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1. INTRODUCTION

The normal distribution is perhaps the most important distribution as it is un-
deniable that, in a large number of important applications, we meet distributions, 
which are at least approximately normal. Such is the case, e.g., with the distribu-
tions of errors of physical and astronomical measurements, a great number of 
demographical, agricultural and biological distributions, etc. The central limit 
theorem affords a theoretical explanation of these empirical facts, for instance see 
Cramer (1974). Thus the estimation of parameters of a normal distribution as-
sumes significance. 

Let 1 2, , ..., nx x x be a random sample of size n drawn from a normal popula-

tion, probability density function of which is given by: 

2
1 1

( ; , ) exp ; , , 0
22

x
f x x  (1) 

where  is the population mean, 2 is the population variance and 21  is 

the amount of information provided by each ; i 1, 2,...,ix n . Here the parameter 

under investigation is .
Fisher (1936) was the first who obtained an estimator for  using Student’s t-

distribution, when 2  is unknown, as follows: 
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where   
n

2 2
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i=1

={1 ( 1)} ( )s n x x  is the minimum variance unbiased estimator 
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(MVUE) of 2 and
i 1

(1 )
n

ix n x  is the sample mean. The bias and mean 

squared error (MSE) of ˆ
F  are respectively given by 
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It is obvious from (3) that Fisher’s estimator ˆ
F  is biased. This led Mishra 

(1985) to suggest an unbiased estimator of  as 

2
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=
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with   Var
2
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( ) .
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n
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Further, motivated by Goodman (1953), Searls (1964) and Mishra (1985) ob-
tained the minimum mean squared error (MMSE) estimator 

2
ˆ 5 1

1
M

n

n s
  for 5n  (7) 

of  in the class of estimators 2(1 )C s , C being a suitably chosen constant such 

that MSE of 2(1 )C s  is minimum. The bias and MSE of ˆ
M  are respectively 

given by 

Bias ˆ 2
( )

( 3)
M

n
 (8) 

and   MSE
2

ˆ 2
( )

( 3)
M

n
. (9) 

In many situations of practical importance, the guessed value of the parameter 
under study may be available either from past data or the experience gathered in 
due course of time. Davis and Arnold (1970) have shown that, in terms of squa-
red error risk, the usual unbiased estimator should not necessarily be considered. 
They have exhibited that one can improve upon the unique best MSE estimator. 
In this context, Thompson (1968) considered the problem of shrinking the uni-
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formly minimum variance unbiased estimator (UMVUE) ˆ  of the parameter 

towards a natural origin 0  and suggested a shrunken estimator 0
ˆ (1 )K K ,

where 0 < K < 1 is a constant. The relevance of such kind of shrunken estimators 

lies in the fact that, though perhaps they are biased, has smaller MSE than ˆ  for 

 in some interval around 0 . In addition, the problem of shrinking the maxi-

mum likelihood estimator (MLE) ˆ  of the mean  of various populations to-

wards a natural origin 0  was also studied by Mehta and Srinivasan (1971). They 

found their estimators to be better in an interval around 0 .

This paper is an effort in the direction of obtaining an efficient class of 
shrunken estimators for the amount of information  when a guessed value 

2
0 0( 1 )  of 2( 1 )  is available. However, this guessed value 0  might 

not be cogent. The further object of this paper is to resolve this problem to an 
appreciable extent by applying preliminary testing procedure. Moreover, the 
properties of the suggested class of shrunken estimators and preliminary test es-
timators are discussed theoretically and empirically. In particular, some estimators 
of the suggested class are used in estimating the precision of sample mean. 

2. THE SUGGESTED CLASS OF SHRUNKEN ESTIMATORS

Motivated by Jani (1991), Kourouklis (1994) and Singh and Saxena (2002), we 

define a class of estimators ( , )p q  for  in model (1) as 

2
( , ) 0 0[ ( ) ]p

p q q w s ,  (10) 

where p and q are real numbers such that 0p , 0 q , and w is a stochastic 

variable which may in particular be a scalar to be chosen such that MSE ( , )( )p q  is 

minimum.

Assuming w as a scalar, the MSE of ( , )p q  is obtained by using the result: 

2E(( ) ) ( 1, 2)jp jp
jps K j , as 

MSE 2 2 2 2( 1) ( 1)
( , ) 2 1( ) [( 1) 2( 1) ]p p

p q p pq w K q w K  (11) 

where 0( )  and 
2 2 1 1

2 21

jp
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n jp n
K

n
.

Now, minimizing (11) with respect to w and replacing  by its unbiased estimator 
ˆ
U , we get 
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Substitution of (12) in (10) yields a class of shrunken estimators for  as 

2
( , ) ( , ) ( , ) 0
ˆ 3

' {1 ' }
1

p q n p n p

n
w s w q

n
  for n > 3 (13) 

where ( , ) ( , )

3 3 2 1 4 1
'

2 21 2

p p

n p n p

n n n p n p
w w

n

lies between 0 and 1 {i.e., ( , )0 1n pw } provided gamma functions exist, i.e., 

(1 ) 2p n .

It is observed from (13) that the proposed class of estimators ( , )
ˆ

p q  is the con-

vex combination of 2( 3) ( 1)n n s  and 0q , and hence ( , )
ˆ

p q  is non-negative 

as 2
03, 0, 0 and 0n q s .

2.1. Choices of scalars p and q 

The convex nature of proposed statistic ( , )
ˆ

p q  provides the criterion of selec-

tion of the scalar p. Therefore; the acceptable range of value of p is given by 

( , ){ | 0 1 (1 ) 2}n pp w and p n n. (14) 

If ( , )n pw = 1, the proposed class of shrunken estimators turns out to be the unbi-

ased estimator ˆ
U , otherwise it is biased with 

Bias ( , ) ( , )
ˆ{ } ( 1)(1 ' )p q n pq w , (15) 

and thus the absolute relative bias of ( , )
ˆ

p q  is given by 

ARB ( , ) ( , )
ˆ{ } ( 1)(1 ' )p q n pq w . (16) 

The condition for unbiasedness that ( , )n pw = 1, holds iff, sample size n is in-

definitely large, i.e., n . Moreover, if the proposed class of estimators ( , )
ˆ

p q
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turns into ˆ
U  then this case does not deal with the use of prior information. A 

more realistic condition for unbiasedness without damaging the basic structure of 

( , )
ˆ

p q  and utilizes prior information intelligibly can be obtained by (16). The ARB 

of ( , )
ˆ

p q  is zero when 1q  (or 1q ).

The relative mean squared error (RMSE) of ( , )
ˆ

p q  is derived as 

RMSE 2 2 2
( , ) ( , ) ( ,  )
ˆ 2

{ } ( 1) (1 ' ) '
( 5)

p q n p n pq w w
n

.  (17) 

It is obvious from (17) that the RMSE of ( , )
ˆ

p q  is minimum when 1q  (or 

1q ). Thus we see that at 1q , the suggested class of estimators is not 

only unbiased but renders maximum gain in efficiency, which is a remarkable 
property of the suggested class of estimators. Consequently, to obtain a substan-
tial gain in efficiency as well as proportionately small magnitude of bias for fixed 

, one should select q in the vicinity of 1q . It is interesting to note that if 

one selects smaller values of q then higher values of  will lead to a large gain in 
efficiency along with appreciable smaller magnitude of bias and vice-versa. This im-
plies that for smaller values of q, the proposed class of estimators allows to 
choose guessed value much away from the true value, i.e., even if the experi-
menter has less confidence in the guessed value, the risk of using the suggested 
class of estimators is not higher. This is legitimate for all values of p.

The quantity 0( )  represents the departure of natural origin 0  from the 

true value . But in practical situation it is hardly possible to get any idea about 
. As a result, an unbiased estimator of  is proposed, namely 

2
0

[ ]ˆ
[ ]

( 1)/21

2 ( 1)/2

nn
s

n
. (18) 

It is being observed that if 1q , the suggested class of estimators yields fa-

vourable results. Keeping in view of this concept, one may select q as 

1 1 2
0

ˆ [( 1)/2]2

1 [( 1)/2]

n
q s

n n
. (19) 

Here this is fit for being quoted that this is the criterion of selecting q numerically 
and one should carefully notice that this does not mean q is replaced by (19) in 

( , )
ˆ

p q .
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3. THEORITICAL COMPARISION OF THE PROPOSED CLASS OF ESTIMATORS AND NUMERI-

CAL INVESTIGATION

James and Stein (1961) pointed out that minimum MSE is a highly desirable 
property and it is therefore used as a criterion to compare different estimators 
with each other. The conditions under which the suggested class of estimators is 
better than the unbiased estimator and the MMSE estimator are given below: 

It follows from (6) and (17) that MSE ( , )
ˆ( )p q  does not exceed Var ˆ( )U  if 

1 1(1 ) (1 )M q M q  (20) 

or equivalently, 

1 1(1 ) (1 )M q M  (21) 

where   
( , )

( , )

1 '2

( 5) 1 '

n p

n p

w
M

n w
 for n > 5. 

In a similar fashion we note from (9) and (17) that ( , )
ˆ

p q  has smaller MSE than 

that of MMSE estimator ˆ
M  if 

1 1(1 ) (1 )L q L q  (22) 

or equivalently, 

1 1(1 ) (1 )L q L  (23) 

where   

2
( , )

2
( , )

'2 1

( 3) ( 5)(1 ' )

n p

n p

w
L

n nw
 provided n > 5. 

Besides minimum MSE criterion, minimum bias is also important and there-
fore should be considered under study. Thus we note from (8) and (16) that 

ARB ( , )
ˆ( )p q  is less than ARB ˆ( )M  if 

( , ) ( , )

( , ) ( , )

( 3)(1 ) 2 ( 3)(1 ) 2

( 3)(1 ) ( 3)(1 )

n p n p

n p n p

n w n w

q n w q n w
. (24) 

In order to have a tangible idea about the performance of the proposed class 

of estimators ( , )
ˆ

p q  against the MMSE estimator ˆ
M , Percent Relative Efficien-

cies (PREs) of ( , )
ˆ

p q  with respect to ˆ
M  have been computed by the formula: 

PRE ( , ) 2 2 2
( , ) ( , )

ˆ ˆ ( 5)
( , ) 100

( 3)[( 5)( 1) (1 ' ) 2 ' ]
p q M

n p n p

n

n n q w w
. (25) 
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TABLE 1 

PREs of Proposed Class of Estimators ( , )
ˆ

p q  with respect to MMSE Estimator ˆ
M

p -2 -1 

n 6 12 18 24 6 12 18 24 
q

w'(n,p) 0.0319 0.1837 0.4400 0.5782 0.4180 0.7777 0.8667 0.9047 

0.5 74.65 34.56 40.66 46.62 99.29 101.11 100.66 100.47 

5 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

10 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

15 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

20* 32780.5 2303.73 447.64 270.60 190.75 128.61 115.38 110.53 

25 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

30 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

35 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

40 70.98 32.88 38.83 44.69 96.87 100.00 100.00 100.00 

0.05

Range of (3.1, 36.8) (8.7, 31.3) (8.5, 31.4) (8.3, 31.6) (0.6, 39.3) (0.0, 40.0) (0.0, 40.0) (0.0, 40.0) 

0.5 92.64 42.75 49.41 55.57 109.50 105.50 103.23 102.28 

1 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

2 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

3 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

4* 32780.5 2303.73 447.64 270.60 190.75 128.61 115.38 110.53 

5 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

6 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

7 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

8 70.98 32.88 38.83 44.69 96.87 100.00 100.00 100.00 

0.25

Range of (0.6, 7.3) (1.7, 6.2) (1.7, 6.3) (1.6, 6.3) (0.1, 7.8) (0.0, 8.0) (0.0, 8.0) (0.0, 8.0) 

0.05 74.65 34.56 40.66 46.62 99.29 101.11 100.66 100.47 

0.5 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

1 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

1.5 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

2* 32780.5 2303.73 447.64 270.60 190.75 128.61 115.38 110.53 

2.5 1099.91 433.28 269.99 205.64 179.86 126.35 114.28 109.81 

3 282.07 126.11 123.25 119.54 153.55 120.03 111.11 107.69 

3.5 125.97 57.81 64.67 70.41 123.46 110.78 106.19 104.35 

4 70.98 32.88 38.83 44.69 96.87 100.00 100.00 100.00 

0.50

Range of (0.3, 3.6) (0.8, 3.1) (0.8, 3.1) (0.8, 3.1) (0.0, 3.9) (0.0, 4.0) (0.0, 4.0) (0.0, 4.0) 

* Point of attaining maximum PRE, i.e., 1q .
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TABLE 1 (continue) 

p 1 2 

n 6 12 18 24 6 12 18 24 q
w'(n,p) 0.4286 0.6923 0.7895 0.8424 0.0909 0.3176 0.4660 0.5853 

0.5 98.36 97.92 96.61 96.88 83.11 47.14 43.78 47.72 

5 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

10 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

15 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

20* 181.42 162.28 139.05 127.49 4033.53 770.84 399.17 264.13 

25 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

30 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

35 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

40 96.07 95.94 95.10 95.68 79.08 44.94 41.85 45.77 

0.05

Range of (0.8, 39.1) (1.0, 38.9) (1.6, 38.3) (1.8, 38.1) (2.2, 37.7) (7.1, 32.8) (8.1, 31.8) (8.2, 31.7) 

0.5 107.98 106.11 102.71 101.63 102.68 57.67 52.96 56.78 

1 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

2 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

3 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

4* 181.42 162.28 139.05 127.49 4033.53 770.84 399.17 264.13 

5 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

6 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

7 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

8 96.07 95.94 95.10 95.68 79.08 44.94 41.85 45.77 

0.25

Range of (0.1, 7.8) (0.2, 7.8) (0.3, 7.6) (0.3, 7.6) (0.4, 7.5) (1.4, 6.5) (1.6, 6.3) (1.6, 6.3) 

0.05 98.36 97.92 96.61 96.88 83.11 47.14 43.78 47.72 

0.5 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

1 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

1.5 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

2* 181.42 162.28 139.05 127.49 4033.53 770.84 399.17 264.13 

2.5 171.88 155.56 135.14 124.90 977.79 383.61 260.28 203.47 

3 148.45 138.36 124.65 117.71 298.77 153.01 127.34 120.47 

3.5 120.97 116.84 110.36 107.41 138.48 76.44 68.79 71.71 

4 96.07 95.94 95.10 95.68 79.08 44.94 41.85 45.77 

0.50

Range of (0.0, 3.9) (0.1, 3.9) (0.1, 3.8) (0.1, 3.8) (0.2, 3.7) (0.7, 3.2) (0.8, 3.1) (0.8, 3.1) 
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TABLE 2 

ARBs of proposed estimator ( , )
ˆ

p q  and MMSE estimator ˆ
M

p -2 -1 

q n 6 12 18 24 6 12 18 24 

0.5 0.94 0.80 0.55 0.41 0.57 0.22 0.13 0.09 

5 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

10 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

15 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

20** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

30 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

35 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

40 0.97 0.82 0.56 0.42 0.58 0.22 0.13 0.10 

0.05

Range of (6.2, 33.7) (14.5, 25.4) (15.2, 24.7) (15.4, 24.5) (0, 42.91) (0.01, 39.9) (0, 40) (0, 40) 

0.5 0.85 0.71 0.49 0.37 0.51 0.19 0.12 0.08 

1 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

2 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

3 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

4** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

6 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

7 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

8 0.97 0.82 0.56 0.42 0.58 0.22 0.13 0.10 

0.25

Range of (1.25, 6.75) (2.91, 5.09) (3.05, 4.95) (3.10, 4.90) (0, 8.58) (0, 8) (0, 8) (0, 8) 

0.05 0.94 0.80 0.55 0.41 0.57 0.22 0.13 0.09 

0.5 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

1 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

1.5 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

2** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.5 0.24 0.20 0.14 0.11 0.15 0.06 0.03 0.02 

3 0.48 0.41 0.28 0.21 0.29 0.11 0.07 0.05 

3.5 0.73 0.61 0.42 0.32 0.44 0.17 0.10 0.07 

4 0.97 0.82 0.56 0.42 0.58 0.22 0.13 0.10 

0.50

Range of (0.62, 3.38) (1.46, 2.54) (1.54, 2.48) (1.55, 2.45) (0, 4.29) (0, 4) (0, 4) (0, 4) 

ARB of ˆ
M 0.67 0.22 0.13 0.10 0.67 0.22 0.13 0.10 

** Point of attaining unbiasedness, i.e., 1q
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TABLE 2 (continue) 

p 1 2 

q n 6 12 18 24 6 12 18 24 

0.5 0.56 0.30 0.21 0.15 0.89 0.67 0.52 0.40 

5 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

10 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

15 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

20** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

30 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

35 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

40 0.57 0.31 0.21 0.16 0.91 0.68 0.53 0.41 

0.05

Range of (0, 43.34) (5.56, 34.4) (7.33, 32.6) (7.91, 32.0) (5.33, 34.6) (13.4, 26.5) (15.0, 24.9) (15.4, 24.5) 

0.5 0.50 0.27 0.18 0.14 0.80 0.60 0.47 0.36 

1 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

2 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

3 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

4** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

6 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

7 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

8 0.57 0.31 0.21 0.16 0.91 0.68 0.53 0.41 

0.25

Range of (0, 8.67) (1.11, 6.89) (1.47, 6.53) (1.58, 6.42) (1.07, 6.93) (2.7, 5.3) (3, 5) (3.08, 4.92) 

0.05 0.56 0.30 0.21 0.15 0.89 0.67 0.52 0.40 

0.5 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

1 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

1.5 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

2** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2.5 0.14 0.08 0.05 0.04 0.23 0.17 0.13 0.10 

3 0.29 0.15 0.11 0.08 0.45 0.34 0.27 0.21 

3.5 0.43 0.23 0.16 0.12 0.68 0.51 0.40 0.31 

4 0.57 0.31 0.21 0.16 0.91 0.68 0.53 0.41 

0.50

Range of (0, 4.33) (0.56, 3.44) (0.73, 3.27) (0.79, 3.21) (0.53, 3.47) (1.35, 2.65) (1.5, 2.5) (1.54, 2.46) 

ARB of ˆ
M 0.67 0.22 0.13 0.10 0.67 0.22 0.13 0.10 

The PREs of ( , )
ˆ

p q  with respect to ˆ
M  and ARBs of ( , )

ˆ
p q  and ˆ

M  have been 

computed for n = 6(6)24, p = 2,1 , q = 0.05, 0.25, 0.50 and different values of 

 and compiled in tables 1 and 2 with corresponding values of ( , )' n pw  and range 

of dominance of . For calculating gamma functions contained in ( , )' n pw ,

Gauss-Laguerre 5-point integration method has been used. It has been observed 
from tables 1 and 2 that if n, p, q are fixed at some values, the relative efficiency 

of proposed class of shrunken estimators increases up to 1q , attains its 
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maximum at this point and then decreases symmetrically in magnitude, as 
increases either sides in its range of dominance for all n, p and q. On the other 

hand, the ARBs of the proposed class of estimators decreases up to 1q , the 

proposed estimator becomes unbiased at this point and then the ARBs increases 
as  increases in its range of dominance for all n, p and q, see figure 1. 
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Figure 1 – Effect of departure of guessed value from true value on Percent Relative Efficiency and 
Absolute Relative Bias.

The effect of change in sample size n is also a matter of great interest. For fi-
xed p, q and  the gain in relative efficiency decreases with increment in n, i.e., 
the proposed class of shrunken estimators is beneficial especially for small sam-
ples. Besides, it appears that for getting better estimators in the class, the value of 

( , )n pw  should be as small as possible in the interval (0,1]. Thus, for choosing p

one should not consider the smaller values of ( , )n pw  in isolation, but also the wi-

der length of effective interval of , see figure 2. 
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Figures 1 and 2 show the general characteristics of the proposed class of 
shrunken estimators. The trends revealed by these graphs are agreed for all val-
ues of scalars comprehend in the proposed class and hence can be extrapolated 
in general. 

The proposed class of shrunken estimators ( , )
ˆ

p q  so far discussed above is en-

tirely based on the validity of the prior or guessed value 0 . Nevertheless, situa-

tions frequently arise when the available information about the parameter is in-
adequate or of uncertain validity. In such a case the problem is to decide whether 
to use this information or not. Thus, to test the accuracy of the guessed value, we 
applied preliminary testing procedure pioneered by Bancroft (1944) in the next 
section. 

4. FORMULATION OF A CLASS OF SHRUNKEN TESTIMATORS

The preliminary test estimators were first ascribed as ‘testimators’ by Scolve et
al. (1972). Here we propose a two-tailed preliminary test of significance by em-

ploying the suggested class of shrunken estimators ( , )
ˆ

p q . The competing hy-

potheses are H0 : 0  against H1 : 0  and the appropriate test statistic un-

der H0 is given by 2 2
0 ( 1)( 1) ~ nt n s . Clearly, t is a chi-square variate with (n-

1) degrees of freedom having density 

( 1)/2
/2 ( 3)/2

( 1)/2
[ ]

( , ) ; 0
2 ( 1)/2

n
t n

n
f t e t t

n
 (26) 

where 1
0( / ) 0 .

The suggested class of preliminary test estimators is thus given by: 

2
( , ) ( , ) 0

( , )
2

3
' (1 ' ) if

1

5
if

1

n p n p

p q

C

n
w s w q t R

n

n
s t R

n

 (27) 

where R is called the ‘Acceptance Region’ defined as the region of accepting H0

when H0 is true, i.e., the region of the outcome set where H0 is accepted if the 
sample point falls in that region. On the other hand, its complement, RC, is called 
the ‘Rejection Region’ or ‘Critical Region’. 

It is implied from (27), if the null hypothesis H0 is accepted we use the pro-

posed class of shrunken estimators ( , )
ˆ

p q , otherwise we use the MMSE estimator 

ˆ
M  as an estimator of . If  is a pre-assigned level of significance, the hypothe-
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sis H0 is accepted if 1 2r t r , where 1r and 2r  are such that 1P[ ] /2t r  and 

2P[ ] 1 ( /2)t r  respectively and thus may be defined as 
2

1 [( 1);( /2)]r n  and 2
2 [( 1);1 ( /2)]r n  respectively. The region R

is then defined as 1 2[ , ]R r r .

The MSE of the proposed class of shrunken testimators is given by 

2

2
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5. COMPARISION OF SUGGESTED CLASS OF PRELIMINARY TEST ESTIMATORS AND NU-

MERICAL ILLUSTRATIONS 

The suggested class of shrunken testimators ( , )p q  performs better than the 

unbiased estimator ˆ
U  in terms of efficiency if 

( 5) 2A n , (29) 

where A is the quantity contained in (28) in square brackets. Similarly, ( , )p q  will 

be more efficient than the MMSE estimator ˆ
M  if 



H.P. Singh, S. Saxena 86

( 3) 2A n . (30) 

To have a perceptible idea about the performance of the suggested class of 

shrunken testimators, the fraction relative improvement (FRI) of ( , )p q  over ˆ
M

have been computed by the formula: 

FRI
( , )

( , )
ˆ

ˆ

MSE( ) ( 3)
( ; ) 1 1

2MSE( )

p q

p q M

M

A n
. (31) 

The FRIs of ( , )p q  with respect to ˆ
M  for n = 6(6)24, q = 2, p = 2,1  and 

different values of  at 0.01 and 0.05 level of significance have been computed 
and evinced in table 3. The value of the integrals contained in A can be evaluated 
by using a quadrature formula. We have used 5-point Gauss-Legender for the 
same. The value of gamma function can be assessed as before. 

TABLE 3 

Fraction Relative Improvement of ( , )p q  over ˆ
M  (in percentage) 

q = 2 

 = 0.01  = 0.05 p

n 6 12 18 24 6 12 18 24 

1.35 47.46 7.33 12.97 15.93 49.37 5.92 19.96 27.89 
1.5 63.73 40.68 38.46 36.59 65.67 38.67 44.46 46.90 
2 77.59 65.57 54.33 46.55 79.15 62.67 52.64 42.74 
2.5 71.34 46.81 35.30 26.98 72.04 47.76 30.83 17.90 
3 62.38 26.22 19.15 12.52 61.36 30.54 14.01 5.20 
3.5 54.71 13.52 10.19 4.94 51.22 18.12 5.47 1.18 
4 48.77 7.16 5.24 1.62 42.54 10.32 1.90 0.22 
4.5 44.07 4.12 2.50 0.44 35.33 5.69 0.59 0.03 

-2

5 40.08 2.54 1.09 0.11 29.36 3.04 0.17 0.00 
1 16.55 4.12 2.55 1.94 27.43 11.19 7.34 5.43 
1.5 63.84 31.20 23.86 21.41 72.86 43.25 35.40 31.70 
2 69.64 36.92 30.63 27.38 74.24 43.69 32.79 24.94 
2.5 67.53 35.06 27.33 20.58 67.18 34.89 20.29 10.88 
3 64.20 31.48 20.75 11.44 58.66 24.58 9.83 3.28 
3.5 61.11 27.56 13.67 4.86 50.52 15.95 4.01 0.76 
4 58.23 23.01 7.76 1.63 43.22 9.71 1.43 0.14 
4.5 55.24 18.05 3.85 0.45 36.82 5.59 0.45 0.02 

-1

5 51.95 13.29 1.71 0.11 31.23 3.07 0.13 0.00 
1.25 50.57 26.39 20.15 17.30 61.47 36.08 30.77 28.34 
1.5 63.46 38.46 31.06 27.67 72.76 47.94 41.50 37.95 
2 69.23 43.22 36.06 31.69 73.99 47.86 37.34 28.94 
2.5 67.30 37.85 29.10 21.91 66.99 37.17 22.40 12.32 
3 64.17 31.37 20.57 11.66 58.55 25.56 10.63 3.66 
3.5 61.23 25.95 13.07 4.88 50.48 16.30 4.28 0.84 
4 58.44 20.99 7.31 1.63 43.23 9.81 1.51 0.16 
4.5 55.52 16.20 3.61 0.45 36.86 5.61 0.48 0.02 

1

5 52.25 11.84 1.60 0.11 31.28 3.06 0.14 0.00 
1.3 44.33 12.56 4.65 6.84 41.11 13.65 11.80 18.55 
1.5 65.52 46.92 39.33 36.72 68.16 47.29 45.63 47.03 
2 77.25 62.20 53.33 46.22 78.95 60.44 51.81 42.44 
2.5 71.29 45.72 34.94 26.86 71.55 45.46 30.27 17.76 
3 63.03 28.32 19.28 12.50 61.07 29.37 13.77 5.16 
3.5 55.96 17.26 10.41 4.94 51.18 17.68 5.38 1.17 
4 50.43 11.10 5.40 1.62 42.68 10.20 1.87 0.22 
4.5 45.94 7.48 2.58 0.44 35.58 5.68 0.59 0.03 

2

5 42.02 5.10 1.13 0.11 29.66 3.05 0.17 0.00 
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From table 3 it is seen that for fixed n, p, q, the fraction relative improvement 
of the proposed class of preliminary test estimators over the MMSE estimator 

increases up to a certain point lies in the closed proximity of q , i.e., 1q

attains its maximum at this point and then gradually decreases as the guessed va-
lue departs from the true value, i.e., as  increases. On the other hand, when ,
p, q are fixed, the FRI abates as n multiplies, i.e., there is a substantial gain in effi-
ciency for small sample sizes; while for large sample sizes, the gain in efficiency is 
marginal. But if  is very small, the FRIs first decrease and after attaining its mi-
nimum at some n, starts increasing as n increases. 

Thus we find that even after resolving uncertainty of guessed value, the condi-
tion of rendering massive gain in relative efficiency remains almost unchanged. 
The only difference observed in this case, is the point of procuring maximum re-

lative efficiency shifts slightly from 1q  but still it lies in the closed proximity 

of 1q .

6. ESTIMATION OF PRECISION OF SAMPLE MEAN

Denoting precision by , the precision of sample mean x  is given by 

2( ) 1 Var( ) 1 ( / )x x n n

Our problem is to estimate this precision using estimators for amount of infor-
mation. Its estimate is therefore given by 

ˆ( ) .x n

We obtained the following estimators for precision of sample mean: 
(i) Unbiased estimator 

2

3 1
( )

1
U

n
x n

n s
 ; for n > 3. (32) 

having   Var
2 22

( )
( 5)

U

n
x

n
. (33) 

(ii) MMSE estimator 

2

5 1
( )

1
M

n
x n

n s
 for n > 5. (34) 

with   Bias
2

( )
( 3)

M

n
x

n
  (35) 
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and   MSE
2 2

2

(2 6)
( )

( 3)
M

n n
x

n
. (36) 

(iii) Shrunken estimator based on suggested class of estimators 

2
( , ) ( , ) ( , ) 0

3
( ) ' (1 ' )

1
p q n p n p

n
x n w s w q

n
 for n > 3 (37) 

having 

Bias ( , ) ( , )( ) ( 1)(1 ' )p q n px n q w  (38) 

and

MSE

2 2
( , )2 2 2 2

( , ) ( , )

2 ( ' )
( ) ( 1) (1 ' )

( 5)

n p

p q n p

n w
x n q w

n
.  (39) 

The effective interval of  in which the proposed estimator ( , )( ) p qx  is more 

efficient than unbiased estimator ( )Ux  is the same as given in (20) and that of 

MMSE estimator ( )Mx  is given by 

1 1(1 ) (1 )D q D q  (40) 

where 

2
( , )

2 2
( , )

2 '1 2 6

( 5)(1 ' ) ( 3)

n p

n p

wn
D

nw n
.

7. APPLICATIVE EXAMPLE

To emphasize the application of the suggested class of shrunken estimators an 
example is considered below from Box and Tiao (1973) wherein our interest is to 
estimate the precision of sample mean. 

A wheat researcher is studying the yield of a certain variety of wheat in the 
state of Madhya Pradesh, India. He has at his disposal 15 farms each of size 4 
acres scattered throughout the state on which he can plant the wheat and observe 
the yield. The yield (in quintals) were recorded as order statistics as 13.4, 14.2, 
28.8, 29.0, 29.8, 33.0, 37.8, 39.6, 43.4, 49.8, 54.8, 58.2, 67.4, 70.2 and 91.2. Assum-

ing that the yields to be distributed normally 2N( , ) , where  is the true aver-

age yield and 2  is specified from some similar study in the past as 350. Here 

n = 15, 0 = 0.0028571, x = 44.04, 2s = 462.49. The departure of the guessed 
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value from the true value is estimated as ˆ = 1.3213. Now q has been chosen as 
1ˆq 0.7567. For this data set we have chosen 2p  for which ( , )n pw =

0.3333. The effective intervals of  in which the suggested estimator ( 2, 0.7567)
ˆ

is more efficient than the unbiased estimator and the MMSE estimator are comes 
out to be (0.4857, 2.1573) and (0.5681, 2.0748) respectively. Just for an illustration 
it is assumed that  = 1.5. Now for preliminary testing procedure, t = 18.4993 

and R = (4.0747, 31.3193). Clearly, t R  implying that 0 = 0.0028571 could be 

used to estimate . The final findings are displayed in table 4. 

TABLE 4 

Estimates, ARBs, RMSEs and PREs of competitive estimators for precision of average yield of wheat 

Estimators

Characteristics

Unbiased 

( )Ux

MMSE 

( )Mx

Proposed 

( 2, 0.7567)( )x

Estimate 0.027799 0.023166 0.030885 
ARB 0.0000 2.5000 1.3505 
RMSE 45.0000 37.5000 6.8230 
PRE of proposed 
estimator w.r.t. 

659.53 % 549.61 % 100.00 % 

It has been perceived from table 4 that 

( , )ARB ( ) ARB ( ) ARB ( )U p q Mx x x

and

RMSE ( , )( ) p qx  < RMSE ( )Mx  < RMSE ( )Ux .

This implies that there is substantial gain in relative efficiency by using the pro-

posed estimators ( , )( )
p q

x  over unbiased estimator as well as MMSE estimator. 

It is also interesting to note that the suggested estimator is relatively less biased 
than the MMSE estimator. This escorts us to quote that the proposed class of es-
timators performs tremendously better than the conventional estimators. 

8. CONCLUDING REMARKS AND RECOMMENDATIONS

It has been found out that the suggested class of shrunken estimators has con-
siderable gain in efficiency for a number of choices of scalars comprehend in it, 
particularly for small samples, i.e., for small n. Even for large sample sizes, so far 
as the proper selection of scalars is concerned, a number of estimators from the 
suggested class of shrunken estimators are more efficient than the MMSE estima-
tor. Accordingly, even if the experimenter has less confidence in the guessed va-
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lue 0  of , the efficiency of the suggested class of shrunken estimators can be 

increased considerably by choosing the scalars p and q appropriately. 
While dealing with the suggested class of shrunken estimators it is recom-

mended that one should not consider the substantial gain in efficiency in isola-
tion, but also the wider range of dominance of , because enough flexible range 
of dominance of  leads to increase the possibility of getting better estimators 
from the proposed class. The suggested class of shrunken estimators is, therefore, 
recommended for its use in practice. 
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RIASSUNTO

La stima delll’informazione di Fisher in una popolazione Normale con informazioni a priori 

Il lavoro propone una classe di stimatori shrunken poi utilizzata per costruire una classe 
di stimatori preliminari per l’informazione in campioni completi da una popolazione 
Normale quando valori a priori sono ipotizzati. Le proprietà di tali stimatori vengono ana-
lizzate e confrontate con quelle degli stimatori non distorti e a minimo errore quadratico 
medio nonché illustrate attraverso un’analisi empirica. I risultati incoraggiano all’uso degli 
stimatori presentati. Si fornisce e discute infine un esempio di classe di stimatori impiegati 
per la stima della precisione della media campionaria.  

SUMMARY

Estimating Fisher information in normal population with prior information 

This paper is contemplated to propose a class of shrunken estimators which is further 
used in constructing a class of preliminary test estimators for amount of information in 
complete samples from normal population when some ‘apriori’ or guessed value of 
amount of information is available and analyses their characteristics. The proposed classes 
of shrunken estimators and preliminary test estimators are compared with the usual unbi-
ased estimator and MMSE estimator. Eventually, empirical study is carried out to demon-
strate the performance of some shrunken estimators and preliminary test estimators of 
the proposed classes over the MMSE estimator. The suggested class of estimators is 
found to give gratifying results. Subsequently, the usage of proposed classes of estimators 
in estimating the precision of sample mean has been exclusively discussed followed by an 
example. 


