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1. INTRODUCTION

Queueing models continue to be one of the most important areas of computer
networks and have played a vital role in performance evaluation of computer sys
tems. Computer systems typically comprise of a set of discrete resources- proces
sors, discs, etc. Any transaction that can not immediately get hold of the required
resource is usually queued up in buffer until the resource becomes available. This
characteristic makes computer systems amenable for analysis using queueing mod-
els. A brief history of queueing analysis of computer systems can be found in
Lavenberg (1988) and Takagi (1993).

Most real queueing systems exhibit time-dependent behaviour to a greater or
lesser extent, either whilst setting to steady-state or because parameters change
over time. In many cases this time-dependence is relatively unimportant and can be
ignored by the operational researcher. However, in some cases, it is important to
take care of time-dependence.

In many potential applications of queueing theory, the practitioner needs to know
how the system will operate up to some instant £. Many systems begin operation and
are stopped at some specific time ¢ Business or service operations such as rental
agencies or physician's offices which open and close, never operate under steady-
state conditions. Furthermore, if the system is empty initially, the fraction of time
the server is busy and the initial rate of output etc., will be below the steady-state
values and hence the use of steady-state results to obtain these measures is not ap-
propriate. Thus the investigation of the transient behaviour of the yueueing proc-
esses is also important from the point of view of the theory and applications.

The notion of catastrophes occurring at random, leading to annihilation of all
the customers there and the momentary inactivation of the service facilities until a
new arrival of customer is not uncommon in many practical problems. The catas-
trophes may come either from outside the system or from another service station.
In computer systems, if a job isinfected, this job may transmit virus which may be
transferred to other processors (CPU, 1I/O, Diskettes, etc.). Infected files in floppy
diskettes, for instance, may also arrive at the processors according to some random
process (Chao, 1995; Gelenbe et al., 1991}, These infected jobs may be modeled by
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the catastrophes. Ilence, computer networks with virus may be modeled by
queueing networks with catastrophes.

Recently, Krishna Kumar ef a/. (1993) and Krishna Kumar (1996) have demon-
strated, how the transient solution for the state probabilities and busy period in
single server Poisson queue with balking can be obtained in a simple and direct
way Exploiting this methodology, we obtain the transient solution for the prob-
abilities in M/M/2 queue with catastrophes

2. MODEL DESCRIPTION AND ANALYSIS

Consider the M/M/2 queueing system having uniform mean interarrival A-' and
service rate p for channels with the possibility of catastrophes. The service disci-
pline is first come first served, starting with an arbitrary number of customers.
Apart from arrival and service processes, the catastrophes also occur at the service
facilities as a Poisson process with rate . Whenever a catastrophe occurs at the
system, al the customers there are destroyed immediately, both the servers get in-
activated momentarily and the servers are ready for service when a new arrival oc-
curs. Let 'X() tER } be the number of customersin the system at time ¢ Let
P(f)=PX(®#=n),n=0, 1, 2, ..., denote the probability that there are n customers

in the system at time ¢, P(s,¢) ZP , its probability generating function, and

we(t), its mean. From the above assumptlons, the state probabilities P, (#), »=0, 1,
2, ..., can be described by the differential difference equations governing the sys
tem as follows:

p
D aper+ uB e+ 1~ B 2.1
% —(A+ u+y)P(t) + 2uP, () + AP(#) (2.2)
dl:zzf(t) (7L+2,U+7) ()+2/'l n+1()+lpn 1(> 7’222,3,4, (23)

We assume that the number of customers present initially is random and has
probability generating function

— Epksk'
k=0
It is easily seen that the probability generating function P(s, t) satisfies the par-
tial dilferential equation,
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(2.4)
with theinitial condition
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Pis, 0) = hls) . (2.5)
The solution of this partial differential equation is obtained as
‘/ui—()wzuw)\r ot {Aﬁz—um(l-o 2‘u+~/ﬂu
P(s,¢) = ZPLSe g Lty " du
; 1 {/‘m+2—/’1—(x+2p+y>‘l(t -ut}
+ .[0 [2;1 (1 - 3—\) By(u) + (s ~ 1)3(”)}" : du. (2.6)
It is well known that (see Watson, 1962), if a = 2,24y and 8 = \ 2’-: , then

B
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where I(-) is the modified Bessel [unction of order n. Using this in (2.6)and com-
paring the coefficient of s” on either side, we get, for »=1, 2, 3, ...

P, () 21’( ,plow) Bttty +}’ﬁ7‘f€ W20 o) du +
D]

2‘11'[ —~(A+20+ ) (t~u) [1( w) -1, (ot - M))ﬁnﬂ]Po(u)du +

u j; e ATHEN L (ot - u)) BT = I (ot — ) B 1 Plu)du . (2.7)

As P(s, #) does not contain terms with negative powers of s, the right hand side
of (2.7)with » replaced by - » must be zero. Thus,

k —(A+2U+y)t —(A+2U+7) “y
0 "ZP; pit(0t) B~ & +}’J
)

op [l P (e - w1, (0t — ) B By(a)du +

u j(je*‘“zf“f”‘ L (o= w) B =T (0 (8 — )} P(w) du (2.8)

where we have used | (1) = I,().
Using (2.8)in (2.7), we get, for v =1, 2,3, ...,

f = Zpkﬁﬂ_k[ln—k(at)_ Iﬂ#l’,(at)]e‘MJrz'u-Fy}l +

k=0
ot — u)) (A+204 )t —u)
np” J h__t e du +
n,B”"Z P Itoc(t = u)) oAt g, (2.9)
2 t—u

In the sequel, let P;j(z) denote the Laplace transform of P, (4. Taking »=1 in
(2.9), and transforming, we get, after some algebraic manipulations,
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On taking Laplace transform, equation (2.1)becomes

Rl = 2+ A+y * 2z+A+7Y)
Using (2.11)in (2.10)and considerably simplifying the working, we get an ex

pression for P;(z) as
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wherew =z + A+ 2u+ .
The above equation can be expressed as
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which on inversion yields the explicit expression for P,(¢) as

! t—u
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Also, we have, from (2.1),
)= 1RO g ST R e (2.15

Using (2.14) and (2.15) in (2.9), we completely determine al the state probabili-
ties of the system size.

Remark: If y=0, we will obtain the probabilities P, (#) for M/M/2 queue result as a
special case without using Rouche's theorem. In this case, we have

P(t) =

_Qu,[ii -1 2[ )(ﬁ+1) nﬂ’lmote Awymn I,,.H( (/f_”)) —(A+2u) (¢~ ”du-{-
w
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Miyazaki et al. (1992) have considered the M/M/2 queueing model without disas-
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ters and obtained the transient solution using extensive complex analysis. Qur ap-
proach provides the solution for a more general model incorporating disasters in an
elegant way.

The following theorems provide the asymptotic behaviour of tile probability of
the server being idle and the mean system size.

Theorem 2.1. If y> 0, the asymptotic behaviour of the probability of the server
being idleis

7[4). - (M +2U+Y) = N(A+2u+ ) -’ )]
[41(/1 +y)- (24 + y)((/l F2U+y) — A+ 2u+ ) - o )] ’
ast — oo, (2.19)

Ry(1) —

Proof. From (2.10)and (2.11), we have
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and a little algebra shows that this reduces to
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asz — 0. (2.21)

By using the Tauberian theorem (see, Widder, 1946), the result (2.19)follows.

Theorem 2.2. If y> 0, the asymptotic behaviour of the mean system size »(#) is
given by
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nlt) — {4 - 2
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Proof Differentiating 12.4) with respect tos at s = 1, we yet

il%“t‘)‘- +ym(t) = (A = 20) + 2uby(e) + uB(2). (2.23)

Solving the differential equation (2.21)for m(s) with #40) = Y kp,, we get
kol
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If 72 (z) is the Laplace transform of 7(#), from (2.24)and (2.11), we have
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Using (2.12)in (2.25), we obtain

lim zm%(z) = — +
20 Y
lim 2P (Tj? 2u + : : - (2.26)
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Then the result (2.22)follows from (2.26), by using the Tauberian theorem (see
Widder, 1946).
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RIASSUNTO

Comportamento transiente A€l modello M/M/2 con presenza di catastrofi

In questo lavoro viene presentata Una soluzione transiente per la dimensione di un siste-
ma M/M/2 con possibilitlt di catastrofi ai punti di servizio. Si otticnc la probabilitlt di stato
della dimensione del sistema al tempo t in cui la coda inizia con un numero arbitrario di
clienti. Infine viene studiato il comportamento asintotico della probabilitlt che il server sia
inattivo e della dimensione media del sistema.

SUMMARY

Transient behaviour of the M/M/2 queue with catastrophes

This paper presents a transient solution for the system size in the 44/M/2 queue with the
possibility of catastrophes at the service stations. The state probability of the system size at
time ¢, where the queue starts with any number of customers, is obtained. Asymptotic be-
haviour of the probability of the server being idle and mean system size are discussed.



