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SUMMARY

In this paper, a new distribution of the Muth-generated family is introduced by considering the
Pareto model as baseline with the goal of having increased flexibility and improved goodness of
fit in terms of studying tail characteristics. Maximum likelihood estimated parameters of the
distribution are found to be consistent and asymptotically unbiased. From a practical point of
view, it is shown that the proposed distribution is more flexible than some common statistical
distributions. In particular, the proposed model proves to fit well into unimodal data structures.
Some mathematical properties are derived, and characterization is investigated by a truncated first
moment where a product of the reverse hazard rate and another function of the truncated point
is considered. Other characterizations by order statistics and upper record values based on the
characterization by the first truncated moment are also established.

Keywords: Characterizations; Estimation; Muth-Pareto distribution; Order statistics; Truncated
moment; Upper record values.

1. INTRODUCTION

Numerous distributions have been established, but still there are continuous demands
for developing new distributions that either add flexibility or are good for fitting par-
ticular real world or naturally occurring phenomena. This has always been the motiva-
tion for numerous researchers pursuing and generating different distributions of varying
flexibility. Some of the most popular techniques of generating families of distributions
include the Beta-Generated family by Eugene et al. (2002), Transformed-Transformer
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(T −X ) proposed by Alzaatreh et al. (2013), the Weibull-G class defined by Bourguignon
et al. (2014) among several others. Using the T−X technique (by letting the Muth distri-
bution be the Transformed), the Muth-Generated (M−G) was proposed as a new family
of distributions by Almarashi and Elgarhy (2018), wherein some sub-models were de-
fined, namely, Muth-Uniform, Muth-Lomax, Muth-Rayleigh, Muth-Exponential and
Muth-Weibull, but only the Muth-Weibull was studied comprehensively. The Muth-
Pareto Distribution (MPD) was introduced as part of an MSc dissertation by Musaddiq
Sirajo (2020) to be a new member of the M−G family, with the goal of enhancing the use
of the seemingly neglected Muth distribution (see e.g. Leemis and McQueston, 2008, for
a discussion) by way of generalization. The Muth distribution was first introduced by
Muth (1977), but comprehensive studies of its properties, an extension and important
applications are reported in Jodrá et al. (2015) and Jodrá et al. (2017).

For an arbitrary baseline cumulative distribution function (cdf) G(x) and probabil-
ity density function (pdf) g (x), Almarashi and Elgarhy (2018) defined the M −G family
with the respective pdf and cdf

f (x) = e
1
α g (x)[1−αG(x)α]G(x)−2α−1 exp(− 1

αG(x)−α), x ∈ R, (1)

F (x) = e
1
αG(x)−α exp(− 1

αG(x)−α), x ∈ R, (2)

where α ∈ (0,1].
The choice of the Pareto distribution as a baseline in this paper is due to its flexibility

and wide applicability in various areas of human endeavor, including the context of
reliability theory wherein the Muth distribution is originally proposed. The pdf of the
Pareto distribution is given (for λ≤ x <∞ and λ,θ > 0) by

g (x) =
θλθ

xθ+1
, (3)

where λ is a location parameter and θ is the shape parameter.
The corresponding cdf is given by

G(x) = 1−
�

λ

x

�θ

. (4)

It is hoped that by combining the Muth and the Pareto distributions into one, it could
also lead to increased flexibility and improved goodness of fit in terms of studying tail
characteristics.

The remainder of this paper is organized as follows. In Section 2, the MPD is defined,
and some of its general mathematical properties are established, including parameter es-
timation using the method of maximum likelihood. Section 3 concerns some charac-
terizations of the MPD based on a truncated first moment, order statistics and upper
record values. In Section 4, a Monte Carlo simulation study was carried out to assess
the maximum likelihood estimated parameters. An illustration on the basis of real data
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sets is provided in Section 5. Finally, Section 6 summarizes the results and concludes the
paper.

2. THE MUTH-PARETO DISTRIBUTION

By substituting Eq.(3) and Eq.(4) into Eq.(1), the pdf of the MPD model is given (for
x ≥ λ) by

f (x) =
θλθ

xθ+1

¨

1−α
�

1−
�

λ

x

�θ
�α«�

1−
�

λ

x

�θ
�−2α−1

× exp

¨

1
α

�

1−
�

1−
�

λ

x

�θ
�−α�«

, (5)

with corresponding cdf

F (x) =
�

1−
�

λ

x

�θ
�−α

exp

¨

1
α

�

1−
�

1−
�

λ

x

�θ
�−α�«

, (6)

where λ > 0 is a threshold parameter determining the location of the MPD random
variable, and α ∈ (0,1], θ > 0, are positive shape parameters demonstrating the diverse
shapes of the MPD.

The reliability function R(x) and failure rate function h(x) of MPD, respectively,
are given by

R(x) = 1−
��

1−
�

λ

x

�θ
�−α

exp

¨

1
α

�

1−
�

1−
�

λ

x

�θ
�−α�«�

, (7)

h(x) =
θλθ
n

1−α
h

1−
�

λ
x

�θ
iαoh

1−
�

λ
x

�θ
i−2α−1

exp
§

1
α

�

1−
h

1−
�

λ
x

�θ
i−α�ª

xθ+1
�

1−
h

1−
�

λ
x

�θ
i−α

exp
§

1
α

�

1−
h

1−
�

λ
x

�θ
i−α�ª� . (8)

Figures 1 and 2 show some plots of the MPD density function, distribution function,
reliability function and failure rate function for different values of the parameters α,θ
and λ. The MPD is unimodal, heavy-tailed and positively skewed, with a failure rate
function that has a non-monotone unimodal shape. Therefore, if the empirical study
suggests a non-monotone failure rate function which has a unimodal shape, then the
MPD may be adopted for the analysis of such data sets.
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.

Figure 1 – The graphs of the MPD density and distribution functions for some parameter values.
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.

Figure 2 – The graphs of the MPD failure rate and relability functions for some parameter values.
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2.1. Mixture representation

The MPD density function given in Eq.(5) can be expressed using power series as

f (x) =
∞
∑

i=0

e
1
α (−1)i

αi i !
θλθ

xθ+1

(

�

1−
�

λ

x

�θ
�−α(i+2)−1

−α
�

1−
�

λ

x

�θ
�−α(i+1)−1)

.

Using the generalized binomial series and after some algebra, the MPD density function
can be expressed as

f (x) =
∞
∑

k=0

∞
∑

j=0

∞
∑

i=0

e
1
α (−1)i+k

αi i !

�

j
k

�§�

α(i + 2)+ j
j

�

−α
�

α(i + 1)+ j
j

�ª

× θλ
θ

xθ+1

�

1−
�

λ

x

�θ
�k

,

or equivalently

f (x) =
∞
∑

k=0

πk hλ,θ,k (x), (9)

where

πk =
∞
∑

j=0

∞
∑

i=0

e
1
α (−1)i+k

αi i !

�

j
k

�§�

α(i + 2)+ j
j

�

−α
�

α(i + 1)+ j
j

�ª

, (10)

and

hλ,θ,k (x) =
θλθ

xθ+1

�

1−
�

λ

x

�θ
�k

.

Here, hλ,θ,k (x) is the pdf of the exponentiated Pareto distribution (EPD) with parame-
ters λ, θ and k. This means that the MPD density can be expressed as a linear combi-
nation of EPD densities. Consequently, the properties of MPD can be derived as linear
combinations of those of the EPD. The cdf of MPD can also be obtained in similar
fashion as

F (x) =
∞
∑

l=0

πl hλ,θ,l (x), (11)

where

πl =
∞
∑

j=0

∞
∑

i=0

e
1
α (−1)i+l

αi i !

�

j
l

��

α(i + 1)+ j − 1
j

�

. (12)
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2.2. Moments and moment generating function

The Pearson’s r th order moment, denoted by E(X r ) =µ′r , of the MPD is defined as

E(X r ) =µ′r =
∞
∑

k=0

πk

∞
∫

λ

x r hλ,θ,k (x)d x,

µ′r = λ
r
∞
∑

k=0

πk B
�

θ− r
θ

, (k + 1)
�

, (13)

where B(p, q) is the well-known Beta function.
Specifically, for r = 1, in Eq.(13) above, the mean of X is

µ′1 = λ
∞
∑

k=0

πk B
�

θ− 1
θ

, (k + 1)
�

,

and the second moment is

µ′2 = λ
2
∞
∑

k=0

πk B
�

θ− 2
θ

, (k + 1)
�

.

The coefficient of variation of X is obtained as

CV (X ) =

¨

∞
∑

k=0
πk B
�

θ−2
θ , (k + 1)
�

−
�

∞
∑

k=0
πk B
�

θ−1
θ , (k + 1)
�

�2«
1
2

∞
∑

k=0
πk B
�

θ−1
θ , (k + 1)
�

. (14)

From Eq.(14) above, it can be seen that the coefficient of variation is free of the location
parameter λ. Thus, the coefficient of variation of MPD random variable is expressed in
terms of the shape parameters only.

The variance, measures of kurtosis and skewness may be calculated from the Pear-
son’s r th moments by means of the existing familiar relations.

The moment generating function (mgf) of a random variable X is

Mx (t ) = E(e t x ) =

∞
∫

−∞

e t x f (x)d x,

since

e t x = 1+ t x +
(t x)2

2!
+
(t x)3

3!
+ ...=

∞
∑

r=0

� t r x r

r !

�

,
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Mx (t ) =
∞
∑

r=0

t r

r !

∞
∫

−∞

x r f (x)d x =
∞
∑

r=0

t r

r !
µ′r . (15)

The mgf of MPD (for x ≥ λ) follows from the definition in Equations (13) and (15):

Mx (t ) =
∞
∑

r=0

t r

r !
λr
∞
∑

k=0

πk B
�

θ− r
θ

, (k + 1)
�

.

2.3. Incomplete moments

The s th incomplete moment, say Is (t ), of X can be expressed as

Is (t ) =

t
∫

−∞

x s f (x)d x.

After some algebra and using the lower incomplete Beta function and Eq.(9) in the ex-
pression above (for s ≤ θ ), the s th incomplete moment is obtained as

Is (t ) = λ
s
∞
∑

k=0

πk Bt

�

1− s
θ

, (k + 1)
�

, (16)

where Bz (p, q) =
∫ z

0 y p−1(1− y)q−1d y is the incomplete Beta function. Thus, when
s = 1, the 1st incomplete moment of X is given by

I1(t ) = λ
∞
∑

k=0

πk Bt

�

1− 1
θ

, (k + 1)
�

.

2.4. Quantile function

The MPD exhibits a variate generation property, as its quantile function can be obtained
in a closed form in terms of the Lambert W-function. This function has two branches,
namely the principal branch denoted by W0 and the negative branch W−1 (Figure 3).
For details on the Lambert W-function, see Corless et al. (1996).

THEOREM 1. For any fixed λ,θ > 0 and 0< α≤ 1, the quantile function of the MPD
random variable is

Q(u) =
λ

h

1−
¦

−αW−1

�

− u
α exp(1/α)

�©−1/αi1/θ
, 0< u < 1

where W−1 represents the negative branch of the Lambert W-function.
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.

Figure 3 – Two main branches of the Lambert W-function

PROOF. Consider any selected λ,θ > 0 and 0 < α ≤ 1, as well as u ∈ (0,1). The
problem involves solving for x in F (x) = u (taking x > λ) as in the following:

F (x) =
�

1−
�

λ

x

�θ
�−α

exp

¨

1
α

�

1−
�

1−
�

λ

x

�θ
�−α�«

= u, (17)

then multiply both sides of Eq.(17) by − 1
α exp
�

− 1
α

�

to obtain

− 1
α

�

1−
�

λ

x

�θ
�−α

exp

¨

− 1
α

�

1−
�

λ

x

�θ
�−α«

=− u
α

exp
�

− 1
α

�

,

then − 1
α

h

1−
�

λ
x

�θ
i−α

is the W-function of the real argument − u
α exp
�

− 1
α

�

, so that

W

�

− u

α exp( 1
α )

�

=− 1
α

�

1−
�

λ

x

�θ
�−α

. (18)

Again, for any fixed λ,θ > 0, 0<α≤ 1, u ∈ (0,1) and x > λ, it is clear that

− 1
α

�

1−
�

λ

x

�θ
�−α

≤−1,
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satisfying the condition of the negative branch of the W-function. It can as well be
further checked that

− 1
α

�

1−
�

λ

x

�θ
�−α

exp

¨

− 1
α

�

1−
�

λ

x

�θ
�−α«

=− u
α

exp
�

− 1
α

�

∈
�

−1
e

, 0
�

.

Therefore, by taking into consideration the properties of the negative branch of the
Lambert W-function, Eq.(18) becomes

W−1

�

− u

α exp( 1
α )

�

=− 1
α

�

1−
�

λ

x

�θ
�−α

,

which by further simplification leads to the result. 2

2.5. Order statistics

Let x1, x2, ..., xn be a random sample that comes from a continuous independent and
identical distribution with cdf F (x), and X1:n < X2:n < ... < Xn:n to be the analogous
order statistics. The density of the i th order statistic of the Muth-Generated family is
defined by Almarashi and Elgarhy (2018) as

fi :n(x) =
f (x)

B(i , n− i + 1)

n−i
∑

ν=0

∞
∑

k=0

∞
∑

l=0

πkPl ,νF (x)
k+l ,

where

Pl ,ν = (−1)ν
�

n− i
ν

�

πl .

Following this definition, the density of the i th order statistic of the MPD is

fi :n(x) =
1

B(i , n− i + 1)

n−i
∑

ν=0

∞
∑

k=0

∞
∑

l=0

πkPl ,ν hλ,θ,(k+l )(x),

and πk as well as πl are as defined in Eq.(10) and Eq.(12) respectively. Consequently,
the r th moment of i th order statistic of the MPD is defined as

E(X r
i :n) =

λr

B(i , n− i + 1)

n−i
∑

ν=0

∞
∑

k=0

∞
∑

l=0

πkPl ,νB
�

1− r
θ

, (k + l + 1)
�

.
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2.6. Parameter estimation

The technique of maximum likelihood estimation (MLE) is employed for the estimation
of the MPD parameters. If x1, x2, ..., xn is a random sample of size n from the Muth-
Generated family with Φ = (α,ϕ)T as vector of parameters, then the log-likelihood
function may be stated as

l =
n
α
+

n
∑

i=1

ln[g (xi )]− (2α+1)
n
∑

i=1

ln[G(xi )]+
n
∑

i=1

ln[1−αG(xi )
α]− 1

α

n
∑

i=1

[G(xi )
−α].

It follows from above that the log-likelihood function of the MPD with parameter vector
T= (α,λ,θ)T is

l =
n
α
+

n
∑

i=1

lnθ−
n
∑

i=1

ln xi + 3αθ
n
∑

i=1

ln
�

λ
xi

�

+ 2θ
n
∑

i=1

ln
�

λ
xi

�

−
n
∑

i=1

lnα

− 1
α

∑

h

1−
�

λ
xi

�θ
i−α

. (19)

Assuming λ to be known (since x > λ ), by setting λ̂=X1:n , the lowest order statistic of
the sample, the parameter vector is reduced to

T= (α,θ)T =
�

∂ l
∂ α

,
∂ l
∂ θ

�

.

The elements of this vector are then derived as

∂ l
∂ α
=− n
α2
+ 3nθ lnλ− 3θ

n
∑

i=1

ln xi −
n
α
+

n
∑

i=1

ln pi

α pαi
+

n
∑

i=1

1
α2 pαi

, (20)

∂ l
∂ θ
=

n
θ
+(3α+ 2)n lnλ− (3α− 2)

n
∑

i=1

ln xi −
n
∑

i=1

zi

pα+1
i

, (21)

where

pi = 1−
�

λ

xi

�

,

and

zi =
�

λ

xi

�θ

ln
�

λ

xi

�

.

The estimates of α and θmay be computed iteratively by equating these elements to zero
and solving for them numerically using standard techniques like the Newton-Raphson
(N-R) algorithm. Alternatively, any two-dimensional optimization technique may be
used to maximize l directly, and being a simple two-dimensional optimization problem,
obtaining initial guesses is also not difficult.
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the MPD is a regular family, therefore, the following asymptotic result holds:

as n→∞,
È

n
�

α̂−α, θ̂−θ
�

converges to a bivariate normal distribution with mean

vector 0 and the variance-covariance matrix I−1
2 , where I2 =
�

Ii j

�

is the Fisher informa-

tion matrix. The elements of I2 =
�

Ii j

�

are given by

I11 =
∂ 2 l
∂ α2

=
2n
α3
+

n
α2
−

n
∑

i=1

(ln pi ) (1+ ln pi
α) pαi

�

α pαi
�2 −α

n
∑

i=1

�

ln pαi + 2
�

pαi
�

α2 pαi
�2 ,

I12 =
∂ 2 l
∂ α∂ θ

= 3
�

lnλn −
∑n

i=1
ln xi

�

+
n
∑

i=1

zi (ln pi ) pαi
p2α+1

i

,

I22 =
∂ 2 l
∂ θ2

=− n
θ2
−

n
∑

i=1

zi ln (λ/xi )
pα+1

i

.

Using the above result, the asymptotic variance of the unknown parameters can be easily
obtained and confidence intervals constructed.

3. SOME CHARACTERIZATIONS

Various methods of characterization of a probability distribution have been proposed by
different researchers in recent years. For a comprehensive account of these techniques,
the interested readers are referred to Nagaraja (2006), Ahsanullah et al. (2014), Ahsan-
ullah (2017), among others. A characterization of a particular probability distribution
states that it is the only distribution that satisfies some specified conditions. In recent
years, there has been a great interest in the characterizations of probability distributions
by truncated moments. For example, the development of the general theory of the char-
acterizations of probability distributions by truncated moment began with the work of
Galambos and Kotz (2006). Other notable contributions are Kotz and Shanbhag (1980),
Glänzel et al. (1984), and Glänzel (1987). Most of these characterizations are based on a
simple relationship between two different moments truncated from the left at the same
point; these may serve as the basis for goodness-of-fit tests, or testing the efficiency of
a particular test of hypothesis and the power of a particular parameter estimation tech-
nique (Glänzel, 1987; Glanzel, 1990; Volkova and Nikitin, 2015). For an excellent survey
of goodness-of-fit and symmetry tests based on the characterization properties of distri-
butions, the interested readers are referred to two recent nice papers of Nikitin (2017)
and Miloševic (2017), respectively, and references therein.

3.1. Characterization by truncated first moment

In this section, a characterization of the MPD by truncated first moment is presented by
considering a product of the reverse hazard rate and another function of the truncated
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point. Lemmas 2 and 3 are proved that will be useful for proving the main characteriza-
tion results. For details, readers are referred to Ahsanullah et al. (2015), or Ahsanullah
(2017), or Shakil et al. (2018). The main characterization results are provided in Theo-
rems 4 and 5.

LEMMA 2. Suppose that X is an absolutely continuous (with respect to Lebesgue mea-
sure) random variable with cdf F (x) and pdf f (x). Let F (−∞) = 0 and F (x) > 0 for all
real x > 0. It is assumed that E (X ) exists and that f ′(x) exist for all x,
− ∞ < x < ∞. Then if E (X |X ≤ x) = g (x) η (x), where g (x) is a differen-

tiable function of x, −∞ < x < ∞, and η (x) = f (x)
F (x) , then f (x) = c e

∫ X−g ′(x)
g (x) d x , where c

is determined by the condition that 1
c =
∫∞
−∞ f (x)d x.

PROOF.
∫ x

−∞
u f (u)d u = g (x) f (x),

which after differentiating with respect to x gives

x f (x) = g ′(x) f (x)+ g (x) f ′(x),

and on simplification becomes

f ′(x)
f (x)

=
x − g ′(x)

g (x)
.

On integrating the above Equation, the result follows. 2

LEMMA 3. Suppose that X is an absolutely continuous (with respect to Lebesgue mea-
sure) random variable with cdf F (x) and pdf f (x). Let F (−∞) = 0 and F (x) > 0 for
all real x > 0. It is assumed that E(x) exists and that f ′ exist for all x, −∞ < x < ∞.
Then if E (X | X ≥ x) = h(x) r (x), where h(x) is a continuous differentiable function of

x, −∞ < x < ∞, and r (x) = f (x)
1−F (x) , then f (x) = c e

∫

− x+h′(x)
h(x) d x , where c is a constant

determined by the condition 1
c =
∫∞
−∞ f (x)d x.

PROOF. The proof is similar to Lemma 2. 2

THEOREM 4. Suppose that the random variable X has an absolutely continuous (with
respect to Lebesgue measure) cdf F (x) and pdf f (x). Let F (0) = 0, F (x) > 0 ∀ x > 0. It is
assumed that f ′(x) exists for all x ∈ (0,∞), and E(X )<∞. Let η(x) = f (x)

F (x) , then X has
the Muth-Pareto distribution with the probability density function defined in Eq. (5) if and
only if E (X |X ≤ x) = g (x) η (x), where

g (x) =
λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

, (22)
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and πk is as given by Eq.(10), x ≥ λ, λ,α,θ > 0, and Bz (p, q) =
∫ z

0 y p−1(1− y)q−1d y
denotes the incomplete Beta function.

PROOF. Suppose that the random variable X has the Muth-Pareto distribution with
the pdf given by Eq.(5), which may alternatively be written using Eq.(9) as

f (x) =
∑∞

k=0
πk
θλθ

xθ+1
(1− ( λx )

θ)k ,

where πk is as given by Eq.(10), x ≥ λ and λ,α,θ > 0.
Suppose that

E (X |X ≤ x) = g (x) η (x) = g (x)
f (x)
F (x)

,

since

E (X |X ≤ x ) =

∫ x
λ

u f (u)d u

F (x)
,

then

g (x) f (x) =
∫ x

λ

u f (u)d u

=
∑∞

k=0
πk

∫ x

λ

u
θλθ

uθ+1
(1− ( λu )

θ)k d u

= λ
∑∞

k=0
πk B

1− (
λ
x )
θ
(1− 1

θ , k + 1),

where Bz (p, q) =
∫ z

0 y p−1(1− y)q−1d y is the incomplete Beta function.
Thus,

g (x) =
λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

,

and

g ′(x) = x −
λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

m(x), (23)

where

m (x) = − 1
x (α+ 1)+ 1

x2θα
2λ
�

1
x λ
�θ−1

�

1−
� 1

x λ
�θ
�α−1

α

�

1−
� 1

x λ
�θ
�α

−1
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=− 1
x2θλ (2α− 1)

� 1
x λ
�θ−1

� 1
x λ
�θ

−1
− 1

x2θλ
�

1
x λ
�θ−1
�

1−
�

1
x λ
�θ
�α−1

.

Simplifying Eq.(23) leads to

g ′(x) = x − g (x) m (x) ,

or equivalently,

x − g ′(x)
g (x)

= m(x). (24)

Applying Lemma 2 to Eq.(24) gives

f ′(x)
f (x)

= m(x),

which on integrating with respect to x becomes

f (x) =
c

xα+1
(1−α(1− ( λx )

θ)α)(1− ( λx )
θ)2α−1 exp( 1

α (1− (1− (
λ
x )
θ)−α),

where
1
c
=
∫ ∞

−∞
f (x)d x =

1
θλθ

.

This completes the proof of the "only if" condition of Theorem 4.

2

THEOREM 5. Suppose that the random variable X has an absolutely continuous (with
respect to Lebesgue measure) cdf F (x) and pdf f (x). Let F (0) = 0, F (x) > 0 ∀ x > 0. It
is assumed that f ′(x) exists for all x ∈ (0,∞), and E(X ) <∞. Then E (X |X ≥ x ) =
h(x) r (x), where r (x) = f (x)

1−F (x) and

h (x) =
E (X ) − λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

if and only if the pdf f (x) of X is as given in Eq.(5).

PROOF. Given

f (x) =
∑∞

k=0
πk
θλθ

xθ+1
(1− ( λx )

θ)k ,
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suppose that

E (X |X ≥ x ) = h(x) r (x) =
h(x) f (x)
1− F (x)

,

since

E (X |X ≥ x ) =
∑∞

x u f (u)d u
1− F (x)

,

then

h(x) f (x) =
∫ ∞

x
u f (u)d u,

or equivalently,

h(x) f (x) =
∫ ∞

λ

u f (u)d u −
∫ x

λ

u f (u)d u,

which on applying Eq.(13) gives

h(x) f (x) = E (X ) − λ
∑∞

k=0
πk B

1− (
λ
x )
θ
(1− 1

θ , k + 1).

Dividing both sides by f (x) defined in Eq.(22) leads to

h (x) =
E (X ) − λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

.

Then,

h ′ (x) = −x −
E (X ) − λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

m(x), (25)

where

m (x) = − 1
x (α+ 1)+ 1

x2θα
2λ
�

1
x λ
�θ−1

�

1−
� 1

x λ
�θ
�α−1

α

�

1−
� 1

x λ
�θ
�α

−1

=− 1
x2θλ (2α− 1)

� 1
x λ
�θ−1

� 1
x λ
�θ

−1
− 1

x2θλ
�

1
x λ
�θ−1
�

1−
�

1
x λ
�θ
�α−1

.

It is obvious from Eq.(25) that

h ′(x) = −x − h (x) m (x) ,

so that
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−x − h ′(x)
h(x)

= m(x). (26)

Applying Lemma 3 to Eq.(26) gives

f ′(x)
f (x)

= m(x),

which on integration with respect to x gives

f (x) =
c

xα+1
(1−α(1− ( λx )

θ)α)(1− ( λx )
θ)2α−1 exp( 1

α (1− (1− (
λ
x )
θ)−α),

where
1
c
=
∫ ∞

−∞
f (x)d x =

1
θλθ

.

This completes the proof of the "if" condition of Theorem 5.

2

3.2. Characterization by order statistics

Let X1, X2, ...,Xn be n independent copies of the random variable X with absolutely
continuous distribution function F (x) and pdf f (x), and let X1,n ≤ X2,n ≤ ... ≤ Xn,n
be the corresponding order statistics. Then, X j ,n |Xk ,n = x, for 1 ≤ k < j ≤ n, is
distributed as the ( j − k)th order statistics from (n− k) independent observations from
the random variable V having the pdf fV (v |x), where fV (v |x) =

f (v)
1−F (x) , 0≤ v < x, and

Xi ,n |Xk ,n = x, 1≤ i < k ≤ n is distributed as the i th order statistics from k independent
observations from the random variable W having the pdf fW (w|x), where fW (w|x) =
f (w)
F (x) , w < x; see Ahsanullah et al. (2013) or Arnold et al. (2005) for details.

THEOREM 6. Suppose that the random variable X has an absolutely continuous (with
respect to Lebesgue measure) cdf F (x) and pdf f (x). It is assumed that F (0) = 0,
F (x)> 0, ∀ x > 0, f ′(x) exists for all x ∈ (0,∞), and E(X )<∞. Let

Sk−1 =
1

k − 1

�

X1,n +X2,n + ...+Xk−1,n

�

,

then E(Sk−1|Xk ,n = x) = g (x)τ(x), where τ(x) = f (x)
F (x) and g (x) as defined in Eq.(22), if

and only if X has the Muth-Pareto distribution with the pdf defined by Eq.(5).
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PROOF. It is known that

E(Sk−1|Xk ,n = x) = E(X |X ≤ x),

see Ahsanullah et al. (2013) and David and Nagaraja (2003). Hence, by Theorem 4, the
result follows. 2

THEOREM 7. Suppose that the random variable X has an absolutely continuous (with
respect to Lebesgue measure) cdf F (x) and pdf f (x). It is assumed that F (0) = 0,
F (x)> 0, ∀ x > 0, f ′(x) exists for all x ∈ (0,∞), and E(X )<∞. Let

Tk ,n =
1

n− k

�

Xk+1,n +Xk+2,n + ...+Xn,n

�

,

then

E(Tk ,n |Xk ,n = x) = h (x)
f (x)

1 − F (x)
,

where

h (x) =
E (X ) − λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

,

if and only if X has the Muth-Pareto distribution with the pdf defined by Eq.(5).

PROOF. Since E(Tk , n |Xk , n = x) = E(X |X ≥ x) (Ahsanullah et al., 2013; David and
Nagaraja, 2003), the result follows from Theorem 5. 2

3.3. Characterization by upper record values

Let X1, X2, ... be a sequence of independent and identically distributed absolutely con-
tinuous random variables with distribution function F (x) and pdf f (x). If
Yn = max (X1,X2, ...,Xn) for n ≥ 1 and Y j > Y j−1, j > 1, then X j is called an upper
record value of {Xn , n ≥ 1}. The indices at which the upper records occur are given by
the record times

¦

U (n)>min
�

j | j >U (n+ 1),X j >XU (n−1), n > 1
�©

and U (1) = 1.
For details on record values, see Ahsanullah (1995).

THEOREM 8. Suppose that the random variable X has an absolutely continuous (with
respect to Lebesgue measure) cdf F (x) and pdf f (x). It is assumed that F (0) = 0,
F (x) > 0, ∀ x > 0, f ′(x) exists for all x ∈ (0,∞), and E(X ) <∞. Let the nth upper
record value be denoted by X (n) =XU (n). Then

E(X (n+ 1)|X (n) = x) = h (x)
f (x)

1 − F (x)
,
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where

h (x) =
E (X ) − λ
∑∞

k=0 πk B
1− (

λ
x )
θ
(1− 1

θ , k + 1)

∑∞
k=0πk

θλθ

xθ+1 (1− (
λ
x )θ)k

,

if and only if X has the Muth-Pareto distribution with the pdf given by Eq.(5).

PROOF. It is known from Ahsanullah et al. (2013), and Nevzorov (2001) that
E(X (n+ 1)|X (n) = x) = E(X |X ≥ x). Then, the result follows from Theorem 5. 2

4. SIMULATION

Simulation results are presented to measure the performance of the proposed MLE pro-
cedure in estimating the parameters of the MPD.

4.1. Simulated Numerical Procedure

The problem is that of maximizing the log-likelihood function of the MPD so as to
obtain MLEs of the parameters. This is an optimization problem that may be stated as

max l (α,λ,θ),
s.t. 0<α≤ 1,
λ, θ > 0,

(27)

where l (α,λ,θ) is the log-likelihood function defined in Eq.(19). The problem was
solved using the default method of optim package of the R language, which is an imple-
mentation of Nelder and Mead (1965), which explicitly uses the log-likelihood function
values and is robust. The method also works reasonably well for both differentiable and
non-differentiable functions. The performance of the estimates is evaluated based on
bias and root mean square error (RMSE) using the formulation demonstrated below for
estimates of α j , j = 1, 2, ..., N .

• Mean: ᾱ= 1
N

N
∑

j=1
α̂ j

• Variance: Var(α̂) = 1
N

N
∑

j=1
(α̂ j − ᾱ)2

• Bias: Bias(α̂) = 1
N

N
∑

j=1
(α̂ j −α) = (ᾱ−α)

• RMSE: RMSE(α̂) =
Æ

Var(α̂)+ (Bias(α̂))2

Equivalent quantities were also calculated for the parameters λ and θ. The simulations
were repeated N = 10,000 times each with sample size n = 1000, 500, 100, 25 and pa-
rameter values I : α= 1, λ= 0.15, θ= 0.15 and II : α= 0.5, λ= 0.5, θ= 0.5.
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4.2. Numerical Results of the Simulation

The results in Table 1 indicate that the maximum likelihood estimates are consistently
stable and asymptotically unbiased, since the RMSE and bias decrease as the sample size
increases.

5. APPLICATION OF THE MUTH-PARETO DISTRIBUTION

Two real data sets previously analyzed by researchers in the literature are considered.

5.1. Application 1: Failure time dataset

The first real-life data set consists of the pooled data on the times of successive failures of
the air conditioning system of each member of a fleet of Boeing 720 jet airplanes (Table
2). These data were studied by Proschan (1963), Tahir et al. (2018), among others.

To gain some idea about possible candidate distributions that can effectively fit these
data, we used the fitdistrplus package of the R language (R Core Team, 2021), and ob-
tained a Cullen and Frey (C&F) graph, which compares distributions in terms of kur-
tosis and squared skewness, and which may also help in selecting which distribution(s)
to fit among potential candidates. The C&F plot is shown in Figure 4. The big blue dot
represents the data, and it stays very far away from the points representing the normal,
uniform and logistic distributions. The data also cannot follow a Beta distribution, since
the values are outside the Beta range (0,1). This same point also stays away from the line
representing the lognormal distribution, but is a little closer to the line representing the
Gamma distribution and the point representing the exponential distribution. Thus, the
Gamma and exponential distributions are likely to fit these data well.

Proschan (1963) fitted an exponential distribution, whereas Tahir et al. (2018) fitted
the Inverted Nadarajah-Haghighi (INH) distribution to these data. The MPD is hereby
fitted, and the results are compared with those provided by the Gamma, exponential,
INH, two-parameter Weibull (2P-Weibull) and Muth-Weibull (MW) distributions. The
choice of MW is paramount since both the MPD and MW are sub-models of the M −G
family. The pdf associated with the competitive models are respectively given by:

fG(x ; λ,θ) =
λθxθ−1e−λx

Γ (θ)
, for x,λ,θ > 0, (28)
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TABLE 1
Simulated maximum likelihood estimates with associated variance, bias and RMSE.

α λ θ n Parameters Mean Variance Bias RMSE

α 1.2348 0.3835 0.2348 0.6623

1 0.15 0.15 25 λ 0.1623 0.0324 0.0123 0.1804

θ 0.1627 0.0065 0.0127 0.0815

α 1.1245 0.0954 0.1245 0.3331

1 0.15 0.15 100 λ 0.1341 0.0065 -0.0159 0.0824

θ 0.1446 0.0014 -0.0054 0.0381

α 1.0217 0.0054 0.0217 0.0763

1 0.15 0.15 500 λ 0.1446 0.0007 -0.0054 0.0267

θ 0.1477 0.0001 -0.0023 0.0122

α 1.0092 0.0012 0.0092 0.0358

1 0.15 0.15 1000 λ 0.1476 0.0002 -0.0024 0.0144

θ 0.1491 0.0000 -0.0009 0.0067

α 0.2922 0.1773 -0.2078 0.4695

0.5 0.5 0.5 25 λ 0.5510 0.0094 0.0510 0.1097

θ 0.6432 0.0439 0.1432 0.2538

α 0.4043 0.0585 -0.0957 0.2602

0.5 0.5 0.5 100 λ 0.5183 0.0023 0.0183 0.0512

θ 0.5514 0.0120 0.0514 0.1212

α 0.4783 0.0094 -0.0217 0.0995

0.5 0.5 0.5 500 λ 0.5044 0.0004 0.0044 0.0199

θ 0.5105 0.0016 0.0105 0.0416

α 0.4887 0.0040 -0.0113 0.0643

0.5 0.5 0.5 1000 λ 0.5024 0.0002 0.0024 0.0131

θ 0.5062 0.0008 0.0062 0.0287
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TABLE 2
Data Set 1: Failure time data.

194 413 90 74 55 23 97 50 359 50 130 487 102
15 14 10 57 320 261 51 44 9 254 493 18 209
41 58 60 48 56 87 11 102 12 5 100 14 29
37 186 29 104 7 4 72 270 283 7 57 33 100
61 502 220 62 141 22 603 35 98 54 181 65 49
12 239 14 18 39 3 12 5 32 9 14 70 47
120 142 3 104 85 67 169 24 21 246 47 68 15
2 91 59 447 56 29 176 225 77 197 438 43 134

184 20 386 182 71 80 188 230 152 36 79 59 33
246 1 79 3 27 201 84 27 21 16 88 130 14
118 44 15 42 106 46 230 59 153 104 20 206 5
66 34 29 26 35 5 82 5 61 31 118 326 12
54 36 34 18 25 120 31 22 18 156 11 216 139
67 310 3 46 210 57 76 14 111 97 62 26 71
39 30 7 44 11 63 23 22 23 14 18 13 34
62 11 191 14 16 18 130 90 163 208 1 24 70
16 101 52 208 95

fE (x ;λ) = λe−λx , for 0≤ x <∞, (29)

fINH(x ; α,λ) = αλx−2 �1−λx−1�α−1

× exp
�

1−
�

1−λx−1�α	 , for x,α,λ > 0, (30)

f2W (x;β,λ) =βλxβ−1e−λxβ , for x,β,λ > 0, (31)

fMW(x ; α,β ,γ ) = exp(1/α)γβxγ−1 exp(−βxγ )
�

1−α(1− e−βxγ )α
�

× (1− e−βxγ )−2α−1 exp(− 1
α (1− e−βxγ )−α),

for x,β,γ > 0. (32)
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.

Figure 4 – C&F graph for Data Set 1.
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The maximum likelihood estimated parameters of these distributions together with
the resulting log-likelihood function value (loglik) are reported in Table 3 along with
their associated AIC and BIC for model comparison purposes, where lower values in-
dicate a better fit. The MPD demonstrates a better performance. Other goodness-of-fit
statistics, namely, Kolmogorov-Smirnov (K-S), Cramer-Von Mises (CVM) and Anderson-
Darling (A-D) were calculated and presented in Table 4. The density plots are shown in
Figure 5.

TABLE 3
MLEs and goodness-of-fit criteria for Data Set 1.

Model MLEs loglik AIC BIC

MPD α̂= 1.3x10−5, λ̂= 0.2504
θ̂= 3.0990

-102.77 211.54 212.54

MW α̂= 3.2x10−3, β̂= 0.2458
γ̂ = 0.5040

-114.79 235.57 236.58

INH λ̂= 0.5001, α̂= 40.5770 -115.13 234.26 234.93

Exponential λ̂= 0.01073643 -116.98 235.95 236.29

Gamma λ̂= 0.920976329, θ̂= 0.009890729 -116.03 236.06 236.73

2P-Weibull λ̂= 89.5326303, β̂= 0.9244685 -115.96 235.92 236.59

TABLE 4
Goodness-of-fit statistics for Data Set 1.

Statistic 2P- Weibull Gamma Exponential INH MW MPD

K-S 0.0519 0.0623 0.0726 0.0496 0.04873 0.0354

CVM 0.1270 0.1977 0.3241 0.3055 0.3106 0.1124

A-D 0.8232 1.1189 1.6919 0.9957 1.087 0.7341

5.2. Application 2: Taxes revenue dataset

The second data set (Table 5) corresponds to the data used by Nassar and Nada (2011) in
their study of the Beta generalized Pareto (BGP) distribution as well as Mead (2014) in his
study of the generalized Beta exponentiated Pareto (GBEP) distribution, representing
“The monthly actual taxes revenue in Egypt from January 2006 to November 2010 (in
1000 millions of Egyptian pounds)”.
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.

Figure 5 – Fitted densities for Data Set 1.

TABLE 5
Data Set 2: Egyptian taxes revenue data.

5.9 20.4 14.9 16.2 17.2 7.8 6.1 9.2 10.2 9.6 13.3 8.5 21.6
18.5 5.1 6.7 17.0 8.6 9.7 39.2 35.7 15.7 9.7 10.0 4.1 36.0
8.5 8.0 9.2 26.2 21.9 16.7 21.3 35.4 14.3 8.5 10.6 19.1 20.5
7.1 7.7 18.1 16.5 11.9 7.0 8.6 12.5 10.3 11.2 6.1 8.4 11.0
11.6 11.9 5.2 6.8 8.9 7.1 10.8
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.

Figure 6 – C&F graph for Data Set 2.
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The C&F graph for the second data set (Figure 6) suggests that the Gamma distribu-
tion could give a good fit. So, the outcomes of fitting the MPD and MW to the second
data set were again compared to the results of fitting 2P-Weibull, Gamma, BGP and
GBEP distributions, as well as the results of fitting other probability distributions of
the same baseline as the MPD such as Kumaraswamy Pareto Distribution (KPD) by
Bourguignon et al. (2012) and the Exponential Pareto Distribution (EPD) by Kareema
and Boshi (2013), with respective density functions given by:

fBGP (x ; α,β,γ ,a, b ) =
γ

B(a, b )

�

1−
�α

x

�β�γα−1
�

1−
�

1−
�

θ

x

�β
�γ�b−1

×
β

α

�α

x

�β+1

where α,β,γ ,a, b > 0 and x ≥ α > 0, (33)

fGBEP (x;ξ ) =
cλkd k x−(k+1)

B(a, b )

�

1−
�d

x

�k
�λac−1


1−
�

1−
�d

x

�k
�λc




b−1

for x,a, b , c , d ,λ, k > 0, (34)

fKP (x ; α,λ,θ, k) =
αλkθk

xk+1

�

1−
�

θ

x

�k
�α−1 �

1−
�

1−
�

θ

x

�k
�α�λ−1

for x,α,λ,θ, k > 0, (35)

fEP (x ; λ,θ, k) =
λk
θ

� x
θ

�k−1
e−λ(

x
θ )

k

, for x,λ,θ, k > 0. (36)

The maximum likelihood estimated parameters along with the loglik, AIC and BIC
are reported in Table 6. It is important to state that in the process of estimating the
parameters of GBEP distribution, the value of d was set at d̂ = 0.1 as is found in the
work of Mead (2014).

In this case also, the MPD seems to be the best fitting model among the compared
distributions, having the lowest values of AIC and BIC. The goodness-of-fit statistics for
the best six models shown in Table 7 further support the flexibility of the MPD. The
estimated densities of the compared distributions for the second data set are given in
Figure 7.
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TABLE 6
MLEs and goodness-of-fit criteria for Data Set 2.

Model MLEs loglik AIC BIC

MPD α̂= 7.317x10−5, λ̂= 3.563
θ̂= 0.4276

-110.07 226.13 232.36

MW α̂= 0.00007, β̂= 0.3078
γ̂ = 0.8530

-190.74 387.47 393.70

BGP α̂= 4.1, β̂= 0.509, γ̂ = 2.860,
â = 0.744, b̂ = 5.891

-195.52 401.03 409.34

GBEP â = 50.173, b̂ = 1.612, ĉ = 0.276,
λ̂= 0.201, k̂ = 1.092

-196.52 403.04 413.43

KPD α̂= 0.9373, λ̂= 0.9500
θ̂= 0.0016, k̂ = 0.0498

-187.77 383.53 381.43

EP λ̂= 0.0991, θ̂= 4.3552
k̂ = 1.8401

-197.29 400.58 406.81

Gamma λ̂= 3.6787784, θ̂= 0.2727684 -193.08 390.16 394.32

2P-Weibull λ̂= 15.306416, β̂= 1.840212 -197.29 398.58 402.74

TABLE 7
Goodness-of-fit statistics for Data Set 2.

Statistic Weibull Gamma EP KPD MW MPD

K-S 0.1432 0.1336 0.3035 0.1243 0.3504 0.1183

CVM 0.2804 0.2028 1.3120 0.2001 1.4230 0.1832

A-D 1.8406 1.2301 6.9218 1.3985 7.0365 1.2013
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.

Figure 7 – Fitted densities for Data Set 2.

6. CONCLUSION

In this research paper, a Muth-Pareto distribution (MPD) is introduced with a failure rate
function that has a non-monotone unimodal shape. Some of its mathematical properties
including moments, quantile function, characterization and moments of order statis-
tics are derived. The unknown parameters of the distribution are estimated using the
method of maximum likelihood, and the performance of the estimator is investigated
through simulation experiments. It was found that the maximum likelihood estimator
behaves consistently in terms of the root mean squared error when the sample size gets
large, and it looks asymptotically unbiased. The applicability of the proposed distribu-
tion is shown by means of two real-life applications. It was found that the MPD may
be a better choice than its competing distributions for modeling positively skewed data
sets having a non-monotone failure rate function.
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