value and denote this observation as
X(i :n)i ,i = 1,2, ..., n. The above procedure of drawing units from the population is called
RSS-A, as under perfect ranking each observation X(i :n)i is distributed as the i th “Absolved”
order statistic of a sample of size n, for i = 1,2, ..., n.

REMARK 11. In the above definition by the judgement method, only the rank of the
AOS on a unit of a sample is judged, so that to obtain the AOS we depend on the judged
values of the absolute values of the units to determine the i th observation of RSS-
A. Also X(1:n)1,X(2:n)2, ...,X(n:n)n are independently distributed, as they are selected from
different independent samples.
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Whenever a new methodology is developed, the immediate concern of a statistician
is about its applicability. One example where RSS-A can be profitably applied is de-
scribed below. It is of interest to observe that by the last two decades of 20th century,
under social forestry scheme ‘Acacia Auriculiformis, A.cunn.ex Benth’ (for convenience
we call this species of trees as the locally called name acacia trees) was planted over a large
extent of barren lands of the Kerala state in India, especially in Government lands given
to universities, other institutes and public sector units. But recently wood processing
and furniture manufacturing companies as well as retail users have shown much interest
in the acacia woods, and this makes the acacia woods wealth so valuable to those who
planted it extensively. But presently, while expansion projects of universities are under-
taken, the administrators are compelled to dispose of the acacia trees. But they face the
problem of getting an estimate of the timber volume of the trees without felling them.
In this case we can apply RSS-A very effectively to model the timber volume data and
associated inference procedures.

For applying RSS-A, we choose randomly n independent lines of trees planted, and
from each line we select randomly n trees. We know that the timber volume of a tree
is somewhat directly proportional to its height, and that both tree height and timber
volume are symmetrically distributed around their medians. We can evaluate the height
of the trees very easily from the ground using hypsometer. Thus, we measure the height
of all n2 trees using a hypsometer. Let the median of the n2 observations be denoted by
m0. We know that if n ≥ 6, n2 can be regarded as large (as n2 ≥ 36) and hence m0 is a
consistent and asymptotically normal (CAN) estimator of the population median. Now
we write down the absolute values of deviations of height from m0 of each tree in the i th

set and identify from these values the tree in the set (selected trees in the i th line) with
i th smallest value. This tree is selected for making a measurement of its timber volume,
which is somewhat harder to measure. To do so, we can employ a labourer (to climb or
use an elevator) to measure the perimeter of the usable pieces of timbers (those pieces
whose top part has at least 20 inches perimeter) at each multiple of 5 feet height from the
bottom of the tree. Note that for each piece of timber the average of the top and bottom
perimeters, say p, may be taken as the perimeter of that cylindrically approximated
piece so that its radius is equal to p

2π . Hence we can evaluate piece by piece the volume
and thereby the total usable timber volume of the tree. Similarly, we evaluate the timber
volume of all selected trees and further the volume v0 of the tree whose height is equal
to the median m0. Let V1,n,1,V2,n,2, ...,Vn,n,n be the volumes of the selected trees. Define
X(i :n)i = |Vi ,n,i − v0|, i = 1,2, ...,n. Then X(i :n)i , i = 1,2, ..., n may be considered as an
RSS-A sample drawn from a distribution belonging toF1. Similarly more examples of
applications of RSS-A as well can be described.

Now we consider the problem of estimating the scale parameter of a distribution
belonging to F1 with density f (x,σ) = 1

σ f0(
x
σ ), −∞ < x <∞,σ > 0 using RSS-A.

Suppose X(1:n)1,X(2:n)2, ...,X(n:n)n are the observations of RSS-A. We assume that the or-

dering of the units in the sample is perfect. Let g (z,σ) = 2
σ f0(

z
σ ), 0 ≤ z <∞,σ > 0
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be the folded form of the distribution with the pdf f (x,σ). Then we can write g0(y) =
2 f0(y), 0≤ y <∞, as the standard form of the folded density g (z,σ). If Z1:n ,Z2:n , ...,Zn:n
are the order statistics of a random sample of size n drawn from the folded distribution

with pdf g (z,σ), then clearly X(i :n)i
d= Zi :n , i = 1,2, ..., n. Thus, if Y1:n ,Y2:n , ...,Yn:n

are the order statistics of a random sample of size n arising from the distribution with
density g0(y), which admits the first two moments, then we write E(Yi :n) = αi :n and
Var(Yi :n) = αi ,i :n , i = 1,2, ..., n. Hence we write E(X(i :n)i ) = σαi :n and Var(X(i :n)i ) =
σ2αi ,i :n for i = 1,2, ..., n.

Now if we write X
∼ A
= (X(1:n)1,X(2:n)2, ...,X(n:n)n)

′, then,

E(X
∼ A
) = α
∼
σ , (18)

and since X(1:n)1,X(2:n)2, ...,X(n:n)n are independently distributed, we have

D(X
∼ A
) = Bσ2, (19)

where α
∼
= (α1:n ,α2:n , ...,αn:n)

′ and B is a diagonal matrix defined by

B = diag(α1,1:n ,α2,2:n , ... ,αn,n:n). Clearly Equations (18) and (19) together constitute a
generalized Gauss-Markov model, and hence the BLUE of σ based on the observations
of RSS-A is given by

σ̂A= (α∼
′B−1α

∼
)−1α
∼
′B−1X

∼ A
,

and the variance is given by

Var(σ̂A) = (α∼
′B−1α

∼
)−1σ2.

Thus we have proved the following theorem.

THEOREM 12. Let X
∼ A
= (X(1:n)1,X(2:n)2, ...,X(n:n)n)

′ be the vector of observations of

RSS-A drawn from a distribution belonging to F1 with density f (x,σ) = 1
σ f0(

x
σ ),

−∞ < x <∞,σ > 0. Let Y1:n ,Y2:n , ...,Yn:n be the order statistics of a random sample
of size n that arises from the distribution with pdf g0(y) = 2 f0(y), 0≤ y <∞, which is the
standard form of the distribution of f (x,σ) folded about x = 0. If we define E(Yi :n) = αi :n ,
Var(Yi :n) = αi ,i :n , for i=1, 2,..., n, α

∼
= (α1:n ,α2:n , ...,αn:n)

′ and
B = diag(α1,1:n ,α2,2:n , ...,αn,n:n), then the BLUE of σ is given by

σ̂A= (α∼
′B−1α

∼
)−1α
∼
′B−1X

∼ A
, (20)

and
Var(σ̂A) = (α∼

′B−1α
∼
)−1σ2. (21)
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The linear estimate of Eq. (20) can also be written as

σ̂A=
n
∑

i=1

di ,nX(i :n)i , (22)

where di ,n , i = 1,2, ..., n are appropriate constants.

Now we illustrate the advantage of RSS-A when compared with the McIntyre (1952)
RSS for the case of sampling from the logistic distribution with scale parameter σ , which
we consider as a member of the family F1 of symmetric distributions. The pdf of the
logistic distribution that we consider for discussion is given by

f (x,σ) =
1
σ

e−
x
σ

(1+ e−
x
σ )2

, −∞< x <∞,σ > 0. (23)

Then the pdf of the standard form of the half-logistic distribution is given by

g0(y) = 2
e−y

(1+ e−y )2
, 0≤ y <∞. (24)

Let X(1:n)1,X(2:n)2, ...,X(n:n)n be the RSS-A observations available from Eq. (23). We
have computed the means and variances of the order statistics of a random sample of
size n drawn from Eq. (24) and used them in Equations (20) and (21) to determine the
constants di ,n of X(i :n)i for i = 1,2, ..., n in the estimate σ̂A and Var(σ̂A) for n = 2(1)10.
These values are given in Table 4. Although from Abu-Dayyeh et al. (2004) one can
obtain the estimate σ̂M of the scale parameter of the logistic distribution by McIntyre’s
RSS, we have directly obtained the variance Var(σ̂M ) for n = 2(1)10. Those values are
also presented in Table 4. The efficiency of the RSS-A based estimate σ̂A relative to the
estimate σ̂M defined by e(σ̂A/σ̂M ) =

Var(σ̂M )
Var(σ̂A)

has been evaluated for n = 2(1)10. This is
also presented in Table 4.

REMARK 13. From the definition of RSS-M under perfect ranking, the resulting obser-
vations are order statistics. But from the definition of RSS-A under perfect ranking, the re-
sulting observations are absolved order statistics. This is the basic difference between RSS-M
and RSS-A. Though it is known that order statistics form a sufficient statistic, it is notice-
able that AOS is minimal sufficient. So naturally an RSS-A dependent estimate also should
possess better results.

From Table 4, we observe that the efficiency of the estimate of σ based on RSS-A is
uniformly larger than for the estimate based on McIntyre’s RSS. The gain in efficiency
ranges from 178% to 352%. For perfect ranking it is always better to choose the set size
of RSS-A small. If we intend to gain more efficiency in the estimate of σ , then we may
repeat the RSS-A sampling in k cycles with the RSS-A estimate for i = 1, as given in Eq.
(20) from the i th cycle denoted by σ̂Ai for i = 2, ..., k. Then the estimate of σ based on

all RSS-A samples may be taken as ˆ̂σA=
∑k

i=1 σ̂Ai
k so that Var( ˆ̂σA) =

Var(σ̂A)
k .
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6. ADJUSTED RANKED SET SAMPLING FOR THE CAUCHY DISTRIBUTION

The RSS as defined by McIntyre (1952) is not applicable as such for the Cauchy distribu-
tion defined in Eq. (1), since the variances of the observations obtained from the 1st,2nd,
(n− 1)th and nth sets are not finite due to the fact that the variances of the smallest two
and largest two observations of a Cauchy sample are not finite (for details see Barnett,
1966). Similarly we see that though the Cauchy distribution defined by Eq. (1) belongs
to F1, the RSS-A defined in section 5 for distributions of F1 also cannot be applied as
such to the Cauchy distribution, for the reason that the units ranked n−1 and n do not
possess finite variances. However we modify RSS-A developed in Section 5 in such a
way that it is suitable to apply to the Cauchy distribution, and this is developed below.

DEFINITION 14. Draw n(n−2) independent units from an infinite population where
the characteristic measured on the units follows a Cauchy distribution with pdf as given in
Eq. (1). Now arrange the units randomly in n− 2 sets each with n units. Suppose without
direct measurement that an expert’s judgement gives a perfect ranking on the relative large-
ness of the absolute values of the possible measurement values that one may obtain on the
units. Now from the i th set choose the unit ranked i , make the measurement on the vari-
able of interest from this unit, take its absolute value, and denote the observation as X(i :n)i ,
i = 1,2, ..., n − 2. The above procedure of drawing units from the population is called Ad-
justed Ranked Set Sampling (ARSS-A).

REMARK 15. ARSS-A is related to RSS-A in the sense that the sample observations gen-
erated by ARSS-A are just obtained by censoring two of the most largely ranked observations
from the sample to be generated by RSS-A.

Now to estimate the scale parameter σ of the Cauchy distribution by the observations
of ARSS-A, we state the following theorem.

THEOREM 16. Let X
∼ AA

= (X(1:n)1,X(2:n)2, ...,X(n−2:n)n−2)
′ be the vector of observa-

tions generated by an ARSS-A carried out on an infinite population and the characteristic
measured on the units follow a Cauchy distribution defined in Eq. (1). Let Y1:n ,Y2:n , ...,
Yn−2:n be the first n− 2 order statistics of a random sample of size n drawn from the stan-
dard half-Cauchy distribution as defined by the pdf given in Eq. (4). Define αi :n = E(Yi :n)
and αi ,i :n =V (Yi :n) for i = 1,2, ..., n− 2. Let α

∼n−2
= (α1:n ,α2:n , ...,αn−2:n)

′ and let Dn−2

be a diagonal matrix of order n−2 given by Dn−2 = diag(α1,1:n ,α2,2:n , ...,αn−2,n−2:n). Then
the BLUE of σ based on the observations of ARSS-A is given by

σ̂AA= (α∼
′
n−2

D−1
n−2α∼n−2

)−1α
∼
′
n−2

D−1
n−2X
∼ AA

, (25)

and the variance is given by

Var(σ̂AA) = (α∼
′
n−2

D−1
n−2α∼n−2

)−1σ2. (26)
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The proof of the theorem is similar to that of Theorem 12 and hence omitted. The
BLUE σ̂AA as given in Eq. (25) may be also written as

σ̂AA=
n−2
∑

i=1

hi ,nX(i :n)i , (27)

where hi ,n for i = 1,2, ..., n− 2 are appropriate constants.
We have used the Mathematica software to evaluate hi ,n , i = 1,2, ..., n−2, Var(σ̂AA)

for n = 4(1)12. Results are presented in Table 5. There is an advantage with ARSS-A
when compared to the corresponding modified form of McIntyre’s RSS, which we de-
note as ARSS-M (Adjusted McIntyre’s RSS) since in ARSS-A we get n− 2 observations
where as in ARSS-M we could utilize only n−4 observations for a fixed set size of units
equal to n by leaving out the two lowest ranked and the two largest ranked units of
the sets. However, to compare the advantage of ARSS-A, we consider the estimate of
σ based on ARSS-M observations. In this case for a set size equal to n, we choose at
random n(n−4) units from the infinite population wherein the variable of interest fol-
lows the Cauchy distribution as defined in Eq. (1). Now we arrange the primary units
selected randomly in n−4 sets each with n units. Now using a judgement method rank
the units of the 1s t set, and select the unit ranked 3 from this set, similarly rank the units
in the 2nd set and select the unit ranked 4, proceed similarly and from the (n−4)th set se-
lect the unit which is ranked n−2. Now measure the characteristic of interest from the
selected units. Let the observed observations be denoted by X3:n(1),X4:n(2),...,Xn−2:n(n−4).
Clearly the above observations are independently distributed as they arise from differ-
ent independent samples. Also Xi :n(i) is distributed as the i th order statistic of a random
sample of size n drawn from Eq. (1). Suppose Y3:n ,Y4:n , ...,Yn−2:n are the n − 4 inter-
mediate order statistics of a random sample of size n drawn from the standard Cauchy
distribution with pdf of Eq. (2). Let E(Yi :n) =βi :n , V(Yi :n) =βi ,i :n , i = 3,4, ..., n− 2,
β
∼ n−4

= (β3:n ,β4:n , ...,βn−2:n)
′, and let the matrix Gn−4 be defined as the diagonal matrix

Gn−4 = diag(β3,3:n ,β4,4:n , ...,βn−2,n−2:n). Then the estimate σ̂M of σ of the Cauchy dis-
tribution based on the vector X

∼ M
= (X3:n(1),X4:n(2), ...,Xn−2:n(n−4))

′ of ARSS-M is given

by
σ̂M = (β

∼

′

n−4
Gn−4

−1β
∼ n−4

)−1β
∼

′

n−4
Gn−4

−1X
∼ M

, (28)

and the variance is given by

Var(σ̂M ) = (β
∼

′

n−4
Gn−4

−1β
∼ n−4

)−1σ2. (29)

The numerical values of β3:n , β4:n , ..., βn−2:n and β3,3:n ,β4,4:n , ..., βn−2,n−2:n have
been computed and tabulated by Barnett (1966) for n = 4(1)16(2)20. Hence we have
computed σ−2 Var(σ̂M ) and those values are presented in Table 5. To compare the effi-
ciency of σ̂AA relative to σ̂M we have computed e(σ̂AA/σ̂M ) =

Var(σ̂M )
Var(σ̂AA)

for n = 6(1)12 and
those values as well are provided in Table 5.
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From Table 5, we observe that the estimate of σ based on ARSS-A possess remark-
ably high efficiency when compared with that based on ARSS-M. The gain in efficiency
of the estimate σ̂AA ranges from 476% to 2170%.

7. A REAL LIFE APPLICATION

Mahdizadeh and Zamanzade (2019) have used data on annual returns for the year 1991
scored from the prices and other characteristics of 30 major companies traded on the
German based Frankfurt Stock Exchange for the illustration of some inference problems
of the Cauchy distribution. We take the data as such and present it below.

TABLE 6
Scores on annual returns of 30 major companies traded on Frankfurt Stock Exchange.

0.0011848 -0.0057591 -0.0051393 -0.0051781 0.0020043 0.0017787
0.0026787 -0.0066238 -0.0047866 -0.0052497 0.0004985 0.0068006
0.0016206 0.0007411 -0.0005060 0.0020992 -0.0056005 0.0110844
-0.0009192 0.0019014 -0.0042364 0.0146814 -0.0002242 0.0024545
-0.0003083 -0.0917876 0.0149552 0.0520705 0.0117482 0.0087458

One can easily observe that the number of observations in the above data with pos-
itive sign is 17 and those with negative sign is 13. To test the null hypothesis H0 that
the median m of the population from which the above data is obtained is equal to zero
against the alternative H1 : m ̸= 0 we consider the test statistic of a sign test (assuming

large n) Z =
�

�

�

�

17− n
2p n

4

�

�

�

�

. Since n = 30, we have Z = 0.7303. For a two sided test the p-value

is 0.4653.
Similarly, if we use the Wilcoxon signed-rank test, then we rank the absolute values

of the observations and write T+ and T− as the sum of ranks of positive and negative
observations. If T =Min(T+,T−), then E(T ) = n(n+1)

4 , Var(T ) = n(n+1)(2n+1)
24 . Then

assuming n large we use the statistic Z =
�

�

�

�

T−E(T )p
V (T )

�

�

�

�

, and in this case we have Z=0.8536

with a p-value equal to 0.3934. Thus from both of the above tests there are no reasons
against believing that the given data arises from a distribution belonging toF1.

We follow the claims of Nolan (2014) that the Cauchy distribution is a suitable
model to describe financial return data. Mahdizadeh and Zamanzade (2019) have used
the Cauchy distribution to deal with some similar inference problems. For the above
data we also propose a Cauchy distribution with pdf in Eq. (1). To estimate the param-
eter σ of the Cauchy distribution, we use the estimator σ̂ as given in Eq. (5) and its
variance as given in Eq. (6). We have evaluated the means, variances and covariances
of order statistics Y1:30,Y2:30, ..., Y28:30 of a random sample of size 30 arising from the
half-Cauchy distribution with pdf as given in Eq. (4). We have used those values in
Eq. (5) to get the estimate σ̂ based on the AOS of the sample. The estimate σ̂ is given
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in Table 7. Mahdizadeh and Zamanzade (2019) estimated σ by an estimate ˆ̂σ based on
the half interquartile range, and this also is included in Table 7. We have computed the
Kolmogrov-Smirnov (K-S) goodness-of-fit statistic for the fitted Cauchy distributions
based on σ̂ and ˆ̂σ together with the respective p-values, and those values as well are in-
cluded in Table 7. Further, we obtained the χ 2 statistics and their p-values with respect
to the Cauchy distributions based on the estimates σ̂ and ˆ̂σ . These are also given in
the Table 7. The AIC and BIC values corresponding to each of the fitted Cauchy distri-
butions based on σ̂ and ˆ̂σ have been computed as well, and they are provided in Table
7.

TABLE 7
Estimates σ̂ and ˆ̂σ , K-S statistics and chi-square test statistics with respect to σ̂ , ˆ̂σ , the associated

p-values, AIC and BIC values for modelling by a Cauchy distribution of the German stock market
data on annual return scores.

Statistic Estimate K-S Statistic Chi-Square Test Statistic AIC BIC
( p-value) ( p-value)

AOS based σ̂= 0.003385 0.1194 (0.7414) 3.6000 (0.6083) -192.153 -190.751
Half interquartile range based ˆ̂σ= 0.003658 0.1263 (0.67822) 4.0000 (0.5494) -192.137 -190.736

From the Table 7, we see that the K-S goodness-of-fit statistic and the chi-square
goodness-of-fit statistic are both smaller for the fitted Cauchy distribution with σ̂=
0.003385. The AIC and BIC values are also least for the Cauchy distribution with σ̂=
0.003385. This illustrates the advantage of using the minimal sufficient statistic based
on AOS in estimating σ of the Cauchy distribution.

8. CONCLUSIONS

From the results generated in the previous sections, we conclude that the usual percep-
tion that the “vector of order statistics of a sample of size n drawn from the scale depen-
dent Cauchy distribution forms a minimal sufficient statistic” needed the modification
that the recently defined “vector of Absolved Order Statistics (AOS) of the sample forms
the minimal sufficient statistic”. We further conclude that the best linear unbiased esti-
mate of the scale parameter σ of Cauchy distribution based on AOS is a more efficient
estimate than that based on order statistics. We also conclude that the estimate ofσ based
on censoring on AOS is more realistic and efficient than that involving order statistics.
A new method of RSS proposed in this paper known as Adjusted Ranked Set Sampling
for the Cauchy distribution, which results in observations having distributions of AOS.
This was found to be useful for estimating σ efficiently when the sampling involved is
either costly or strenuous.
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APPENDIX

A. PROOFS

A.1. Proof of Theorem 3

PROOF. Let X1,X2, ...,Xn be a random sample of size n drawn from the Cauchy
distribution with pdf f (x,σ). Now the absolute values |X1|, |X2|, ..., |Xn | of the above
observations are distributed as that of a random sample of size n drawn from the half-
Cauchy distribution with pdf g (x,σ) = 2 f (x,σ), x ≥ 0, which is obtained by folding
the density f (x,σ) about x = 0. If we write the ordered values of |X1|, |X2|, ..., |Xn | as
X(1:n) ≤ X(2:n) ≤ ... ≤ X(n:n), then clearly by definition X(1:n),X(2:n), ...,X(n:n) are the
AOS of the given sample and they behave also as the order statistics of the random
sample |X1|, |X2|, ..., |Xn | arising from the half-Cauchy distribution. This proves that
(X(1:n),X(2:n), ...,X(n:n)) is distributed identically as the vector of order statistics of a ran-
dom sample of size n arising from the half-Cauchy distribution. 2

A.2. Proof of Theorem 4.

PROOF. The joint pdf of X = (X1,X2, ...,Xn) is L(x
∼

,θ) =
∏n

i=1 fθ(xi ) =
∏n

i=1 fθ(xi :n).
Since fθ(x) is symmetric about zero, for any given set of reals (x1, x2, ..., xn),
∏n

i=1 fθ(xi ) is a constant for all n! permutations (i1, i2, ..., in) of (1,2, ..., n) as well as
2n ways of assigning a coefficient (−1) j , j = 1,2 with each of the components xi in
(x1, x2, ..., xn).

Thus if T = (X(1:n),X(2:n), ...,X(n:n)) is the statistic defined by the AOS, then the
conditional pdf of X = (X1,X2, ...,Xn) given T = t = (x(1:n), x(2:n), ..., x(n:n)) is given by

L(X |T = t ) =
1

2n n!
,

which is a constant for Cauchy distribution with pdf in Eq. (1). This proves that the
statistic T = (X(1:n),X(2:n), ..., X(n:n)) based on AOS is sufficient for the Cauchy family of
distributions. We now establish the minimal sufficient property of (X(1:n),X(2:n), ...,X(n:n)).

Let D1 be the partition of the sample space Ω determined by the statistic T =
(X(1:n),X(2:n), ...,X(n:n)). Let x

∼
be a sample point so that x

∼
∈ Ω. Since T is sufficient for

the Cauchy family of distributions, using the representation given in Lindgren (1962),
the partition set in D1, which contains x

∼
, is determined by

E = {y
∼
/L(y
∼

,θ) = h(x
∼

, y
∼
)L(x
∼

,θ)}, (30)

where h(x
∼

, y
∼
) is independent of θ and is not equal to zero except for a set E0 of proba-
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bility measure zero. In particular, E is the set of all y
∼
∈ Ω for which the ratio

L(y
∼

,θ)

L(x
∼

,θ) is

independent of θ. Since T is sufficient for the Cauchy family of distributions, by the
factorization theorem we write

L(x
∼

,θ) = w1(x∼)g1(t∼,θ), (31)

where w1 is a function of x
∼

alone, and the function g1(t∼,θ) depends on θ and x
∼

only

through T = t . Now suppose that U (X
∼
) is any other sufficient statistic that makes a

partition D2 of the sample space Ω. Then the proof of the minimal sufficiency of T
follows if we prove that each set F ∈D2 is contained in some E ∈D1 except possibly for
a set of points with probability measure zero.

Now assume that x
∼

, y
∼
∈ F , where F ∈ D2 so that we have U (x

∼
) = U (y

∼
). But U (x

∼
)

is a sufficient statistic, and hence by factorization theorem we write

L(x
∼

,θ) = w2(x∼)g2(U (x∼),θ), (32)

and
L(y
∼

,θ) = w2(y
∼
)g2(U (y

∼
),θ), (33)

where w2(x∼) and w2(y
∼
) are not zero and independent of θ. As U (x

∼
) = U (y

∼
), we can

further write
L(x
∼

,θ) = w2(x∼)g2(U (y
∼
),θ), (34)

where w2 is independent of θ. If w2(x∼) is not zero, then from Equations (32),(33) and

(34) we have

L(y
∼

,θ) =
w2(y
∼
)

w2(x∼)
L(x
∼

,θ). (35)

Clearly,
w2(y
∼
)

w2(x∼)
is not zero provided w2(y

∼
) is not zero. Hence if w2(y

∼
) ̸= 0, then on

comparing Eq. (35) with Eq. (30) we can deduce that x
∼

, y
∼

belongs to the same partition

set, say E ∈D1. This establishes that F ⊂ E , except possibly for those points x
∼

such that

w2(x∼) = 0, however for such points L(x
∼

,θ) = 0 for all θ, and the collection of all such

points E0 is null in the sense that it has zero probability measure. This establishes the
theorem. 2
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