A NOTE ON FIBONACCI SEQUENCES OF RANDOM VARIABLES

Ismihan Bayramoglu ${ }^{1}$
Department of Mathematics, Izmir University of Economics, Izmir, Turkey

1. Introduction

Let $\{\Omega, \tau, P\}$ be a probability space and $X_{i} \equiv X_{i}(\omega), \omega \in \Omega, i=0,1$ be absolutely continuous random variables defined on this probability space with joint probability density function (pdf) $f_{X_{0}, X_{1}}(x, y)$. Consider a sequence of random variables $X_{n} \equiv X_{n}(\omega), n \geq 1$ given in $\{\Omega, \mp, P\}$ defined as $\left\{X_{0}, X_{1}, X_{n}=X_{n-2}+X_{n-1}, n=2,3, ..\right\}$. We call this sequence "the Fibonacci Sequence of Random Variables". It is clear that $X_{2}=X_{0}+X_{1}$, $X_{3}=X_{0}+2 X_{1}, \ldots$ and for any $n=0,1,2, \ldots$ we have $X_{n}=a_{n-1} X_{0}+a_{n} X_{1}$, where $\left\{a_{n}=a_{n-2}+a_{n-1}, n=2,3, \ldots ; a_{0}=0, a_{1}=1, a_{2}=1\right\}$ is the Fibonacci sequence $\mathbf{F} \equiv$ $\{0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots\}$. It is also clear that the Fibonacci Sequence of Random Variables (FSRV) $X_{n}, n=0,1,2, \ldots$ is the sequence of dependent random variables based on initial random variables X_{0} and X_{1}, which fully defined by the members of the Fibonacci sequence F. We are interested in the behavior of FSRV, i.e. the distributional properties of X_{n} and joint distributions of X_{n} and X_{n+k} for any n and k.

This paper is organized as follows. In Section 2, the probability density function of X_{n} is considered, followed by a discussion of two cases where X_{0} and X_{1} have Exponential and Uniform distributions, respectively. Then, there is an investigation of limit behavior of ratios of some characteristics of pdf of X_{n} for large n. In the considered examples, the ratio of maximums of the pdfs, modes and expected values of consecutive elements of FSRV converge to golden ratio $\varphi \equiv \frac{1+\sqrt{5}}{2}=1,6180339887$... . The ratio X_{n+1} / X_{n} and normalized sums of X_{n} 's for large n are discussed in Section 3. In Section 4, the focus is on the joint distributions of X_{n} and X_{n+k}, for $2 \leq k \leq n$ and on the prediction of X_{n+k} given X_{n}.

[^0]
2. Distributions

Consider $X_{n}=a_{n-1} X_{0}+a_{n} X_{1}, n=0,1,2, \ldots$, where X_{0} and X_{1} are absolutely continuous random variables with joint pdf $f_{X_{0}, X_{1}}(x, y),(x, y) \in \mathbb{R}^{2}$ and $a_{n}, n=0,1,2, \ldots$ is the Fibonacci sequence. Denote by f_{0} and f_{1} the marginal pdf's of X_{0} and X_{1}, respectively.

Theorem 1. The pdf of X_{n} is

$$
\begin{equation*}
f_{X_{n}}(x)=\frac{1}{a_{n} a_{n-1}} \int_{-\infty}^{\infty} f_{X_{0}, X_{1}}\left(\frac{x-t}{a_{n-1}}, \frac{t}{a_{n}}\right) d t . \tag{1}
\end{equation*}
$$

If X_{0} and X_{1} are independent, then

$$
\begin{equation*}
f_{X_{n}}(x)=\frac{1}{a_{n} a_{n-1}} \int_{-\infty}^{\infty} f_{X_{0}}\left(\frac{x-t}{a_{n-1}}\right) f_{X_{1}}\left(\frac{t}{a_{n}}\right) d t \tag{2}
\end{equation*}
$$

Proof. Equations (1) and (2) are straightforward results of distributions of linear functions of random variables (see eg., (Feller, 1971), (Ross, 2016), (Gnedenko, 1978), (Skorokhod, 2005))

CASE 1. Exponential distribution. Let X_{0} and X_{1} be independent and identically distributed (iid) random variables having Exponential distribution with parameter $\lambda=1$. Then the pdf of X_{n} is

$$
\begin{align*}
f_{X_{n}}(x) & =\frac{1}{a_{n-2}}\left\{\exp \left(\frac{x a_{n-2}}{a_{n-1} a_{n}}\right)-1\right\} \exp \left(-\frac{x}{a_{n-1}}\right), x \geq 0, n=3,4, \ldots \tag{3}\\
f_{X_{2}}(x) & =x \exp (-x), x \geq 0
\end{align*}
$$

In Figure 1, the graphs of $f_{X_{n}}(x)$ for different values of n are presented.
The expected value of X_{n} is

$$
\begin{aligned}
E\left(X_{n}\right) & =\frac{1}{a_{n-2}}\left(\int_{0}^{\infty} x \exp \left(-x\left(\frac{a_{n}-a_{n-2}}{a_{n-1} a_{n}}\right)\right) d x-\int_{0}^{\infty} x \exp \left(-\frac{x}{a_{n-1}}\right)\right) d x \\
& =\frac{1}{a_{n-1}}\left(\frac{a_{n}^{2} a_{n-1}^{2}}{\left(a_{n}-a_{n-2}\right)^{2}}-a_{n-1}^{2}\right)=a_{n+1}
\end{aligned}
$$

and variance is

$$
\begin{aligned}
\operatorname{Var}\left(X_{n}\right) & =\frac{1}{a_{n-2}}\left(\int_{0}^{\infty} x^{2} \exp \left(-x\left(\frac{a_{n}-a_{n-2}}{a_{n-1} a_{n}}\right)\right) d x-\int_{0}^{\infty} x^{2} \exp \left(-\frac{x}{a_{n-1}}\right)\right) d x \\
& =a_{2 n-1}
\end{aligned}
$$

Figure 1 - Graphs of $f_{X_{n}}(x), n=2,3,4,5,6,7,8$, given in (3).

THEOREM 2. Let X_{0} and X_{1} be iid random variables having Exponential distribution with parameter $\lambda=1$. Let $M_{n}=\max _{0<x<\infty} f_{X_{n}}(x)$ and $x_{n}^{*}=\underset{0<x<\infty}{\arg \max } f_{X_{n}}(x)$ be the maximum of $f_{X_{n}}(x)$ and mode of $X_{n}, n=2,3, \ldots$, respectively. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{M_{n}}{M_{n+1}} & =\lim _{n \rightarrow \infty} \frac{x_{n+1}^{*}}{x_{n}^{*}} \\
& =\lim _{n \rightarrow \infty} \frac{E\left(X_{n+1}\right)}{E\left(X_{n}\right)} \\
& =\varphi
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left(X_{n+1}\right)}{\operatorname{Var}\left(X_{n}\right)}=\varphi^{2}
$$

where

$$
\varphi \equiv \frac{1+\sqrt{5}}{2}=1,6180339887 \ldots
$$

is the golden ratio.
Proof. The following can easily be verified

$$
\begin{equation*}
\frac{d}{d x} f_{X_{n}}(x)=\frac{\left(-\frac{x}{a_{n-1}}\right)\left(e^{\frac{x a_{n-2}}{a_{n-1} a_{n}}}-1\right)}{a_{n-2} a_{n-1}}+\frac{e^{-\frac{x}{a_{n-1}}} e^{\frac{x a_{n-2}}{a_{n-1} a_{n}}}}{a_{n-1} a_{n}}=0 . \tag{4}
\end{equation*}
$$

The equation (4) has unique solution

$$
x_{n}^{*}=\frac{a_{n-1} a_{n} \ln \left(\frac{a_{n}}{a_{n}-a_{n-2}}\right)}{a_{n-2}} .
$$

Therefore X_{n} is unimodal and we have

$$
\begin{aligned}
M_{n} & =f_{X_{n}}\left(x_{n}^{*}\right)=\frac{1}{a_{n}-a_{n-2}}\left(\frac{a_{n}}{a_{n}-a_{n-2}}\right)^{-\frac{a_{n}}{a_{n-2}}} \\
M_{n+1} & =f_{X_{n+1}}\left(x^{*}\right)=\frac{1}{a_{n+1}-a_{n-1}}\left(\frac{a_{n+1}}{a_{n+1}-a_{n-1}}\right)^{-\frac{a_{n+1}}{a_{n-1}}}
\end{aligned}
$$

and using

$$
\lim _{n \rightarrow \infty} \frac{a_{n+\alpha}}{a_{n}}=\varphi^{\alpha}
$$

we obtain

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{M_{n+1}}=\frac{x_{n+1}^{*}}{x_{n}^{*}}=\varphi
$$

CASE 2. Uniform distribution. Let X_{0} and X_{1} be iid with Unif orm $(0,1)$ distribution. Then from (2) we obtain

$$
\begin{align*}
f_{X_{n}}(x) & =\frac{1}{a_{n} a_{n-1}} \int_{0}^{a_{n}} f_{X_{0}}\left(\frac{x-t}{a_{n-1}}\right) d t=\frac{a_{n-1}}{a_{n} a_{n-1}} \int_{0}^{a_{n}} d F_{X_{0}}\left(\frac{x-t}{a_{n-1}}\right) \\
& =\frac{1}{a_{n}}\left\{F_{X_{0}}\left(\frac{x}{a_{n-1}}\right)-F_{X_{0}}\left(\frac{x-a_{n}}{a_{n-1}}\right)\right\} \\
& =\left\{\begin{array}{cc}
0, & x<0 \text { and } x>a_{n}+a_{n-1} \\
\frac{x}{a_{n} a_{n-1}} & 0 \leq x \leq a_{n-1} \\
\frac{1}{a_{n}} & a_{n-1} \leq x \leq a_{n} \\
\frac{1}{a_{n}}\left(1-\frac{x-a_{n}}{a_{n-1}}\right) & a_{n} \leq x \leq a_{n}+a_{n-1}
\end{array}\right. \tag{5}
\end{align*}
$$

In Figure 2, the graphs of $f_{X_{n}}(x)$ for different values of n are presented. It can be easily verified that $E\left(X_{n}\right)=\frac{a_{n-1}+a_{n}}{2}=\frac{a_{n+1}}{2}$ and $\left.\operatorname{var} X_{n}\right)=\frac{a_{n-1}^{2}+a_{n}^{2}}{12}$.

One can observe that $f_{X_{n}}(x)$ is not unimodal, $f_{X_{n}}(x)$ is constant in the interval $\left(a_{n-1}, a_{n}\right)$ and $M_{n}=\max _{0<x<1} f_{X_{n}}(x)=\frac{1}{a_{n-1}}, \underset{0<x<1}{\inf \arg \min } f_{X_{n}}(x)=a_{n-1}$, sup $\underset{0<x<1}{\arg \min } f_{X_{n}}(x)=a_{n}$.

It is not difficult to observe that the similar to Theorem 1 results hold also in this case.

Figure 2 - Graphs of $f_{X_{n}}(x), n=5,6,7,8,9$, given in (5).

3. Large n AND NORMALIZED FIbONACCI SEQUENCE OF RANDOM VARIABLES

Let $X_{n}=a_{n-1} X_{0}+a_{n} X_{1}, n=0,1,2, \ldots$ be FSRV, where X_{0} and X_{1} are absolutely continuous random variables with joint pdf $f_{X_{0}, X_{1}}(x, y),(x, y) \in \mathbb{R}^{2}$. Consider the sequence of random variables $Z_{n} \equiv \frac{X_{n+1}}{X_{n}}, n=1,2, \ldots$. One has

$$
\begin{aligned}
Z_{n}(\omega) & =\frac{X_{n+1}(\omega)}{X_{n}(\omega)} \\
& =\frac{a_{n+1} X_{1}(\omega)+a_{n} X_{0}(\omega)}{a_{n} X_{1}(\omega)+a_{n-1} X_{0}(\omega)} \\
& =\frac{\frac{a_{n+1}}{a_{n}} X_{1}(\omega)+X_{0}(\omega)}{X_{1}(\omega)+\frac{a_{n-1}}{a_{n}} X_{0}(\omega)} \\
& =\frac{\frac{a_{n+1}}{a_{n}} X_{1}(\omega)+X_{0}(\omega)}{X_{1}(\omega)+\frac{1}{a_{n}} X_{0}(\omega)} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\varphi,\left(\varphi=\frac{1+\sqrt{5}}{2}=1,6180339887 \ldots\right.$ is the golden ratio $)$, it follows that

$$
\begin{aligned}
Z_{n}(\omega) & \rightarrow \varphi, \text { pointwise in } \\
\Omega_{1} & =\left\{\omega: \varphi X_{1}+X_{0} \neq 0 \text { and } \varphi X_{1}+X_{0} \neq \infty\right\} \subset \Omega
\end{aligned}
$$

For the normalized FSRV, the following limit relationship is valid. (Here we use "sure convergence or pointwise convergence" as follows: to say that the sequence of random
variables $Z_{n}, n=1.2, \ldots$ defined over the same probability space converges surely or everywhere or pointwise towards Z means

$$
\lim _{n \rightarrow \infty} Z_{n}(\omega)=Z(\omega) \text { for all } \omega \in \Omega
$$

where Ω is the sample space of the underlying probability space where the random variables are defined. This is the notion of pointwise convergence of a sequence of functions extended to a sequence of random variables. Sure convergence (pointwise convergence) of a random variable implies all the other kinds of convergence of sequences of random variables.)

Theorem 3. Let $E\left(X_{i}\right)=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}, i=0,1$ and

$$
Y_{n}(\omega) \equiv Y_{n}=\frac{X_{n}-E\left(X_{n}\right)}{\sqrt{\operatorname{Var}\left(X_{n}\right)}}=\frac{X_{0}+\frac{a_{n}}{a_{n-1}} X_{1}-\left(\mu_{0}+\frac{a_{n}}{a_{n-1}} \mu_{1}\right)}{\sqrt{\sigma_{0}^{2}+\frac{a_{n}^{2}}{a_{n-1}^{2}} \sigma_{1}^{2}}}, \omega \in \Omega
$$

Then,

$$
Y_{n} \rightarrow Y \equiv \frac{X_{0}+\varphi X_{1}-\left(\mu_{0}+\varphi \mu_{1}\right)}{\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}}, \text { as } n \rightarrow \infty \text { for all } \omega \in \Omega
$$

The limiting random variable $Y \equiv Y(\omega)$ has distribution function (cdf)

$$
\begin{equation*}
P\{Y \leq x\}=P\left\{X_{0}+\varphi X_{1} \leq x \sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}+\left(\mu_{0}+\varphi \mu_{1}\right)\right\} \tag{6}
\end{equation*}
$$

It is clear that the pdf of $X_{0}+\varphi X_{1}$ is

$$
\begin{equation*}
f_{X_{0}+\varphi X_{1}}(x)=\frac{1}{\varphi} \int_{0}^{\infty} f_{X_{0}}(x-t) f_{X_{1}}\left(\frac{t}{\varphi}\right) d t \tag{7}
\end{equation*}
$$

and the pdf of Y is then

$$
\begin{equation*}
f_{Y}(x)=\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}} f_{X_{0}+\varphi X_{1}}\left(x \sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}+\left(\mu_{0}+\varphi \mu_{1}\right)\right) \tag{8}
\end{equation*}
$$

Example 4. Let X_{0} and X_{1} be iid random variables having Exponential distribution with parameter $\lambda=1$, then from (7) we have

$$
\begin{aligned}
f_{X_{0}+\varphi X_{1}}(x) & =\frac{1}{\varphi} \int_{0}^{x} \exp (-x-t) \exp \left(t-\frac{t}{\varphi}\right) d t \\
& =\frac{\exp (-x)}{\varphi-1}\left[\exp \left(x\left(1-\frac{1}{\varphi}\right)\right)-1\right]
\end{aligned}
$$

Figure 3 - The graph of pdf $f_{Y}(x)$.

Therefore,

$$
\begin{aligned}
P\{Y & \leq x\}=P\left\{X_{0}+\varphi X_{1} \leq x \sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}+\left(\mu_{0}+\varphi \mu_{1}\right)\right\} \\
& =\int_{0}^{c(x)}\left\{\frac{\exp (-t)}{\varphi-1}\left(\exp \left(t\left(1-\frac{1}{\varphi}\right)\right)-1\right)\right\} d t
\end{aligned}
$$

where $c(x)=x \sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}+\left(\mu_{0}+\varphi \mu_{1}\right)$. And the $p d f$ is

$$
\begin{aligned}
f_{Y}(x) & = \begin{cases}\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}\left\{\frac{\exp (-c(x))}{\varphi-1}\left[\exp \left(c(x)\left(1-\frac{1}{\varphi}\right)\right)-1\right]\right\}, & x \geq-\frac{\left(\mu_{0}+\varphi \mu_{1}\right)}{\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}} \\
0 & \text { Otherwise }\end{cases} \\
& = \begin{cases}\sqrt{1+\varphi^{2}}\left\{\frac{\exp (-c(x)))}{\varphi-1}\left[\exp \left(c(x)\left(1-\frac{1}{\varphi}\right)\right)-1\right]\right\}, & x \geq-\frac{1+\varphi}{\sqrt{1+\varphi^{2}}} \\
0 & \text { Otherwise }\end{cases}
\end{aligned}
$$

Figure 3 shows the graph of pdf $f_{Y}(y)$.

EXAMPLE 5. Let X_{0} and X_{1} be independent random variables with Unif orm $(0,1)$ distribution. Then from (7) we have

$$
f_{X_{0}+\varphi X_{1}}(x)=\left\{\begin{array}{cc}
\frac{x}{\varphi}, & 0 \leq x \leq 1 \\
\frac{1}{\varphi}, & 1 \leq x \leq \varphi \\
\frac{1-x}{\varphi}+1, & \varphi \leq x \leq 1+\varphi \\
0, & \text { elsehwere }
\end{array}\right.
$$

Figure 4 - The graph of $f_{X_{0}+\varphi X_{1}}(x)$.

This is a trapezoidal pdf with graph given in Figure 4.
To find the distribution of limiting random variable Y, we consider

$$
P\{Y \leq x\}=P\left\{X_{0}+\varphi X_{1} \leq x \sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}+\left(\mu_{0}+\varphi \mu_{1}\right)\right\}
$$

It is clear that

$$
\begin{aligned}
\mu_{0} & =\mu_{1}=1 / 2, \sigma_{0}^{2}=\sigma_{1}^{2}=1 / 12, \\
a & =\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}=\sqrt{\frac{1+\varphi^{2}}{12}}, b=\mu_{0}+\varphi \mu_{1}=\frac{1+\varphi}{2}
\end{aligned}
$$

and the cdf of Y is

$$
\begin{aligned}
& F_{Y}(x)=P\{Y \leq x\}=P\left\{X_{0}+\varphi X_{1} \leq a x+b\right\}= \\
& \begin{cases}0 & x \leq-\frac{b}{a} \\
\frac{1}{\varphi} \int_{0}^{a x+b} u d u=\frac{(a x+b)^{2}}{2 \varphi}, & \frac{1-b}{a} \leq x \leq \frac{1-b}{a} \leq x \leq \frac{\varphi-b}{a} \\
\frac{1}{2 \varphi}+\frac{1}{\varphi} \int_{1}^{a x+b} d u=\frac{1}{2 \varphi}+\frac{a x+b-1}{\varphi}, & \frac{\varphi-b}{a} \leq x \leq \frac{1+\varphi-b}{a} \\
\frac{1}{2 \varphi}+\frac{1}{\varphi}+\frac{1}{\varphi} \int_{\varphi}^{a x+b}\left(\frac{1-u}{\varphi}+1\right) d u \\
=\frac{2 a x+2 b+2 a x \varphi+2 b \varphi-a^{2} x^{2}-2 a x b-b^{2}-\varphi^{2}-1}{2 \varphi} & x \geq \frac{1+\varphi-b}{a}\end{cases}
\end{aligned}
$$

The pdf of Y is

$$
f_{Y}(x)=\left\{\begin{array}{cc}
0, & x<-\frac{b}{a} \text { or } x>\frac{1+\varphi-b}{a} \\
\frac{(a x+b) a}{\varphi}, & -\frac{b}{a}<x \leq \frac{1-b}{a} \\
\frac{a}{\varphi} & \frac{1-b}{a}<x \leq \frac{\varphi-b}{a} \\
\frac{a(1+\varphi-b-a x)}{\varphi} & \frac{\varphi-b}{a}<x \leq \frac{1+\varphi-b}{a}
\end{array}\right.
$$

3.1. Limits of normalized sums of Fibonacci sequence of random variables

Here we are interested in the limiting behavior of sums of members of FSRV. Consider $S_{n}=\sum_{i=0}^{n} X_{i}$. We have

$$
\begin{aligned}
S_{n} & =X_{0}+X_{1}+\cdots+X_{n}=X_{0}+X_{1}+\sum_{i=2}^{n} X_{i} \\
& =X_{0}+X_{1}+\sum_{i=2}^{n}\left(a_{i-1} X_{0}+a_{i} X_{1}\right) \\
& =X_{0}+X_{1}+X_{0} \sum_{i=2}^{n} a_{i-1}+X_{1} \sum_{i=2}^{n} a_{i} \\
& =X_{0}+X_{1}+X_{0} \sum_{i=1}^{n-1} a_{i}+X_{1}\left(\sum_{i=1}^{n} a_{i}-a_{1}\right) \\
& =X_{0}+X_{1}+X_{0}\left(a_{n+1}-1\right)+X_{1}\left(a_{n+2}-1-a_{1}\right) \\
& =a_{n+1} X_{0}+\left(a_{n+2}-1\right) X .
\end{aligned}
$$

Since

$$
\sum_{i=1}^{n} a_{i}=a_{n+2}-1
$$

Therefore

$$
\begin{aligned}
S_{n} & =X_{0}+X_{1}+\cdots+X_{n} \\
& =a_{n+1} X_{0}+\left(a_{n+2}-1\right) X_{1} .
\end{aligned}
$$

The pdf of S_{n} is

$$
\begin{equation*}
f_{S_{n}}(x)=\frac{1}{a_{n+1}\left(a_{n+1}-1\right)} \int_{-\infty}^{\infty} f_{X_{0}}\left(\frac{x-t}{a_{n+1}}\right) f_{X_{1}}\left(\frac{t}{\left.a_{n+2}-1\right)}\right) d t \tag{9}
\end{equation*}
$$

Theorem 6. Under conditions of Theorem 3 for a sequence $X_{0}, X_{1}, X_{n}=a_{n-1} X_{0}+$ $a_{n} X_{1}, n=2,3, \ldots$ we have

$$
\begin{aligned}
E\left(S_{n}\right) & =a_{n+1} \mu_{0}+\left(a_{n+2}-1\right) \mu_{1} \\
\operatorname{Var}\left(S_{n}\right) & =a_{n+1}^{2} \sigma_{0}^{2}+\left(a_{n+2}-1\right)^{2} \sigma_{1}^{2} \\
\frac{S_{n}-E\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} & \rightarrow Y \text { as } n \rightarrow \infty, \text { for all } \omega \in \Omega
\end{aligned}
$$

where Y has cdf (6).
Proof. Indeed,

$$
\begin{aligned}
& \frac{S_{n}-E\left(S_{n}\right)}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \\
& =\frac{X_{0}+\left(\frac{a_{n+2}}{a_{n+1}}-\frac{1}{a_{n+1}}\right) X_{1}-\left(\mu_{0}+\left(\frac{a_{n+2}}{a_{n+1}}-\frac{1}{a_{n+1}}\right) \mu_{1}\right.}{\sqrt{\sigma_{0}^{2}+\left(\frac{a_{n+2}}{a_{n+1}}-\frac{1}{a_{n+1}}\right)^{2} \sigma_{1}^{2}},} \\
& \rightarrow \frac{X_{0}+\varphi X_{1}-\left(\mu_{0}+\varphi \mu_{1}\right)}{\sqrt{\sigma_{0}^{2}+\varphi^{2} \sigma_{1}^{2}}}=Y, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Example 7. Let X_{0} and X_{1} be iid Exponential(1) random variables. Then the pdf of S_{n} is

$$
\begin{align*}
f_{S_{n}}(x) & =\frac{1}{a_{n+1}\left(a_{n+2}-1\right)} \int_{0}^{x} \exp \left(\frac{x-t}{a_{n+1}}\right) \exp \left(\frac{t}{\left.a_{n+2}-1\right)}\right) d t \\
& =\frac{\exp \left(-\frac{x}{a_{n+1}}\right)}{a_{n+1}-a_{n+2}+1}\left(1-\exp \left(-x\left(\frac{1}{a_{n+2}-1}-\frac{1}{a_{n+1}}\right)\right)\right. \tag{10}
\end{align*}
$$

4. Joint distributions of X_{n} and X_{n+k}

Next, we focus on the joint distributions of $X_{n}=a_{n-1} X_{0}+a_{n} X_{1}$ and $X_{n+k}=a_{n+k-1} X_{0}+$ $a_{n+k} X_{1}$, for $k \geq 1$.

Theorem 8. The joint pdf of X_{n} and X_{n+k} is

$$
\begin{align*}
& f_{X_{n}, X_{n+k}}\left(y_{0}, y_{1}\right) \\
& =\frac{1}{a_{k}} f_{X_{0}, X_{1}}\left(\frac{a_{n+k} y_{0}-y_{1} a_{n}}{(-1)^{n} a_{k}}, \frac{a_{n-1} y_{1}-a_{n+k-1} y_{0}}{(-1)^{n} a_{k}}\right) . \tag{11}
\end{align*}
$$

Proof. Let

$$
\left\{\begin{array}{c}
y_{0}=a_{n-1} x_{0}+a_{n} x_{1} \tag{12}\\
y_{1}=a_{n+k-1} x_{0}+a_{n+k} x_{1}
\end{array} .\right.
$$

The Jacobian of this linear transformation is $J=a_{n-1} a_{n+k}-a_{n} a_{n+k-1}$ and the solution of the system of equations (12) is

$$
\left\{\begin{array}{c}
x_{0}=\left(a_{n+k} y_{0}-y_{1} a_{n}\right) /\left(a_{n-1} a_{n+k}-a_{n} a_{n+k-1}\right) \\
x_{1}=\left(a_{n-1} y_{1}-a_{n+k-1} y_{0}\right) /\left(a_{n-1} a_{n+k}-a_{n} a_{n+k-1}\right)
\end{array} .\right.
$$

Therefore, the joint pdf of X_{n} and X_{n+k} is

$$
\begin{align*}
& f_{X_{n}, X_{n+k}}\left(y_{0}, y_{1}\right) \\
& =\frac{1}{\left|a_{n-1} a_{n+k}-a_{n} a_{n+k-1}\right|} f_{X_{0}, X_{1}}\left(\frac{a_{n+k} y_{0}-y_{1} a_{n}}{a_{n-1} a_{n+k}-a_{n} a_{n+k-1}}\right. \\
& \left.\frac{a_{n-1} y_{1}-a_{n+k-1} y_{0}}{a_{n-1} a_{n+k}-a_{n} a_{n+k-1}}\right) . \tag{13}
\end{align*}
$$

Using the d'Ocagne's identity (Dickson, 1966) $a_{m} a_{n+1}-a_{m+1} a_{n}=(-1)^{n} a_{m-n}$ we have $J=a_{n-1} a_{n+k}-a_{n} a_{n+k-1}=-\left(a_{n+k-1} a_{n}-a_{n+k} a_{n-1}\right)=(-1)^{n} a_{k}$. Therefore,

$$
\begin{aligned}
& f_{X_{n}, X_{n+k}}\left(y_{0}, y_{1}\right) \\
& =\frac{1}{a_{k}} f_{X_{0}, X_{1}}\left(\frac{a_{n+k} y_{0}-y_{1} a_{n}}{(-1)^{n} a_{k}}, \frac{a_{n-1} y_{1}-a_{n+k-1} y_{0}}{(-1)^{n} a_{k}}\right) .
\end{aligned}
$$

Corollary 9. If X_{0} and X_{1} are independent then

$$
\begin{align*}
& f_{X_{n}, X_{n+k}}(x, y) \\
& =\frac{1}{a_{k}} f_{X_{0}}\left(\frac{a_{n+k} x-y a_{n}}{(-1)^{n} a_{k}}\right) f_{X_{1}}\left(\frac{a_{n-1} y-a_{n+k-1} x}{(-1)^{n} a_{k}}\right) \tag{14}
\end{align*}
$$

Example 10. Let X_{0} and X_{1} be iid Exponential(1) random variables, $n=4, k=3$. Then $a_{n+k}=a_{7}=13, a_{n+k-1}=a_{6}=8, a_{n-1}=a_{3}=2, a_{n}=a_{4}=3$ and $a_{k}=a_{3}=2$. Then from (14)

$$
\begin{align*}
& f_{X_{4}, X_{7}}(x, y) \\
& =\left\{\begin{array}{cc}
\frac{1}{2} \exp (-(13 / 2) x+(3 / 2) y) & x \geq 0 \text { and } 4 x \leq y \leq 13 / 3 x \\
\times \exp (-y+4 x), & \text { otherwise } \\
0 & x \geq 0 \text { and } 4 x \leq y \leq 13 / 3 x \\
\text { otherwise }
\end{array}\right.
\end{align*}
$$

The marginal pdf's are

$$
f_{X_{4}}(x)=\left\{\begin{array}{cc}
e^{-\frac{x}{3}}-e^{-\frac{x}{2}}, & x \geq 0 \tag{16}\\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
f_{X_{7}}(x)=\left\{\begin{array}{cc}
\frac{1}{5}\left(e^{-\frac{x}{13}}-e^{-\frac{x}{8}}\right), & x \geq 0 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Example 11. Let X_{0} and X_{1} be independent $\operatorname{Uniform}(0,1)$ random variables. Again, let $n=4, k=3$. Then $a_{n+k}=a_{7}=13, a_{n+k-1}=a_{6}=8, a_{n-1}=a_{3}=2, a_{n}=a_{4}=3$ and $a_{k}=a_{3}=2$. Then

$$
\begin{align*}
& f_{X_{n}, X_{n+k}}(x, y) \\
& =\frac{1}{a_{k}} f_{X_{0}}\left(\frac{a_{n+k} x-y a_{n}}{(-1)^{n} a_{k}}\right) f_{X_{1}}\left(\frac{a_{n-1} y-a_{n+k-1} x}{(-1)^{n} a_{k}}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{a_{k}} & 0 \leq \frac{a_{n+k} x-y a_{n}}{(-1)^{n} a_{k}} \leq 1,0 \leq \frac{a_{n-1} y-a_{n+k-1} x}{(-1)^{n} a_{k}} \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \tag{17}
\end{align*}
$$

(To check whether (17) is a pdf, we need to show $\int_{0}^{1} \int_{0}^{1} f_{X_{n}, X_{n+k}}(x, y) d x d y=1$. Indeed,

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f_{X_{n}, X_{n+k}}(x, y) d x d y \\
& =\frac{1}{a_{k}} \iint_{0 \leq \frac{a_{n+k}-y a_{n}}{(-1)^{n} a_{k}} \leq 1,0 \leq \frac{a_{n-1} y-a_{n+k-1}^{x}}{(-1)^{n} a_{k}} \leq 1} d x d y \\
& =\left\{\begin{array}{c}
a_{n+k} x-y a_{n}=t, a_{n-1} y-a_{n+k-1} x=s \\
x=\frac{t t_{n-1}+s a_{n}}{(-1)^{n} a_{k}}, y=\frac{s a_{n+k}+t a_{n+k-1}}{(-1)^{n} a_{k}} \\
t \leq(-1)^{n} a_{k}, s \leq(-1)^{n} a_{k} \\
J=\left|\begin{array}{cc}
\frac{a_{n-1}}{(-1)^{n} a_{k}} & \frac{a_{n}}{(-1)^{n} n_{k}} \\
\frac{a_{n+k-1}}{(-1)^{n} a_{k}} & \frac{a_{n+k}}{(-1)^{n} a_{k}}
\end{array}\right|=\frac{a_{n-1} a_{n+k}-a_{n} a_{n+k-1}}{(-1)^{2 n} a_{k}^{2}}=\frac{(-1)^{n} a_{k}}{(-1)^{2 n} a_{k}^{2}}
\end{array}\right\} \\
& \left.=\frac{1}{a_{k}} \int_{0}^{(-1)^{n} a_{k}} \int_{0}^{(-1)^{n} a_{k}} \frac{1}{\left|(-1)^{n} a_{k}\right|} d x d y=1 .\right)
\end{aligned}
$$

For $n=4$ and $k=3$, the

$$
\begin{align*}
& f_{X_{4}, X_{7}}(x, y) \\
& =\frac{1}{2} f_{X_{0}}\left(\frac{13 x-3 y}{2}\right) f_{X_{1}}\left(\frac{2 y-8 x}{2}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{2}, & 0 \leq \frac{13 x-3 y}{2} \leq 1,0 \leq \frac{2 y-8 x}{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \tag{18}
\end{align*}
$$

5. PREDICTION OF FUTURE VALUES

It is well known that with respect to squared error loss, the best unbiased predictor of X_{n+k}, given X_{n} is

$$
E\left\{X_{n+k} \mid X_{n}\right\}
$$

Let

$$
\begin{align*}
g(x) & =E\left\{X_{n+k} \mid X_{n}=x\right\} \\
& =\frac{1}{f_{X_{n}}(x)} \int_{-\infty}^{\infty} y f_{X_{n}, X_{n+k}}(x, y) d y \tag{19}
\end{align*}
$$

then $E\left\{X_{n+k} \mid X_{n}\right\}=g\left(X_{n}\right)$. Using (1) and (11) from (19) one can easily calculate the best predictor of X_{n+k}, given X_{n}.

Example 12. Let X_{0} and X_{1} be independent Exponential(1) random variables. Let $n=4, k=3$. Then $a_{n+k}=a_{7}=13, a_{n+k-1}=a_{6}=8, a_{n-1}=a_{3}=2, a_{n}=a_{4}=3$ and $a_{k}=a_{3}=2$ as in Example (4). Then from (15) we can write

$$
\begin{aligned}
g(x) & =\frac{1}{e^{-\frac{x}{3}}-e^{-\frac{x}{2}}} \int_{4 x}^{13 / 3 x} y \frac{1}{2} \exp (-(5 / 2) x) \exp (y / 2) d y \\
& =\frac{1}{3} \frac{12 e^{-x / 2}-6 e^{-x / 2}+6 e^{-x / 3}-13 e^{-x / 3}}{e^{-x / 2}-e^{-x / 3}} \\
& =4 x-2-\frac{x}{3\left(e^{-x / 6}-1\right)}
\end{aligned}
$$

Therefore,

$$
X_{7} \simeq 4 X_{4}-2-\frac{X_{4}}{3\left(e^{-X_{4} / 6}-1\right)}
$$

6. CONCLUSION

In this note, we considered the sequence of random variables $\left\{X_{0}, X_{1}, X_{n}=X_{n-2}+X_{n-1}\right.$, $n=2,3, .$.$\} which is equivalent to \left\{X_{0}, X_{1}, X_{n}=a_{n-1} X_{0}+a_{n} X_{1}, n=2,3, \ldots\right\}$, where X_{0} and X_{1} are absolutely continuous random variables with joint pdf $f_{X_{0}, X_{1}}$, and $a_{n}=$ $a_{n-1}+a_{n-2}, n=2,3, \ldots\left(a_{0}=0, a_{1}=1\right)$ is the Fibonacci sequence. In the paper, the sequence $X_{n}, n=0,1,2, \ldots$ is referred to as the Fibonacci Sequence of Random Variables. We investigated the limiting properties of some ratios and normalizing sums of this sequence. For Exponential and Uniform distribution cases, we derived some interesting limiting properties that reduce to the golden ratio and also investigated the joint distributions of X_{n} and X_{n+k}. The considered random sequence has benefical properties and may be worthy of attention associated with random sequences and autoregressive models.

The FSRV can also find wide applications in many areas including biology, economy, finance. Recently, Fibonacci sequence and Golden Ratio aroused interest of many researchers in fields of science including high energy physics, quantum mechanics, cryptography, and coding. In these areas the randomness is a reality of the nature and the FSRV may play an important role.

Acknowledgements

The author thanks the anonymous reviewer for valuable comments and suggestions that led to improvements in the paper.

REFERENCES

L. E. DICKSON (1966). History of the Theory of Numbers. Chelsea Publishing Company, New York.
W. Feller (1971). An Introduction to Probability Theory and Its Applications. John Wiley \& Sons Inc., New York, London, Sydney.
B. Gnedenko (1978). The Theory of Probability. Mir Publishers, Moscow.
S. Ross (2016). A First Course in Probability. Prentice-Hall Inc, New Jersey.
A. Skorokhod (2005). Basic Principles and Applications of Probability Theory. Springer, Berlin.

Summary

The aim of this paper is to introduce and investigate the new random sequence in the form $\left\{X_{0}, X_{1}\right.$, $\left.X_{n}=X_{n-2}+X_{n-1}, n=2,3, ..\right\}$, referred to as Fibonacci Sequence of Random Variables (FSRV).

The initial random variables X_{0} and X_{1} are assumed to be absolutely continuous with joint probability density function (pdf) $f_{X_{0}, X_{1}}$. The FSRV is completely determined by X_{0} and X_{1} and the members of Fibonacci sequence $F \equiv\{0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots\}$. We examine the distributional and limit properties of the random sequence $X_{n}, n=0,1,2, \ldots$.
Keywords: Random variable; Distribution function; Probability density function; Sequence of random variables.

[^0]: ${ }^{1}$ Corresponding Author. E-mail: ismihan.bayramoglu@ieu.edu.tr

