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VARIANCE ESTIMATION USING MULTIAUXILIARY INFORMATION 
FOR RANDOM NON-RESPONSE IN SURVEY SAMPLING 

H.P. Singh, P. Chandra, S. Singh 

1. INTRODUCTION 

Consider a finite population NUUUU ,...,, 21  of N  identifiable units taking 

values 1 2( , , ..., )Ny y y  on a study variable Y. Let 1 2( , , ..., )mX X X  be the m auxil-

iary variables taking the corresponding values  ( 1, 2,..., ;   1, 2,..., )ijx i m j N .

The problem of estimating the population variance 2 1 2
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 using information on single auxiliary variable 1X  has been 

discussed by various authors including Das and Tripathi (1978), Srivastava and Jhajj 
(1980), Isaki (1983), Upadhyaya and Singh (1986), Isaki (1983), Singh, Upadhyaya 
and Namjosh (1988), Biradar and Singh (1994), Prasad and Singh (1990, 1992), 
Garcia and Cebrian (1996). Quite often information on many auxiliary variables are 
available in the survey which can be utilized to increase the precision of the esti-
mate. Following Olkin (1958), Isaki (1983) has considered the use of multiauxiliary 
variables in building up ratio and regression estimators for population variance. 
Later Srivastava and Jhajj (1980), Upadhyaya and Singh (1983), and Cebrian and 
Garcia (1997) have suggested estimators for population variance using information 
on several auxiliary variables. 
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tion means and variances of the i-th auxiliary variable iX , .,....,2,1 mi  Assu- 

me that a simple random sample of size n is drawn from U . De- 
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i ii X Xu s S ,
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/ iim iu x X , and u  denote the column vector of 

2m elements muuu 221 ,....,, . Srivastava and Jhajj (1980) suggested a class of estima-

tors of 2
YS  as 

2 2
1 2 2( , , ..., ) ( )h Y m Yd s h u u u s h u  (1) 

where ( )h u is a function of u  such that ( ) 1h e , (1,1,...,1)Te  and such that it 

satisfies the following conditions: 

(a) Whatever be the sample chosen, let 1 2 2( , , ..., )T
mu u u u  assumes values in a 

bounded, closed convex subset Q of the 2m dimensional real space containing the 

point (1,1,...,1)Te .

(b) The function ( )h u is continuous and bounded in Q. 

(c) The first and second order partial derivative of ( )h u  exist and are continu-

ous.
Using results from the Appendix (A), to the first degree of approximation, it 

can be easily shown that 

2 1E( ) ( )h Yd S O n

and

4
2MSE( ) [( ( ) 1) 2 '( ) ( '( )) ( '( ))]T T

h Yd S Y b h e h e D h e  (2) 

where '( )h e  denotes the column vector of first ordered partial derivatives of ( )h u

at the point .eu  The MSE( )hd at (2) is minimized for 

1'( )h e D b  (3) 

and thus the resulting (minimum) MSE of hd  is given by 

4 1
2min MSE( ) [( ( ) 1) ]T

h yd S y b D b  (4) 

which is less than the variance of the usual unbiased estimator 2
ys , since 

.01bDbT  Tracy and Osahan (1994) and Singh, Joarder and Tracy (2000) stud-
ied the effect of random non-response: 

(i) On the study as well as the auxiliary variable (situation 1), and 
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(ii) On the study variable only (situation 2), on the usual ratio and regression es-
timators of the population mean. 
Singh and Joarder (1998) studied the effect of random non-response on the study 
and auxiliary variables on several estimators of variance. 

In this paper, we study the effect of random non-response on the study and 

auxiliary variables on different classes of estimators of population variance 2
YS .

2. RANDOM NON-RESPONSE AND SOME EXPECTED VALUES

If r ( 0, 1, 2,..., 2)r n  denote the number of sampling units on which informa-

tion could not be obtained due to random non-response, then the remaining 
( )n r  units in the sample can be treated as SRSWOR sample from the popula-

tion .U  Since we are considering the problem of unbiased estimation of finite 
population variance, therefore we are assuming that r  should be less than 
( 1)n , that is, 0 ( 2)r n . We assume that if p  stands for the probability of 

non-response among the ( 2)n  possible values of non-response, then r  has the 

following distribution given by 

2 2( )
( )

2

n r n r
r

n r
P r C p q

nq p
 (5) 

where (1 )q p , 0,  1,  2,  ...,  ( 2)r n  and r
n C2  denote the total number of 

ways of r  non-responses out of total possible ( 2)n responses.

3. PROPOSED STRATEGIES

3.1 Strategy I

We are considering the situation when random non-response exists on the 

study variable Y  and several auxiliary variables ( 1)m 1 2,  ,  ...,  mX X X . We as-

sume that the population means mXXX  ..., , , 21  and population variances 

1

2
XS ,

2

2
XS ,... 2

mXS of auxiliary variables 1 2,  , ..., mX X X  are known. Using results 

defined in Appendix (B), we define a class of estimators for population variance 
2
YS  as 

*2 *
1 ( )Yd s f u  (6) 

where *( )f u  is a function of *u  such that ( ) 1f e , (1,1,...,1)Te  and such that 

it satisfies the regularity conditions defined in section 1 for hd .
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Expanding *( )f u  about the point eu*  in a second order Taylor’s series, we 

get

*2 * ' * " ** *
1

1
( ) ( ) ( ) ( ) ( )( )

2

T T
Yd s f e u e f e u e f u u e  (7) 

where ** *( )u e u e , 0 1and '( )f e  denotes the column vector of first 

order partial derivatives of *( )f u  at the point eu* , " **( )f u  denotes the ma-

trix of second order partial derivatives of *( )f u  at the point *** uu . Substitut-

ing for *2
Ys  and *u  in (7) in terms of *

0  and * , we have 

2 * * ** *
1 0

1
(1 ) 1 '( ) "( )   

2

T T
Yd S f e f u

2 * * * ** * * ** *
0 0 0

1 1
1 '( ) '( ) "( ) "( )  

2 2

T T T T
YS f e f e f u f u  (8) 

Taking expectation and noting that **"( )f u  is bounded, it is observed that the 

bias,

2
1 1( ) E( ) YB d d S ,

is of order n–1, and hence its contribution to the mean square error will be of the 
order of n–2. The mean square error of d1 to the first degree of approximation is 

2 2
1 1MSE( ) E[ ]Yd d S 4 2 * * *

0 0E[ 2 '( ) ( '( )) '( )]T T T
YS f e f e f e

* 4
2[ ( ) 1 2 '( ) ( '( )) ( '( ))]T T

YS y b f e f e D f e  (9) 

which is minimized for 

1'( )f e D b  (10) 

Thus the resulting (minimum) MSE of d1 is given by 

* 4 1
1 2min MSE( ) [ ( ) 1 ]T

yd S y b D b  (11) 

Now we state the following theorem: 

Theorem 3.1. Up to the terms of order n–1,

* 4 1
1 2MSE( ) [ ( ) 1 ]T

Yd S y b D b
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with equality holding if 

1'( )f e D b .

Any parametric function *( )f u  satisfying the regularity conditions can gener-

ate any asymptotically acceptable estimator. The class of such estimators are very 
large. The following are the examples: 

1 *2 * *
1

1

exp ( log log )
m

Y i i m i m i

i

d s u u

2 *2 * *
1

1

exp ( ( 1) ( 1))
m

Y i i m i m i

i

d s u u

and

3 *2 * *
1

1

( exp( / )log exp( / )log )
m

Y i i i i m i m i m i m i

i

d s w w u w w u  etc. 

The optimum values of 'i s  which minimizes the MSE of 3,2,1,1 id i  are 

obtained from the condition (10). For all the three estimators 3,2,1,1 id i , the 

optimum value of  where 1 2 2( , , ..., )T
m  is given by 

1D b  (12) 

The minimum MSE of d1 is no longer than * 4
2( ( ) 1) Yy S , the variance of 

the unbiased estimator *2
Ys , since 01bDbT .

It is easily shown that if we consider a wider class of estimators 

*2 *
2 ( , )Yd F s u  (13) 

of 2
YS , where the function ( )F  satisfies 2 2( , )Y YF S e S , for all *2*

YS , and 
2'( , ) 1YF S e , '( )F  denoting the first partial derivative of ( )F  with respect to 

*2
Ys , the minimum MSE of d2 is equal to (11) and is not reduced. 

The difference estimator 

2
1 *2 *

2
1

( 1)
m

Y i i

i

d s u

is a member of the class (13) and but not of the class (6). Before obtaining an es-

timator of 1MSE( )d , we state the following lemma from Singh and Joarder 

(1998) and Singh (2003). 
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Lemma 3.1. A maximum likelihood estimator of the probability of non-response, 
p, is given by 

2( 1 ) ( 1 ) 4 ( 3) ( 2)
ˆ

2( 3)

n r n r nr n n
p

n

Now we state the following theorem 

Theorem 3.2. An estimator of the minimum 1MSE( )d  is given by 

^
* *4 * * * 1 *

1 2
ˆ ˆ ˆ ˆˆmin MSE( ) [ ( ) 1 ]T

Yd s Y b D b

where different notation have the same meaning as defined in Appendix (C). 

3.2 Estimators based on estimated optimum values

If optimum values of constants involved in the estimator are not known, then 

it is advisable to replace them with their consistent estimators. Let * * 1 *ˆ ˆD̂ b

be the consistent estimators of 1D b . Then we define a class of estimators 

for 2
YS  as 

* *2 * * *
1

ˆ( , )Yd s f u  (14) 

where * * *ˆ( , )f u  is the function of * *ˆ( , )u  such that 

* * *ˆ( , )f u

* * *
*

1 ,*

ˆ( , )
( , ) | e

f u
f e

u
 (15) 

* * *
*

2 ,*

ˆ

ˆ

( , )
( , ) | 0e

f u
f e

Thus under the conditions (15), it can be shown to the first degree of ap-
proximation that 

*
1 1MSE( ) min MSE( )d d  (16) 

where 1min MSE( )d  is given in (11). 

A class wider than (14) is defined as 
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* * *2 * *
2

ˆ( , , )Yd F s u

where * *2 * *ˆ( , , )YF s u  is a function of *2 * *ˆ( , , )Ys u  such that * 2 2( , , )Y yF S e S  for 

all *2*
YS , which in turn implies that 

2

*
* 2

1 *2 ( , , )

( )
( , , ) | 1

Y
Y S e

Y

F
F S e

s

2

*
* 2 2

2 * ( , , )

( )
( , , ) |

Y
Y YS e

F
F S e S

u

and

2

*
* 2

3 * ( , , )ˆ

( )
( , , ) | 0

Y
Y S e

F
F S e

It can be easily shown that to the first degree of approximation that 

* *
1 2 1MSE( ) MSE( ) min MSE( )d d d

3.3 Strategy II

We consider the situation when information on the study variable Y  can not 
be obtained for r  units while information on 1m  auxiliary variables 

1 2, , ..., mX X X  is available. The population means mXXX ,...,, 21  and variances 

1

2
XS ,

2

2
XS ,... 2

mXS  of the auxiliary variables 1 2, , ..., mX X X  are known. We suggest 

the following class of estimators for population variance 2
YS  as 

*2 *2
3 1 2 2( , , ...., ) ( )Y m Yd s g u u u s g u  (17) 

where ( )g u  is a function of u  such that ( ) 1g e , and such that it satisfies the 

regularity conditions defined in section 1 for hd .

To the first degree of approximation, it can be shown that 

2 1
3E( ) ( )yd S O n  (18) 

and

4 *
3 2MSE( ) [ ( ( ) 1) {2 '( ) ( '( )) '( )}]T T

Yd S Y b g e g e Dg e  (19) 
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where '( )g e  denotes the column vector of first order partial derivatives of ( )g e

at the point .eu  The MSE at (19) is minimized for 

1'( )g e D b  (20) 

Thus the resulting (minimum) MSE of d3 is given by 

4 * 1
3 2min MSE( ) [ ( ( ) 1) ]T

Yd S y b D b * 1 4
1min MSE( ) ( ) T

Yd b D bS  (21) 

Now we state the following theorem: 

Theorem 3.3. Up to the terms of order n–1,

4 * 1
3 2MSE( ) [ { ( ) 1} ]T

Yd S Y b D b

with equality holding if 

1'( )g e D b  (22) 

Any parametric function ( )g u  satisfying the regularity conditions can generate 

any asymptotically acceptable estimator. The class of such estimators is very large. 
The following are the examples: 

1 *2
2

1

exp ( log log )
m

Y i i m i m i

i

d s u u

2 *2
2

1

exp ( ( 1) ( 1))
m

Y i i m i m i

i

d s u u

and

3 *2
2

1

( exp( / )log exp( / )log )
m

Y i i i i m i m i m i m i

i

d s w w u w w u  etc. 

The optimum values of 'i s  which minimizes the MSE of 3,2,1,2 id i  are 

obtained from the condition (20). For all the three estimators 3,2,1,2 id i , the 

optimum value of  where 1 2 2( , , ..., )T
m  is given by 

1D b  (23) 

The minimum MSE of d2 is no longer than * 4
2( ( ) 1) Yy S , the variance of 

the unbiased estimator *2
Ys , since 01bDbT . The class of estimators (17) does 

not include even simple difference type estimators, such as: 
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1 *2
4

1 1

( 1) ( 1)
m m

Y i i m i m i

i i

d s u u  (24) 

2 *2
4

1 1

( 1) 1
m m

i
Y i i m i

i i m i

u
d s u

u
 (25) 

However, it is easily shown that if we consider a class of estimators wider than 
(17), defined by 

*2
4 ( , )Yd G s u  (26) 

of 2
YS , where ( )G  is a function of *2

Ys  and u  such that 2 2( , )Y YG S e S  for all 2
YS

which implies 2*2 ( , )

( )
| 1

YS e
Y

G

s
. The minimum asymptotic mean square error of d4

is equal to (21) and is not reduced. The estimators 1
4d  and 2

4d  are members of 

the class (24) and attain the minimum MSE (21) for optimum values of parame-
ters in (24) and (25). 

Now we state the following theorems. 

Theorem 3.4. The class of estimators of 2
YS  based on estimated optimum values of 

constants defined by 

* *2 *
3 1

ˆ( , )Yd s g u  (27) 

has the MSE (to the terms of order n–1) equal to minimum MSE d3 that is 
*
3 3MSE( ) min MSE( )d d , where 3min MSE( )d  is given by (21), 1 *

1
ˆ ˆD̂ b  is a 

consistent estimate of 1D b , and other notation have same meaning as de-
fined in Appendix (D) 

Theorem 3.5. A wider class is defined by 

* * *2
4 1

ˆ( , , )Yd G s u  (28) 

has the MSE (to the first degree of approximation) equal to that of *
3d , where 

* ( )G  is a function of * *2
1

ˆ( , , )YG s u  such that 

* 2 2( , , )Y YG S e S  for all 2
YS ,

2

*
* 2 2
1 ( , , )

( )
( , , ) |

Y
Y YS e

G
G S e S

u
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and

2

*
* 2
2 ( , , )ˆ

( )
( , , ) | 0

y
Y S e

G
G S e .

Theorem 3.6. An estimator of the 3min MSE( )d  is given by 

^
*4 * * * 1 *

3 2
ˆ ˆ ˆ ˆˆmin MSE( ) [ ( ( ) 1) ]T

Yd s Y b D b

3.4 Strategy III

We again considering the situation when information on variable Y  can not 
be obtained for r  units while information on 1m  auxiliary variables 

1 2, , ..., mX X X  is obtained for all sample units. But the difference is that the 

population means mXXX ,...,, 21  and variances 
1

2
XS ,

2

2
XS ,... 2

mXS of the auxiliary 

variables 1 2, , ..., mX X X  are not known. We suggest the following class of estima-

tors for population variance 2
YS  as 

*2
5 ( )Yd s l v  (29) 

where 1 2 2( , , ...., )T
mv v v v , *2 2/

i ii X Xv s s , * /m i i iv x x , mi ,...,2,1  and ( )l v  is 

a function of v  such that ( ) 1l e , and such that it satisfies the regularity condi-

tions defined in section 1 for hd . To the first degree of approximation, it can be 

shown that 

2 1
5E( ) ( )Yd S O n  (30) 

and

4 * *
5 2MSE( ) [ ( ( ) 1) ( ){2 '( ) ( '( )) '( )}]T T

Yd S Y b l e l e Dl e  (31) 

where '( )l e  denotes the column vector of first order partial derivatives of ( )l v  at 

the point .ev  The MSE at (31) is minimized for 

1'( )l e D b  (32) 

Substitution of (32) in (31) yields the minimum MSE of d5 as 

4 * * 1
5 2min MSE( ) [ ( ( ) 1) ( ) ]T

Yd S Y b D b 1 4
1min MSE( ) T

Yd b D bS  (33) 

where 1min MSE( )d  is cited in (11). 
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Any parametric function ( )l v  satisfying the regularity conditions can generate 

an asymptotically acceptable estimator. The class of such estimators are very large 
and following are a few examples: 

1 *2
5

1

exp ( log log )
m

Y i i m i m i

i

d s v v

2 *2
5

1

exp ( ( 1) ( 1))
m

Y i i m i m i

i

d s v v

and

3 *2
5

1

( exp( / )log exp( / )log )
m

Y i i i i m i m i m i m i

i

d s w w v w w v  etc. 

may be identified as particular members of the suggested class of estimators d5.

The optimum values of 'i s  which minimizes the MSE of 3,2,1,5 id i  are ob-

tained from the condition (31). For all the three estimators 3,2,1,5 id i , the op-

timum value of  where 1 2 2( , , ..., )T
m  is given by 

1D b

The minimum MSE of d5 is no longer than * 4
2( ( ) 1) YY S , the variance of the 

unbiased estimator *2
Ys , since 01bDbT . Thus we have the following theorem: 

Theorem 3.7. Up to terms of order n–1

4 * * 1
5 2MSE( ) [ ( ( ) 1) ( ) ]T

Yd S Y b D b

with equality holding if 

1'( )l e D b .

It is to be noted that the following difference-type estimators: 

1 *2
5

1 1

( 1) ( 1)
m m

Y i i m i m i

i i

d s v v  (34) 

2 *2
5

1 1

( 1) 1
m m

i
Y i i m i

i i m i

v
d s v

v
 (35) 

etc. of 2
YS  are not members of the class (29). 
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To overcome this we define a wider class of estimators of 2
YS  as 

*2
6 ( , )Yd L s v  (36) 

where *2( , )YL s v  is the function of *2( , )Ys v  such that 2 2( , )Y YL S e S  for all 2
YS

which implies 2*2 ( , )

( )
| 1

YS e
Y

L

s
. The minimum asymptotic mean square error of d6

is equal to (33) and is not reduced. The estimators 1
6d  and 2

6d  are members of 

the class (36) and attain the minimum MSE (33) for optimum values of parame-
ters in (34) and (35). 

Remark 3.1. Let 1 *
2 1

ˆ D̂ b  be the consistent estimate of 1D b , where other 

notation have same meaning as defined in Appendix (E). 

Then the class of estimators (based on estimated optimum values of constants) 

of 2
YS  is defined by 

* *2 *
5 2

ˆ( , )Yd s l v  (37) 

where * ( )l  is a function of 2
ˆ( , )v  such that 

* ( , ) 1l e ,
*

* 1
1 ( , )

( )
( , ) | e

l
l e D b

v
 and 

*
*
2 ( , )

( )
( , ) | 0.e

l
l e

It can be easily shown to the first degree of approximation that 

*
5 5MSE( ) min MSE( )d d  (38) 

where 5min MSE( )d  is given by (33). 

Remark 3.2. A class wider than (37) is defined by 

* * *2
6 2

ˆ( , , )Yd L s v  (39) 

where * ( )L  is a function of *2
1

ˆ( , , )Ys u  such that 
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* 2 2( , , )Y YL S e S  for all 2
YS ,

2

*
* 2
1 *2 ( , , )

( )
( , , ) | 1

Y
Y S e

Y

L
L S e

s

2

*
* 2 2 1
2 ( , , )

( )
( , , ) |

Y
Y YS e

L
L S e S D b

v
 (40) 

and

2

*
* 2
3 ( , , )

2
ˆ

( )
( , , ) | 0

Y
Y S e

L
L S e .

It can be shown to the first degree of approximation that 

* *
6 5 6 5MSE( ) MSE( ) min MSE( ) min MSE( )d d d d  (41) 

Now we state the following theorem: 

Theorem 3.8. An estimator of the 5min MSE( )d  is given by 

^
*4 * * * 1 *

5 2 1
ˆ ˆ ˆ ˆˆmin MSE( ) [ ( ( ) 1) ]T

Yd s Y b D b

4. EFFICIENCY COMPARISON

It is well known that 

*2 * 4
2( ) ( ( ) 1)Y YV s S Y  (42) 

From (11), (21) and (37), we have 

* * 4 1
1 1 2min MSE( ) MSE( ) [( ( ) 1) ] T

Yd d S Y b D b  (43) 

* * 4 1
3 3 1min MSE( ) MSE( ) min MSE( ) ( ) [ ] T

Yd d d S b D b  (44) 

and

* 4 1
5 5 1min MSE( ) MSE( ) min MSE( ) [ ] T

Yd d d S b D b  (45) 

It follows from above expressions that the proposed estimators d1, d3, d5 (or 
*
5

*
3

*
1 ,, ddd ) are more efficient than the unbiased estimator *2

Ys . It is further ob-
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served that the proposed estimator *
1 1(or )d d  is more efficient than *

5 5(or )d d

and *
3 3(or )d d .
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APPENDIX

(A) Defining 

2 2
0 / 1Y Ys S , 1ii u , and 1 2 2( , , ..., )T

m ,

we have 

0E( ) E( ) 0i ; mi 2,...,2,1 ,

2
0 2E( ) ( ( ) 1)y , 0E( ) b , E( )T D

where 
N n

Nn
 and 1 2 1, 2,{( 1),( 1), ....,( 1), ...., }T

m mb l l l k k k  and the 

matrix

CB

BA

D

T     |  

    |      

 is assumed to be positive definite. Here '[ ]iiA a ,

'[ ]iiB b  and [ ']iiC c  are mm  matrices with ' '( 1)ii iia l , '' iiii kb ,

' ' 'ii ii i ic C C , 2 2
22 ( , )/( )

ii i Y Xl Y X S S ,
'' 11 '( , )/( )

i iii i i X XX X S S ,

_
2

'' 21 '( , )/( )
i

iii i i Xk X X S X , 2 2
' 22 ' '( , )/( )

iii i i X X il X X S S ,

_
2

21( , )/( )ii i Yk Y X S X ,
_

2
3( )/( )

i
ii ii i Xk X S X , 2 2 2/

ii X i iiC S X C ,

4
2 4( ) ( )/

ii ii i XX l X S , 4
2 4( ) ( )/ YY Y S , 1 4

4
1

( ) ( 1) ( )
N

j

j

Y N y Y ,
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1

1

( ) ( 1) ( )
N

t
t i ij i

j

X N x X , 4,3,2t  and 

1

1

( , ) ( 1) ( ) ( )
N

s t
st i j ij i

j

Y X N y Y x X , ( ,  ) 1, 2.s t

(B) Let us define 

*2
*
0 2

1Y

Y

s

S
, 1**

ii u , mi 2,...,2,1

* * * *
1 2 2( , , ..., )T

m , * *2 2/
i ii X Xu s S , * * /m i i iu x X , mi ,...,2,1

* * * *
1 2 2( , , ...., )T

mu u u u

where *2 1 * 2

1

( 1) ( )
n r

Y j

j

s n r y y , *2 1 * 2

1

( 1) ( )
i

n r

X ij

j

s n r x x , mi ,...,2,1

are conditionally unbiased estimators of 2
YS  and 2

XS , respectively and where 

* 1

1

( )
n r

j

j

y n r y  and * 1

1

( )
n r

i ij

j

x n r x . Thus under the probability model 

given by (5), we have the following results: 

* *
0E( ) E( ) 0i mi 2,...,2,1   

*2 *
0 2E( ) { ( ) 1}y , *E( )T D , * * *

0E( ) b , * * *E( )T D

where * 1 1

2nq p N
. It may be observed that if 0p  that is if there is 

no non-response, the above expected values coincides with usual results used by 
Cebrian and Garcia (1997). 

(C) * * * * * * *
1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ{( 1), ( 1), .., ( 1),  ,  ,  ....,  }T
m mb l l l k k k , * * *2 2

22
ˆˆ ( , )/( )

ii i Y Xl Y X s S ,

* * *2
21

ˆˆ ( , )/( )i i Y ik Y X s X ,
**

**

*

ˆ,ˆ

ˆ,ˆ
ˆ

CB

BA
D , * *

'
ˆ ˆ[ ]iiA a , * *

'
ˆˆ [ ]iiB b , * *

'
ˆ ˆ[ ]iiC c  are 
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mm  matrices with *
' '

ˆˆ ( 1)ii iia l , *
'

*
'

ˆˆ
iiii kb , * *

' ' '
ˆ

îi ii i ic C C ,
*

* 21 '
' 2

ˆ ( , )ˆ

i

i i
ii

X i

X X
k

S X
,

'

*
* 11 '

'

ˆ
ˆ

( , )

i i

i i
ii

X X

X X

S S
,

'

*
* 22 '
' 2 2

ˆ ( , )ˆ

i i

i i
ii

X X

X X
l

S S
,

*
* * 3

2

ˆˆ ( )ˆ

i

i
i ii

X i

X
k

S X
,

*
* * 4
2 4

ˆˆ ( )ˆ( )

i

i
i ii

X

X
X l

S
,

*
* 4
2 *4

ˆˆ ( )
( )

Y

Y
Y

s
, * 1 *

1

ˆ ( ) ( 1) ( )
n r

t
t i j

j

X n r y y , t=2,3,4; 

* 1 * *

1

ˆ ( , ) ( 1) ( ) ( )
n r

s t
st i j ij i

j

Y X n r y y x x , 2,1, ts  and 

*ˆ 1 1
.

ˆˆ 2nq p N

(D)

CB

BA

D

ˆ|ˆ

ˆ|ˆ

ˆ , '
ˆ ˆ[ ]iiA a , '

ˆˆ [ ]iiB b , '
ˆ ˆ[ ]iiC c  are mm  matrices 

' '
ˆˆ ( 1)ii iia l , ''

ˆˆ
iiii kb , ' ' '

ˆ
îi ii i ic C C , 21 '

' 2

ˆ ( , )ˆ

i

i i
ii

X i

X X
k

S X
,

'

11 '
'

ˆ
ˆ

( , )

i i

i i
ii

X X

X X

S S
,

'

22 '
' 2 2

ˆ ( , )ˆ

i i

i i
ii

X X

X X
l

S S
, 3

2

ˆˆ ( )ˆ

i

i
i ii

X i

X
k

S X
, 4

2 4

ˆˆ ( )ˆ( )

i

i
i ii

X

X
X l

S
,

1

1

ˆ ( ) ( 1) ( )
n

t
t i ij i

j

X n x x , t=2,3,4; 

1
' ' ' '

1

ˆ ( , ) ( 1) ( ) ( )
n

s t
st i i ij i i j i

j

X X n x x x x , ( , ) 1, 2s t ; and 1
ˆ* ( , )g u  is a 

function of u  and 1
ˆ  such that * ( , ) 1g e ,

*
*
1 ( , )

( )
( , ) | e

g
g e

u
 and 

*
*
2 ( , )ˆ

( )
( , ) | 0.e

g
g e

(E)

11

11

1

ˆ|ˆ

ˆ|ˆ

ˆ

CB

BA

D

T

,
1
'1

ˆ ˆ[ ]iiA a ,
1
'1

ˆˆ [ ]iiB b ,
1
'1

ˆ ˆ[ ]iiC c  are mm  ma-
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trices
1 1
' '

ˆˆ ( 1)ii iia l , 1
'

1
'

ˆˆ
iiii kb ,

1 1
' ' '

ˆ ˆ ˆ
îi ii i ic C C ,

1 2
' 21 '

ˆˆ ( , )/( )
iii i i X ik X X s x ,

'

1
' 11 '

ˆ ˆ ( , )/( )
i iii i i X XX X s s ,

'

1 2 2
' 22 '

ˆˆ ( , )/( )
i iii i i X Xl X X s s , ˆ /

ii X iC s x ,

'' '
ˆ /

ii X iC s x ,
1 1 2

3
ˆ ˆ ( )/( )ˆ

ii ii i X ik X s x ,
1 1 4

2 4
ˆ ˆˆ( ) ( )/

ii ii i XX l X s ,

1

1

ˆ ( ) ( 1) ( )
n

t
t i j

j

X n y y , t=2,3,4, 

1
' '

1

ˆ ( , ) ( 1) ( ) ( )
n

s t
st i i ij i ij i

j

X X n x x x x , ( , ) 1, 2s t .
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RIASSUNTO

Stima della varianza nelle indagini campionarie con risposte mancanti casuali, sulla base di informazioni 
ausiliarie multiple 

Lo scopo del presente contributo è di studiare le proprietà di una classe di stimatori 
della varianza di popolazione basati su informazioni ausiliarie multiple, proposta da 
Srivastava e Jhajj (1980), nelle due situazioni di mancate risposte casuali considerate da 
Tracy e Osahan (1994). I risultati sono stati ottenuti sotto la condizione che il numero di 
unità statistiche campionarie, per le quali si ha una mancata risposta accidentale, segna una 
particolare distribuzione (vedi Singh e Joarder (1998), Singh, Joarder e Tracy (2000), Singh 
(2003)).

SUMMARY

Variance estimation using multiauxiliary information for random non-response in survey sampling 

The goal of this paper is to study the properties of a class of estimators of population 
variance based on multi-auxiliary variables proposed by Srivastava and Jhajj (1980), under 
the two different situations of random non-response advocated by Tracy and Osahan 
(1994). The results are obtained under the assumption that the number of sampling units 
on which information could not be obtained due to random non-response, follows some 
distribution; for instance, see Singh and Joarder (1998), Singh, Joarder and Tracy (2000), 
Singh (2003). 


