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SUMMARY

The log-normal distribution is widely used to model positive valued data in many areas of ap-
plied research. However, sometimes the log-normal distribution does not completely satisfy the
fitting expectations in every real life situations. In this paper, we introduce, investigate, and dis-
cuss a more flexible shifted hybrid log-normal distribution for which the log-normal distribution
is a special case. Also, various properties, special cases and estimation procedure of the new dis-
tribution are discussed. Moreover, the performances of maximum likelihood estimators of the
parameters are examined using a brief simulation study. The flexibility and performance of the
new distribution is also illustrated through two applications by fitting two real datasets of different
situations.

Keywords: Hybrid log-normal distribution; Estimation; Lifetime data; Fracture toughness data;
Simulation.

1. INTRODUCTION

Log-normal distribution has a widespread application in many fields of biological sci-
ences and physical sciences and also in Economics and Business. Examples include as-
trophysics (see Gandhi, 2009), environmental sciences (see Benning and Barnes, 2009),
computer science (see Doerr et al., 2013), economics (see Cobb et al., 2013), biomedical
(see Feng et al., 2013) and radiology (see Neti and Howell, 2008). Limpert et al. (2001)
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compared the use of the log-normal distribution across several different science disci-
plines. The log-normal distribution has a long-standing and vibrant history. Galton
(1879) and McAlister (1879) initiated the study of the distribution in papers published
together, relating it to the use of the geometric mean as an estimate of location. Much
later, Kapteyn and van Uven (1916) discussed the genesis of the distribution and gave a
graphical method for estimating the parameters. Wicksell (1917) used the method of mo-
ments for three-parameter estimation, introducing a third parameter, the threshold, to
fit the distribution of ages at first marriage. Nydell (1919) obtained asymptotic standard
errors for the moment estimates. The distribution appeared in papers of the 1930s that
developed probit analysis in bioassay. Later, Yuan (1933) introduced the bivariate ver-
sion of log-normal distribution. The log-normal distribution has been often applied to
analyse data on occupational radiation exposure by many authors since the work made
by Gale (1967).

The probability density function for a log-normal random variable W is given by

q(w) =
1

p
2πσw

exp
�

−
(log w −µ)2

2σ2

�

, w > 0, µ ∈R, σ > 0. (1)

Kumazawa and Numakunai (1981) introduced a new distribution called the Hybrid
log-normal distribution, which is more suitable than the log-normal distribution for
fitting data on occupational radiation exposure. A continuous random variable Y is
said to follow a Hybrid log-normal (HLN) distribution if its corresponding cumulative
distribution function (cdf) and probability density function (pdf) are respectively given
by

HY (y|α,σ ,µ) =
∫ y

0

1
p

2π

�α

u
+σ

�

exp
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−
(α log u +σ u +µ)2
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du, (2)

and

hY (y) =
1
p

2π

�

α

y
+σ

�

exp
�

−
(α log y +σ y +µ)2

2

�

, y > 0, (3)

where α ≥ 0,σ ≥ 0,α + σ > 0 and µ ∈ R. For σ = 0, the pdf in Eq.(3) reduces to
log-normal distribution (LN (−µα−1,α−2)).

Also, a little investigation has been done on a theoretical basis under this distribu-
tion. In this paper, we introduce and investigate the properties of a new extended version
of HLN distribution by shifting the location of the HLN random variable. A key ad-
vantage of this distribution is that the log-normal distribution, which is well known to
be in use in a wide spectrum of disciplines includes a sub-distribution.

The rest of the paper is organized as follows. In Section 2, we introduce the novel
distribution and discuss its special cases, moments, reliability measures and order statis-
tics. Section 3 deals with the maximum likelihood estimation procedure of the proposed
distribution. Then, to analyse the performance and flexibility of maximum likelihood
estimators of the distribution parameters, a simulation study has been conducted in Sec-
tion 4. Section 5 illustrates the applications of the new distribution due to two real-life
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datasets of different situations. Finally, Section 6 covers the penultimate concluding
remarks.

2. THE SHIFTED HYBRID LOG-NORMAL DISTRIBUTION

A location parameter shifts the density function to the left or right on the horizontal
axis. It is found suitable in modelling where the data points do not fall below some
regions. In reliability theory, the location parameter indicates that a failure cannot occur
before this time, and it is also referred to as the failure-free time. We here propose to add
a location parameter in the pdf of the HLN distribution given in Eq.(3) and discuss the
aspects of estimation and statistical properties.

The proposed four-parameter distribution will be referred to as the Shifted hybrid
log-normal distribution, and hereafter denoted as SH LN (λ,α,σ ,µ) or simply SHLN.

DEFINITION 1. If a random variable (RV) Y follows the HLN distribution in Eq.(3),
then the RV X = Y + λ is said to follow the SHLN distribution. The cdf of the random
variable X is given by

F (x) =
∫ x

λ

1
p

2π

�

α

u −λ
+σ

�

exp
§

−1
2
[α log(u −λ)+σ (u −λ)+µ]2

ª

d u,

which can also be written as

F (x) = Φ(α log(x −λ)+σ(x −λ)+µ), (4)

where Φ(·) is the cdf of Standard Normal distribution. Then, the pdf of the random variable
X is provided by

f (x) =
1
p

2π

�

α

x −λ
+σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

, x > λ, (5)

where λ≥ 0, α≥ 0, σ ≥ 0, α+σ > 0 and µ ∈R.

Also, plots of Figure 1 display the cdf and Figure 2 display the pdf of the SHLN dis-
tribution. Now, the moment generating function of the SHLN distribution is expressed
as

M (t ) =
I ∗(t )
p

2π
,

where

I ∗(t ) =
∫ ∞

λ

�

α

x −λ
+σ

�

exp
§

t x − 1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

,

which is well-defined for all t ∈R.
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Figure 1 – CDF plot of SHLN distribution

2.1. Special cases

The SHLN distribution defined by Eq. (5) has the following sub-models.

1. For λ= 0, SHLN reduces to the HLN distribution given in Eq. (3).

2. For σ = 0, SHLN reduces to the 3-parameter log-normal distribution.

3. For λ = 0 and σ = 0, SHLN reduces to the 2-parameter log-normal distribution
given in Eq. (1).
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Figure 2 – PDF plot of SHLN

2.2. Reliability Measures

The main purpose of system reliability analysis is to identify the critical components in
a system and to quantify the impact of component failures. So here, the functions of
reliability measures of SHLN distribution are indispensable to derive.

Let X be a continuous random variable with pdf f (x) and cdf F (x), then the general
formulas for the survival function S(x), hazard rate function h(x), cumulative hazard
rate function R(x) and the reversed hazard rate function r (x) are respectively given by
S(x) = 1− F (x), h(x) = f (x)

S(x) , R(x) =− ln(S(x)), r (x) = f (x)
F (x) .
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2.2.1. Functions of Survival, Hazard rate, Cumulative hazard rate and Reversed hazard
rate

The survival function S(x) of SHLN distribution is given by

S(x) =1− F (x)

=1−
∫ x

λ

1
p

2π

�

α

x −λ
−σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

dx,

which can be written as

S(x) = 1−Φ(α log(x −λ)+σ(x −λ)+µ). (6)

The hazard rate function h(x) of SHLN distribution is given by

h(x) =
(α−σ(x −λ)) e−

1
2 [α log(x−λ)+σ(x−λ)+µ]2

p
2π (x −λ) [1−Φ(α log(x −λ)+σ(x −λ)+µ)]

. (7)

The cumulative hazard rate function R(x) of SHLN distribution is given by

R(x) =− ln( 1−Φ(α log(x −λ)+σ(x −λ)+µ)). (8)

The reversed hazard rate function r (x) of SHLN distribution is given by

r (x) =
(α−σ(x −λ))exp

¦

− 1
2 [α log(x −λ)+σ(x −λ)+µ]2

©

p
2π (x −λ) Φ(α log(x −λ)+σ(x −λ)+µ)

, (9)

where Φ(·) is the cdf of the Standard Normal distribution.
Plots in Figure 3 portray the hazard rate function of SHLN distribution. It displays,

the hazard function possesses various shapes including increasing, decreasing and bath-
tub shapes.

2.2.2. Conditional moments, Vitality function and Moments of Residual and Reverse
residual life

For lifetime distributions, it is of greater interest to know the conditional moments
E(X n |X > t ), n = 1,2, . . . which are important in prediction. Thus, conditional mo-
ments of SHLN distribution is given by

E(X n |X > t ) =
1

p
2π S(t )

κ(n, t ), (10)

where

κ(n, t ) =
∫ ∞

t
xn
�α

x
+σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

dx. (11)
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Figure 3 – Hazard rate function plot of SHLN distribution

The vitality function is a very useful tool in modeling life-time data. This function
play important roles in reliability engineering, biomedical science, and survival analysis.
It is worth mentioning that the rapid ageing of a component needs to low vitality rela-
tively, whereas high vitality implies relatively slow ageing during the given time period.
For n = 1 in the conditional moments given in Eq.(10), gives the vitality function V (t )
of SHLN distribution, that is,

V (t ) =E(X |X > t )

=
κ(1, t )
p

2π S(t )
,

(12)

where κ(n, t ) is given in Eq.(11).
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The concept of geometric vitality function based on the geometric mean of the resid-
ual lifetime. If X be a random variable which represents the lifetime of a component,
then logG(t ) represents the geometric mean of lifetimes of components which have
survived up to time t . For a non-negative random variable X follows an absolutely
continuous distribution function, with E(logX )< 1, the geometric vitality function is
defined as

logG(t ) =E(logX |X > t )

=
1

S(t )

∫ ∞

t
log x f (x)dx,

(13)

where S(t ) = P (X > t ) denotes the survival function. Now, the geometric vitality
function of SHLN random variable is given by

logG(t ) =
Ω(t )

p
2π S(t )

, (14)

where

Ω(t ) =
∫ ∞

t
log x

�α

x
+σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

dx. (15)

The r th order moment of the residual life of the SHLN distribution is given by

µr (t ) = E[(X − t )r |X > t ]

=
1

S(t )

∫ ∞

t

r
∑

i=0

�

r
i

�

(−t )r−i x i f (x)dx

=
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p
2π S(t )

r
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�

r
i

�

(−t )r−i κ(i , t ),

(16)

where κ(n, t ) is given in Eq. (11). Hence, the Mean residual life (MRL) function of the
SHLN distribution is given by

µ1(t ) = E[(X − t )|X > t ]

=
1

S(t )

∫ ∞

t

1
∑
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�

1
i

�
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=
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p
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1
∑
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1
i

�

(−t )1−i κ(i , t )

= V (t )− t .

Hence,

µ1(t ) =
κ(1, t )
p

2π S(t )
− t . (17)
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Similarly, the second moment of the residual lifetime of the SHLN distribution is given
by

µ2(t ) = t 2− 2t V (t )+κ(2, t )

= t 2− 2t
κ(1, t )
p

2π S(t )
+κ(2, t ).

(18)

The variance of the residual life function of the SHLN distribution can be obtained
by using µ1(t ) and µ2(t ).

The r th order moment of the reversed residual life of the SHLN distribution is given
by

mr (t ) = E[(t −X )r |X ≤ t ]

=
1

F (t )

∫ t

0
(t − x)r f (x)dx

=
1

p
2π F (t )

r
∑

i=0

�

r
i

�

(−1)r−i t i ∆(r, i , t ),

(19)

where

∆(n, i , t ) =
∫ t

0
x (n−i)

�α

x
+σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

dx. (20)

Now, the mean (m1(t )) and second moment (m2(t )) of the reversed residual life of the
SHLN distribution can be obtained by setting r = 1,2 respectively in Eq.(19) and is
given by

m1(t ) =
1
p

2π

�

t −
∆(1,0, t )

F (t )

�

, (21)

and

m2(t ) =
1
p

2π

�

t 2+
∆(2,0, t )− 2t ∆(2,1, t )

F (t )

�

, (22)

where ∆(n, i , t ) is given in Eq. (20). Also, using m1(t ) and m2(t ), one can obtain the
variance of the reversed residual life function of the SHLN distribution.

2.3. Order Statistics

Let X1,X2, ...,Xn be a random sample from the SHLN distribution and its order statistics
is X1:n ,X2:n , ...,Xn:n . Let fi :n(x) and Fi :n(x) denote the pdf and the cdf of the i th order
statistic Xi :n , respectively. Hence, using the standard expressions of order statistics, we
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find that

fi :n(x) =
1
p

2π

n!
(i − 1)!(n− i)!

�

α

x −λ
−σ

�

exp
§

−1
2
[α log(x −λ)+σ(x −λ)+µ]2

ª

× [Φ(α log(x −λ)+σ(x −λ)+µ)]i−1

× [1−Φ(α log(x −λ)+σ(x −λ)+µ)]n−i ,
(23)

and

Fi :n(x) =
n
∑

j=i

�

n
j

�

[Φ(α log(x −λ)+σ(x −λ)+µ)] j

× [1−Φ(α log(x −λ)+σ(x −λ)+µ)]n− j ,

(24)

where Φ(·) is the cdf of the Standard Normal distribution.

3. MAXIMUM LIKELIHOOD ESTIMATION

Let X1,X2, ...,Xn be a random sample from SHLN(λ,α,σ ,µ) distribution. The log-
likelihood function for the parameter vector θ= (λ,α,σ ,µ)T is given by

Ln =−n log
p

2π+
n
∑

i=1

log
�

α

xi −λ
+σ

�

− 1
2

n
∑

i=1

[α log(xi −λ)+σ(xi −λ)+µ]
2. (25)

The score function associated with the log-likelihood function is

U=
�

∂Ln

∂ λ
,
∂Ln

∂ α
,
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∂ σ
,
∂Ln

∂ µ

�T

, (26)

where
∂Ln
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= 0 ⇒ µ̂=− 1

n

n
∑

i=1

h

α̂ log(xi − λ̂)+ σ̂(xi − λ̂)
i

, (27)

∂Ln

∂ α
=

n
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1
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−
n
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log(xi − λ̂)
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α̂ log(xi − λ̂)+ σ̂ (xi − λ̂)− α̂ log(x − λ̂)− σ̂ (x − λ̂)
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,

(28)

∂Ln

∂ σ
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n
∑

i=1

xi

α̂+ σ̂(xi − λ̂)

−
n
∑

i=1

(xi − λ̂)
�

α̂ log(xi − λ̂)+ σ̂ (xi − λ̂)− α̂ log(x − λ̂)− σ̂ (x − λ̂)
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(29)
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and log(x − λ̂) = 1
n log(xi − λ̂) and (x − λ̂) = 1

n (xi − λ̂).
Now, concerning the SHLN distribution, the likelihood function for estimating the

location parameter is represented by multiplying an indicator function and is given by

L(λ,α,σ ,µ|x) =
�

1
p

2π

�n n
∏

i=1

�

α

xi −λ
+σ

�

× exp

¨

−1
2

n
∑

i=1

[α log(xi −λ)+σ(xi −λ)+µ]
2

«

× I[λ,∞)(min{x1, ..., xn}).

(30)

Here, I[λ,∞)(min{x1, ..., xn}) is an indicator function defined as

I[λ,∞)(min{x1, ..., xn}) =
¨

1 if min{x1, ..., xn} ≥ λ
0 if min{x1, ..., xn}< λ.

(31)

It can be seen from the above expression of L(λ,α,σ ,µ|x) that the maximum likelihood
estimator of λ is X(1) =min{x1, . . . , xn}.

4. SIMULATION

In this section, we conduct simulation experiments to assess the long-run performance
of the MLEs of the SHLN parameters for some finite sample sizes. Thus, we generate
samples of sizes n = 25,100,500 from the SHLN for the parameter values λ = 0.001,
α = 0.2, σ = 0.9 and µ = 0.6 and iterated each sample 500 times. Then, we compute
the average bias and MSE for all replications in the relevant sample sizes. That is, the
analysis computes the values by the given formulas:

• Average bias of the simulated estimates = 1
500

∑500
i=1(Θ̂i −Θ),

• Average MSE of the simulated estimates = 1
500

∑500
i=1(Θ̂i −Θ)2,

where Θ̂ = (λ̂, α̂, σ̂ , µ̂) are estimates of the parameter vector Θ = (λ,α,σ ,µ). The simu-
lation results are reported in Table 1.
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TABLE 1
Estimates, Average bias and MSE values of MLEs from simulation of the SHLN distribution.

Sample Size Parameters Estimates Bias M.S.E

25 λ 0.1 0.10 0.01
α 0.23 0.03 0.004
σ 0.95 0.05 0.16
µ 0.71 0.11 0.13

100 λ 0.1 0.10 0.01
α 0.22 0.02 0.001
σ 0.88 -0.02 0.04
µ 0.67 0.07 0.05

500 λ 0.1 0.10 0.01
α 0.22 0.02 0.001
σ 0.85 -0.05 0.01
µ 0.67 0.07 0.02

5. APPLICATION

We provide the applications using two real datasets to demonstrate the potentiality of
the SHLN distribution over some parent models such as Log-Normal (LN), 3-parameter
Log-Normal (3-LN), Gamma, Loglogistic and HLN distributions. In each case, the
parameters are estimated by maximum likelihood estimation technique using RStudio
software. The first dataset taken from Balakrishnan et al. (2009) was provided by the
Mexican Institute of Social Security (IMSS) which contains the data on the lifetimes
(in years) of retired women with temporary disabilities, which are incorporated in the
Mexican insurance public system and who died during 2004. The second dataset taken
from Nadarajah and Kotz (2006) is the fracture toughness data from a material namely
Bi2S r2C aC u2O8+x . We have fitted the above-mentioned parent distributions to the
first and second datasets and computed the Log-likelihood (LL), Kolmogorov-Smirnov
(K S), Anderson-Darling (A∗), Cramér-von Misses (W ∗) statistics, AIC and BIC values
and is presented in Table 2 and Table 3, respectively. It can be obtained that the SHLN
fits both datasets better than the existing parent distributions given above.
From Table 2 and Table 3, it can be seen that the proposed SHLN distribution is the most
suitable model for the datasets we used. That is, the SHLN distribution’s goodness-of-fit
statistics values are lower than those of the other distributions we compared. In other
words, it is observed that the SHLN distribution has the smallest KS, A*, W*, AIC
and BIC values. In this context, we can conclude that the proposed SHLN distribution
provides a better fit than the compared distributions.
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TABLE 2
Maximum-likelihood estimates, goodness-of-fit statistics, AIC and BIC values to dataset 1.

Estimates LN 3-LN Gamma Loglogistic HLN SHLN

µ̂ 3.84 3.84 - - -6.43 -2.57
σ̂ 0.23 0.23 0.42 47.34 0.08 0.09
α̂ - - 19.99 7.61 0.66 0.06
λ̂ - 0.0001 - - - 21.99

LL -1060.54 -1060.54 -1055.85 -1063.38 -1052.86 -1047.46
K S 0.11 0.11 0.09 0.09 0.08 0.07
A∗ 3.53 3.56 2.69 3.44 1.78 1.63
W ∗ 0.63 0.64 0.48 0.52 0.31 0.28
AIC 2125.08 2127.09 2115.70 2130.76 2111.72 2102.92
BIC 2132.35 2137.99 2122.97 2138.03 2122.62 2117.46

TABLE 3
Maximum-likelihood estimates, goodness-of-fit statistics, AIC and BIC values to dataset 2.

Estimates LN 3-LN Gamma Loglogistic HLN SHLN

µ̂ 0.83 3.06 - - -2.82 -1.27
σ̂ 0.35 1.28 3.70 2.35 0.76 1.07
α̂ - - 8.93 4.82 1.16 0.11
λ̂ - 0.002 - - - 1.20

LL -14.31 -14.31 -14.10 -14.75 -13.99 -10.51
K S 0.18 0.18 0.17 0.16 0.15 0.14
A∗ 0.35 0.35 0.31 0.35 0.28 0.24
W ∗ 0.06 0.06 0.05 0.06 0.05 0.04
AIC 32.61 34.61 32.21 33.49 33.99 29.02
BIC 33.58 36.07 33.18 34.46 35.45 30.96
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6. CONCLUDING REMARKS

In this paper, we provide and analyse the features of a new extended version of the hybrid
log-normal distribution by moving the location of the random variable. One significant
feature of this distribution is that it includes the log-normal distribution, which is widely
used in a variety of professions, as a sub-distribution. We offer precise expressions for
different reliability metrics for the SHLN distribution. The hazard rate function of the
SHLN distribution possesses an increasing, decreasing, and bathtub-shaped graphical
representation. In terms of inference, the maximum likelihood estimation approach is
utilised to estimate the distribution parameters. The goodness-of-fit tests are applied to
two real datasets concerning the data on the lifetimes (in years) of retired women with
temporary disabilities provided by the Mexican Institute of Social Security (IMSS), and
the fracture toughness data from a material namely Bi2S r2C aC u2O8+x . In terms of
fitting, the novel distribution consistently outperforms the compared distribution in
the literature. A simulation study is carried out to assess the performances of MLEs
of the SHLN parameters, and their consistency is confirmed. We anticipate that the
proposed model will find a broader range of applications in positive real-world dataset
modelling.
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