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ESTIMATION OF FINITE POPULATION MEAN USING KNOWN 
CORRELATION COEFFICIENT BETWEEN AUXILIARY CHARACTERS 

H.P. Singh, R. Tailor 

1. INTRODUCTION

Let 1 2{ , ,..., }NU U U U  be a finite population of N units. Suppose two auxil-

iary variables 1X  and 2X  are observed on ( 1, 2,..., )iU i N , where 1X  is posi-

tively and 2X  is negatively correlated with the study variable Y. A simple random 

sample without replacement (SRSWOR) of size n with n < N, is drawn from the 

population U to estimate 
1

/
N

i

i

Y y N , the population mean of Y, when the 

population means 1 1
1

/
N

i

i

X x N  and 2 2
1

/
N

i

i

X x N  of 1X  and 2X  are re-

spectively, known. For estimating Y , Singh (1967) suggested a ratio-cum-product 
estimator 

1 2
1

1 2

ˆ X x
Y y

x X
 (1) 

where 
1

/
n

i

i

y y n , 1 1
1

/
n

i

i

x x n  and 2 2
1

/
n

i

i

x x n .

Wide applicability of the estimator 1Ŷ  has led many authors to suggest unbi-

ased versions of 1Ŷ  with their properties, for instance, see Sahoo and Swain 

(1980), Biradar and Singh (1992-93) and Tracy et al. (1998). Sahai and Sahai (1985) 
and Singh (1987 b) have mentioned that the past association with experimental 

material might provide a close guess for the correlation coefficient 
1yx  between 

study variate Y and auxiliary character 1X  i.e. 
1yx  can be guessed quite accu-

rately. Recently, Singh and Tailor (2003) have utilized the information on 
1yx

and suggested a modified ratio estimator for Y  with its properties. Further Singh 
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and Singh (1984) advocated that the correlation coefficient 
1 2x x  between auxil-

iary variates 1X  and 2X  may be known in many practical situations and hence 

utilizing the known value of 
1 2x x suggested a class of estimators for population 

variance 2
y  of Y with its properties. This led authors to suggest modified ratio-

cum-product estimator using 
1 2x x  with its properties. 

A jackknife version of the suggested estimator 2Ŷ  is also given and its proper-

ties are studied. An empirical study is carried out in support of the proposed es-
timator. 

2. SUGGESTED RATIO-CUM-PRODUCT ESTIMATOR

Assuming that the correlation coefficient 
1 2x x  between auxiliary characters 

1X  and 2X  is known, we define a ratio-cum-product estimator of Y  as 

1 2 1 2

1 2 1 2

1 2

2

1 2

ˆ x x x x

x x x x

X x
Y y

x X
. (2) 

To the first degree of approximation, the bias and mean square error (MSE) of 

the proposed estimator 2Ŷ  are respectively, given by 

1 1 2 2 1 2

* 2 * * 2 *
2 1 1 2 1

ˆ( ) [ ( ) ( )]x yx x yx x xB Y Y C K C K K  (3) 

and

1 1 2 2 1 2

2 2 * 2 * * 2 * *
2 1 1 2 2 1

ˆ( ) [ ( 2 ) { 2( )}]y x yx x yx x xMSE Y Y C C K C K K , (4) 

where 

1 1 1
( / )yx yx y xK C C ,

2 2 2
( / )yx yx y xK C C ,

1 2 1 2 1 2
( / )x x x x x xK C C ,

1 2

* /( )i i i x xX X , (1, 2)i ;
1 1

n N
, /y yC S Y ,

/ ,( 1, 2)
i ix x iC S X i ; /( ),( 1, 2)

i i iy x yx y xS S S i ;

2 2

1

( ) /( 1)
N

y i

j

S y Y N , 2 2

1

( ) /( 1),( 1, 2)
i

N

x ij i

j

S x X N i

and



Estimation of finite population mean using known correlation coefficient between auxiliary characters 409

1

( )( )/( 1),( 1, 2)
i

N

yx i ij i

j

S y Y x X N i .

When no auxiliary information is used the estimator 2Ŷ  reduces to the con-

ventional unbiased estimator y . If the information only on auxiliary variate 1X

is used, then the estimator 2Ŷ  tends to the usual ratio estimator 1 1( / )Ry y X x .

On the other hand if the information is available on auxiliary variate 2X  only, 

2Ŷ  reduces to the usual product estimator 2 2( / )Py y x X .

It is well known that sample mean y  is an unbiased estimator of Y  and its 

variance under SRSWOR sampling scheme is given by 

2 2( ) yV y Y C . (5) 

To the first degree of approximation, the biases and MSEs of Ry , Py  and 1Ŷ

are respectively given by 

1 1

2( ) (1 )R x yxB y YC K , (6) 

2 2

2( )P x yxB y YC K , (7) 

1 1 2 2 1 2

2 2
1

ˆ( ) [ (1 ) ( )]x yx x yx x xB Y Y C K C K K , (8) 

1 1

2 2 2( ) [ (1 2 )]R y x yxMSE y Y C C K , (9) 

2 2

2 2 2( ) [ (1 2 )]P y x yxMSE y Y C C K , (10) 

and

1 1 2 2 1 2

2 2 2 2
1

ˆ( ) [ (1 2 ) {1 2( )}]y x yx x yx x xMSE Y Y C C K C K K . (11) 

3. EFFICIENCY COMPARISIONS

It follows from (4), (5), (9), (10) and (11) that 

(i) ( ) ( )RMSE y V y  if 

1

1

2
yxK   (12) 
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(ii) ( ) ( )PMSE y V y  if 

2

1

2
yxK   (13) 

(iii) 1
ˆ( ) ( )MSE Y V y  if 

1 1 2 2 1 2

2 2[ (1 2 ) {1 2( )}] 0x yx x yx x xC K C K K

which is always true if 

1

1

2
yxK    and

2 1 2

1

2
yx x xK K  (14) 

(iv) 2
ˆ( ) ( )MSE Y V y  if 

1 1 2 2 1 2

2 * * 2 * * *
1 1 2 2 1[ ( 2 ) { 2( )}] 0x yx x yx x xC K C K K

which always holds if 

1

*
1

2
yxK    and

2 1 2

*
* 2
1

2
yx x xK K  (15) 

(v) 1
ˆ( ) ( )RMSE Y MSE y  if 

2 1 2

1

2
yx x xK K   (16) 

(vi) 1
ˆ( ) ( )PMSE Y MSE y  if 

1 2 1

1

2
yx x xK K ,  (17) 

where  
2 1 1 2 2 1

( / )x x x x x xK C C .

(vii) 2
ˆ( ) ( )RMSE Y MSE y  if 

1 1 2 1 2 2

* * 2 * * * 2
1 1 2 2 1[(1 ){2 (1 )} { 2( )} ] 0yx x yx x x xK C K K C

which is always true if

1

*
1(1 )

2
yxK   and

2 1 2

*
* 2
1

2
yx x xK K  (18) 

(viii) 2
ˆ( ) ( )PMSE Y MSE y  if 

1 2 1 1 2 2

* * * 2 * * 2
1 1 2 2 2[ { 2( )} (1 ){(1 ) 2 } ] 0yx x x x yx xK K C K C
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which always holds if 

1 2 1

*
* 1
2

2
yx x xK K    and

2

*
2(1 )

2
yxK  (19) 

and

(ix) 2 1
ˆ ˆ( ) ( )MSE Y MSE Y  if 

1 1 2 1 2

2

2 * * 2 * *
1 1 1 2

* *
2 2

[ (1 ){2 (1 )} {2 (1 )

(1 )(1 2 }] 0

x yx x x x

yx

C K C K

K

which is always true if 

1

*
1(1 )

2
yxK   and 1 2

2

* * *
1 2 2

*
2

(1 ) (1 )

2(1 )

x x

yx

K
K . (20) 

Now combining (12), (16) and (20) we get that the proposed estimator 2Ŷ

is more efficient than y , Ry  and Singh’s (1967) estimator 1Ŷ

i.e. 2 1
ˆ ˆ( ) ( ) ( ) ( )RMSE Y MSE Y MSE y V y  if 

1

*
1(1 )1

2 2
yxK  and 1 2

2 1 2

* * *
1 2 2

*
2

(1 ) (1 ) 1

2 2(1 )

x x

yx x x

K
K K . (21) 

Further combining (20), (17) and (13) we obtained that the suggested estimator 

2Ŷ  is more efficient than y , Py  and Singh’s (1967) estimator 1Ŷ

i.e. 2 1
ˆ ˆ( ) ( ) ( ) ( )PMSE Y MSE Y MSE y V y  if 

2 1 1

*
1(1 )1

2 2
x x yxK K  and 1 2

2

* * *
1 2 2

*
2

(1 ) (1 ) 1

2 2(1 )

x x

yx

K
K .

(22)

It is to be noted that the suggested estimator 2Ŷ  is biased. In some applica-

tions, bias is a major disadvantage. Keeping this in view, we have discussed the 

unbiasedness of the proposed estimator 2Ŷ , and using the technique suggested 

by Quenouille (1956) known as ‘Jack-knife’ technique, proposed a family of al-
most unbiased estimators with its properties. 
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4. FAMILY OF UNBIASED ESTIMATORS OF POPULATION MEAN Y  USING JACKKNIFE 

TECHNIQUE

Let a simple random sample of size n = gm drawn without replacement and 
split at random into g sub-samples, each of size m. Then we define the Jack-knife 

ratio-cum-product estimator for population mean Y  as 

1 2 1 2

1 21 2

'
1 2'

2 '
1 21

1ˆ
g

x x j x x

J j

j x xj x x

X x
Y y

g Xx
 (23) 

where ' ( )/( )j jy n y m y n m  and ' ( )/( )ij i ijx n x m x n m , 1, 2i ; are the 

sample means based on a sample of (n-m) units obtained by omitting the thj

group and jy  and ijx ( 1, 2; 1, 2,..., )i j g  are the sample means based on 

the thj  sub samples of size m = n/g.

The bias of 2
ˆ

JY , to terms of order 1n , can be easily obtained as 

1 1 2 2 1 2

* 2 * * 2 *
2 1 1 2 1

( )ˆ( ) [ ( ) ( )]
( )

J x yx x yx x x

N n m
B Y Y C K C K K

N n m
. (24) 

From (3) and (24) we have 

2

2

ˆ( ) ( )( )
ˆ ( )( )J

B Y N n n m

n N n mB Y
 (25) 

or 2 2

( )( )ˆ ˆ( ) ( )
( )

J

N n n m
B Y B Y

n N n m

or 2 2

( )( )ˆ ˆ( ) ( ) 0
( )

J

N n n m
B Y B Y

n N n m

or * * *
2 2

ˆ ˆ( ) ( ) 0JB Y B Y  (26) 

for any scalar * , we have 

* ( )( )

( )

N n n m

n N n m
. (27) 

From (26), we have 
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* * *
2 2

ˆ ˆ( ) ( ) 0JE Y Y E Y Y

or * * *
2 2

ˆ ˆ( ) ( ) 0JE Y y E Y y

or * * * * *
2 2

ˆ ˆ[ { (1 ) 1}]JE Y Y y Y .

Hence, the general family of almost unbiased ratio-cum-product estimators of 

Y  as 

* * * * *
2 2 2

ˆ ˆ ˆ[ {1 (1 )} ]u JY y Y Y  (28) 

see Singh (1987 a). 

Remark 4.1.  For * 0 , 2
ˆ

uY  yields the usual unbiased estimator y  while 
* * 1(1 ) , gives an almost unbiased estimator for Y  as 

1 2 1 2

1 2 1 2

1 2 1 2

1 21 2

1 2*
2

1 2

'
1 2'

'
1 21

( )ˆ

( )( 1)

x x x x

u

x x x x

g
x x j x x

j

j x xj x x

X xN n m
Y g y

N x X

X xN n g
y

Ng Xx

 (29) 

which is Jack-knifed version of the proposed estimator 2Ŷ .

Many other almost unbiased estimator from (28) can be generated by putting 

suitable values of * .

5. SEARCH OF AN OPTIMUM ESTIMATOR IN FAMILY 2
ˆ

uY  AT (28)

The family of almost unbiased estimator 2
ˆ

uY at (28) can be expressed as 

*
2 1

ˆ
uY y y  , (30) 

where *
1 2[(1 ) ]y y y  and *

2 2 2
ˆ ˆ

Jy Y Y . The variance of 2
ˆ

uY is given 

by

*2 *
2 1 1

ˆ( ) ( ) ( ) 2 ( , )uV Y V y V y Cov y y  (31) 

which is minimized for 
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*
1 1( , )/ ( )Cov y y V y . (32) 

Substitution of (32) in (31) yields minimum variance of 2
ˆ

uY  as 

2
1

2

1

{ ( , )}ˆmin. ( ) ( )
( )

u

Cov y y
V Y V y

V y

                   2
01( )(1 )V y , (33) 

where 01  is the correlation coefficient between y  and 1y .

From (33) it is immediate that 

2
ˆmin. ( ) ( )uV Y V y .

To obtain the explicit expression of the variance of 2
ˆ

uY , we write the follow-

ing results to terms of order 1n , as 

2 2 2 2
ˆ ˆ ˆ ˆ( ) ( , ) ( )J JMSE Y Cov Y Y MSE Y  (34) 

and

1 1 2 2

2 2 * *
2 2 1 2

ˆ ˆ( , ) ( , ) [ ]J y yx y x yx y xCov y Y Cov y Y Y C C C C C  (35) 

where 2
ˆ( )MSE Y  is given by (4). 

Now using the results from (4), (5) and (35) into (31) we get the variance of 

2
ˆ

uY  to the terms of order 1n  as 

1 2 1 2 1 2

2 2 *2 * 2 *2 2 *2 2 * *
2 1 2 1 2

ˆ( ) [ (1 ) ( 2 )u y x x x x x xV Y Y C C C C C

            
1 1 2 2

* * * *
1 22 (1 )( )]yx y x yx y xC C C C  (36) 

which is minimized for 

1 1 2 2

1 2 1 2 1 2

* *
1 2* *

* *2 2 *2 2 * *
1 2 1 2

( )

(1 )( 2 )

yx y x yx y x

opt

x x x x x x

C C C C

C C C C
. (37) 

Substitution of *
opt  in 2

ˆ
uY  yields the optimum estimator 2 ( )

ˆ
u optY  (say). Thus the 

resulting minimum variance of 2
ˆ

uY  is given by 
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1 1 2 2

1 2 1 2 1 2

* * 2
1 22 2

2 2 ( )*2 2 *2 2 * *
1 2 1 2

( )ˆ ˆmin. ( ) 1 ( )
( 2 )

yx x yx x

u y u opt

x x x x x x

C C
V Y Y C V Y

C C C C
.

(38)

From (4), (11) and (38) we have 

1 1 2 2

1 2 1 2 1 2

* * 2
1 22 2

2 *2 2 *2 2 * *
1 2 1 2

( )ˆ( ) min. ( ) 0
( 2 )

yx x yx x

u y

x x x x x x

C C
V y V Y Y C

C C C C

(39)

and

1 2 1 2 1 2 1 1 2 2

1 2 1 2 1 2

2 2

*2 2 *2 2 * * * * 2
1 2 1 2 1 22

*2 2 *2 2 * *
1 2 1 2

ˆ ˆ( ) min . ( )

( 2 )
0.

( 2 )

u

x x x x x x yx y x yx y x

x x x x x x

MSE Y V Y

C C C C C C C C
Y

C C C C

(40)

Thus from (39) and (40) we have the following inequalities: 

2
ˆmin. ( ) ( )uV Y V y  (41) 

and

2 2
ˆ ˆmin. ( ) ( )uV Y MSE Y  (42) 

which follows that 2
ˆ

uY  with * *
opt  is more efficient than y  and 2Ŷ .

When *  does not coincide with *
opt  then from (5) and (36) we note that 

2
ˆ( ) ( )uV Y V y  if 

* *

* *

0 2

2 0

opt

opt

either

or
 (43) 

It is observed from (11) and (36) that 2 1
ˆ ˆ( ) ( )uMSE Y MSE Y  if 

2 2
*

* *

( ) ( )

(1 ) (1 )

B B AC B B AC

A A
 , (44) 

1 2 1 2 1 2

*2 2 *2 2 * *
1 2 1 2( 2 )x x x x x xA C C C C ,
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1 1 2 2

* *
1 2( )yx y x yx y xB C C C C ,

1 1 2 2 1 1

2 2[ (1 2 ) {1 2( )}]x yx x yx x xC C K C K K .

We also note from (4) and (36) that the estimator 2
ˆ

uY  is better than *
2 2

ˆ ˆ( )uY orY  if 

* *

* *

* *

* *

1 1
2

(1 ) (1 )

1 1
2

(1 ) (1 )

opt

opt

either

or

 (45) 

The optimum value *
opt  of *  can be obtained quite accurately through past data 

or experience. 

6. EMPIRICAL STUDY

To observe the relative performance of different estimators of Y , we consider 
a natural population data set given in Steel and Torrie (1960, p.282). The popula-
tion description is given below: 

y  : Log of leaf burn in sec. 

1x  : Potassiam percentage 

2x  : Clorine percentage. 

The required population values are: 

0.6860Y , 0.4803yC ,
1

0.1794yx , N=30 , 

1 4.6537X ,
1

0.2295xC ,
2

0.4996yx , n=6, 

1 0.8077X ,
2

0.7493xC ,
1 2

0.4074x x , g=2. 

The percentage relative efficiencies (PREs) of various estimators of Y  with re-
spect to y  have been computed and presented in Table 1. 

TABLE 1 

Percent relative efficiencies of different estimators of Y  with respect to y

Estimator y Ry Py 1Ŷ *
2 2

ˆ ˆ( )uY Y 2
ˆ

uY with * 1.19751opt

PRE ( , )y 100.00 94.62 53.33 75.50 142.18 165.88 
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Table 1 clearly indicates that the suggested estimators *
2 2

ˆ ˆ( )uY or Y   and 2
ˆ

uY

with * = *
opt , are more efficient than usual unbiased estimator y , ratio estima-

tor Ry , product estimator Py , and Singh’s (1967) ratio-cum-product estimator 

1Ŷ  with considerable gain in efficiency. 

7. CONCLUDING REMARKS

Usually information regarding correlation coefficient 
1 2x x  between the two 

auxiliary variates 1X  and 2X  is known or can made known to the experimenter 

through past studies or with the familiarity of experimental material. When 
1 2x x

is known an improved version 2
ˆ

uY  of Singh’s (1967) estimator 1Ŷ  is suggested 

with its properties. Using ‘Jack-knife’ technique envisaged by Quenouille (1956), a 

family of unbiased estimators 2
ˆ

uY  is also proposed. A large number of unbiased 

estimators can be generated from 2
ˆ

uY . Asymptotically optimum estimator (AOE) 

in the family of estimators 2
ˆ

uY  is identified with its variance formula. It is shown 

that the suggested family of estimators 2
ˆ

uY  is more efficient than y  and 2Ŷ  at 

optimum conditions. Empirical study also suggests that the suggested estimators 
*

2 2
ˆ ˆ( )uY or Y  and 2

ˆ
uY  with * *

opt  are better than y , Ry , Py  and Singh’s (1967) 

estimator 1Ŷ . Thus we conclude that the proposed estimators *
2 2

ˆ ˆ( )uY or Y  and 

2
ˆ

uY  are to be preferred in practice. 
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RIASSUNTO

Stima della media di un popolazione finita con coefficiente di correlazione tra caratteri ausiliari noto 

Il contributo propone uno stimatore ratio-cum-product modificato della media di una 
popolazione finita di una variabile oggetto di studio Y sfruttando il coefficiente di 

correlazione noto tra due caratteri ausiliari 1X  e 2X . Si ottiene uno stimatore ratio-cum-

product  quasi corretto attraverso la tecnica Jacknife del tipo previsto da Quenille (1956). In 
seguito vengono esaminati con un esempio numerico i meriti dello stimatore proposto. 

SUMMARY

Estimation of finite population mean using known correlation coefficient between auxiliary characters 

This paper proposes a modified ratio-cum-product estimator of finite population mean 
of the study variate Y using known correlation coefficient between two auxiliary charac-

ters 1X  and 2X . An almost unbiased ratio-cum-product estimator has also been ob-

tained by using Jackknife technique envisaged by Quenouille (1956). The merits of the 
proposed estimator are examined through a numerical illustration. 


