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SUMMARY

This paper presents some efficient classes of estimators of population variance in two-phase suc-
cessive sampling under random non-response. The suggested classes of estimators are for simple
random sampling and for different situations of non-response. Up to first-order approximation
MSE’s of suggested classes of estimators are derived. The efficiency of the presented estimators is
contrasted with the estimators for the complete response scenarios. Usefulness of the presented
classes of estimators is checked. To test the efficiency real data sets are used. The proposed classes
of estimators are more efficient. Results are interpreted.
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Bias; Mean square error.

1. INTRODUCTION

In statistical research, an auxiliary variable is any variable about which information is
available prior to data collection and where this information is known for all popula-
tion units. Auxiliary variables are used to optimize the sample, or to compile detailed
tabulation when a frame is used for producing statistics directly, or to enhance other
processes like editing and imputation. Information on auxiliary variable(s) is used to
increase the accuracy of sample estimates. Auxiliary information is very useful to find
estimators that are more reliable and efficient. Without spending more money on the
survey, this variable could provide the surveyor extra information about the variable
under study. The correlation between auxiliary and study variable could be negative or
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positive. Singh et al. (2017a), Singh et al. (2017b), Singh and Khalid (2018) and Shabbir
and Gupta (2006) used auxiliary information for estimation of finite population vari-
ance.

Two-phase sampling is usually used where the collection of data on variables of inter-
est is very costly. This method of sampling is a less time consuming and more accurate
estimation method. This technique is also cost-effective for the estimation of unknown
population parameters. Singh and Khalid (2022) are amongst those who suggested the
estimation strategy for estimation of current population parameters in two-occasions
successive sampling.

Mostly, information on an auxiliary variable may be attainable on the first (second)
occasion. Among others, Singh and Pal (2016) and Beevi and Chandran (2017) used the
auxiliary information on first (second) occasion for the estimation of the current pop-
ulation mean in two-occasion successive sampling. Further, Riaz et al. (2020) suggested
a generalized class of estimators for estimation of the finite population mean under the
existence of non-response. Singh et al. (2021), Singh et al. (2023) and Sharma and Singh
(2020) presented an estimation strategy for the population variance in two-phase sam-
pling.

Non-response occurs where there is a huge contrast between those who respond
and those who do not respond. Non-response takes place when those who respond and
those who do not respond significantly differ from each other. This takes place for many
different reasons. They include the refusal of some people to take part in the survey,
poor conduction of the survey, the survey not being submitted by some participants due
to forgetfulness, failing of the survey to reach all the targeted participants in the sample,
and the greater tendency of some participants to give answers as compared to others. In
the first case, some people decline to participate in the survey. This may happen because
the researcher asks the participants for information that may cause embarrassment for
them, or because the information is about activities that are not legal.

In the second case, poor conduction of the survey may result in non-response. For
instance, if the researcher has a snail mail survey for young adults or a smart phone sur-
vey for old adults, both cases will probably result in non-response from the intended
population. Thirdly, some participants simply do not remember to submit the survey
after conduction. The fourth reason can be that all the members in the sample did not
receive the survey (questionnaire). As an example, the email containing the survey may
remain unsent or in the Spam folder or the data may not get presented or displayed
properly on certain devices. The next reason can be that some people have more incli-
nation to give an answer. For instance, people who are all-time readers are more likely
and interested to give answer about reading than those who do not read or read less. In
the historical context, some researchers have observed and even experienced that those
members of the population who have less income are less likely to respond to surveys.
Similarly, one other researcher has noted that unmarried males are another group who
are less likely or unlikely to respond. Non-response, which results from a contrast be-
tween those who respond and those who do not, is considered as bias in statistics and it
can make the results invalid. In addition, it can bring about variance for the estimates be-
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cause the resulting sample size is smaller than the size intended bt the researcher. When
non-response occurs, surveys fail to get information on one or more study variables.
Singh and Joarder (1998), Singh et al. (2017c), Singh and Khalid (2019, 2022), Singh et al.
(2021, 2023), Sharma (2017) and Sharma and Singh (2020) proposed some estimators for
estimating the population variance under random non-response.

Non-response cannot be completely erased in practice, but it can be overcome by
making much effort to get information. Successive (rotation) sampling is more suscepti-
ble to the non-response due to its repetitiveness. In many real-life situations, measures of
population variance are hugely valuable for example, physicians allow their patients to
have regular access to prepare reports of fluctuations for body temperature, pulse rates,
and blood pressure, etc., in order to recommend suitable medication to their patients.
Motivated by the above work, and considering the importance of resolving random non-
response, some efficient estimators of the population variance in two-occasion successive
sampling under the two phase set-up are proposed. Revised ratio, product, exponential,
and regression type estimators for estimation of population variance are recommended.
The properties of the suggested classes of estimators have also been studied on some data
available in the survey literature.

2. SAMPLE STRUCTURES ON TWO OCCASIONS

Let us consider a finite population of size N , which has been sampled over two occa-
sions. The character under study is denoted by x(y) on the first (second) occasion and it
is assumed that random non-response occurs in study variables on both occasions. Let
z be a stable auxiliary variable with unknown population mean. z has positive correla-
tion with the study variable x(y) on first (second) occasion. To assess the estimate of the
population mean of the auxiliary variable z on the first occasion, a preliminary random
sample (without replacement) Sn′ of n ’ units is drawn on the first occasion and informa-
tion on z is collected. Further, a second-phase sample of size n (n < n′) is drawn from
the first-phase (preliminary) sample by the method of simple random sampling without
replacement (SRSWOR), and subsequently the information on the study variable x is
gathered. A random sub-sample of size m is retained (matched) from the responding
units of the second-phase sample selected on the first occasion for its use on the current
(second) occasion, under the assumption that these matched units will again respond on
the second occasion. Again. to furnish a fresh estimate of population mean of the aux-
iliary variable z on the current (second) occasion, a preliminary (first-phase) sample of
size u ’ drawn from the non-sampled units of the population by the method of simple
random sampling without replacement (SRSWOR) and information on z is collected.
A second-phase sample of size u = (n−m) = nµ (u < u ′) is drawn from the first phase
sample by method of simple random sampling without replacement (SRSWOR) and the
information on study variable y is gathered. Here "µ" is the fraction of fresh samples
on the current (second) occasion.
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3. NON-RESPONSE PROBABILITY MODEL AND NOTATIONS

Let Sn and Sn′ be the samples of sizes n and n′ on the second and first phase, respectively,
on variable x. Su is the random non-response in the second phase-sample. r1 represents
the sampled units on which information of x couldn’t be taken. Similarly, r2 is the
number of nonresponding units on which information on y could not be gathered in the
second-phase sample because of random non-response. The remaining (u − r2) units of
the second-phase sample can be treated as a random sample drawn using simple random
sampling without replacement scheme for the first-phase sample Su . Let p1 and p2 be the
probability of non-response among (n−2) and (u−2) possible values of non-responses.
Consequently, r1 and r ′2 have the following discrete probability distributions:

P (r1) =
n− r1

nq1+ 2 p1

n−2Cr1
p r1

1 qn−r1−2
1 ; r1 = 0,1,2, . . . , n− 2,

and

P (r2) =
u − r2

uq2+ 2 p2
u − 2Cr2

p r2
2 q u−r2−2

2 ; r2− 0,1,2, . . . , u − 2.

The following notations are used. Sample means and variances of the variables x, y, z
based on samples of size n, u, n and u on the first (second) occasions and s2

ym
, s2

xm
, s2

zn
are

the sample variances of the variables x, y and z, respectively, based on respective sample
sizes shown in their subscripts:

x̄∗n =
1

n− r1

n−r1
∑

i=1

xi , ȳ∗u =
1

u − r2

u−r2
∑

i=1

yi , z̄∗u =
1

u − r2

u−r2
∑

i=1

zi ,

z̄n′ =
1
n′

n′
∑

i=1

zi , z̄ ′u =
1
u ′

u ′
∑

i=1

zi ,

s2
zu′
=

1
u ′− 1

u ′
∑

i=1

(zi − z̄u ′)
2, s∗2xn

=
1

n− r1− 1

n−r1
∑

i=1

(xi − x̄∗n)
2,

s2
zn′
=

1
n′− 1

n′
∑

i=1

(zi − z̄n′)
2,

s∗2yn
=

1
u − r2− 1

u−r2
∑

i=1

(yi − ȳ∗u )
2 and s∗2zn

=
1

u − r2− 1

u−r2
∑

i=1

(zi − z̄∗u )
2.
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4. PROPOSED CLASSES OF ESTIMATORS

Singh and Joarder (1998) proposed a class of estimators of the population variance S2
y ;

along these lines we propose:

T = ϕTu +(1−ϕ)Tm , (1)

where T is the convex combination of the proposed estimators and ϕ(0 ≤ ϕ ≤ 1) is
an unknown constant (scalar) which could only be calculated by minimizing the mean
square error of the estimator T .

4.1. Formulation of the estimator Tn

For population variance S2
y estimation on the current occasion, we propose an estimator

Tu that is based on a fresh sample size u collected on the current occasion as:

Tu = F
�

s∗2
yu

, s2
zu

, s2
z ′u

�

. (2)

By considering the composite function F
�

s∗2yu
, s2

zu
, s2

z ′u

�

as one to one function of s∗2
yu

, s2
zu

and s2
z ′u

get

F
�

S2
y , S2

z , S2
z

�

= S2
y ⇒

∂ F
�

s∗2yu
, s2

zu
, s2

z ′u

�

∂ s∗2yu

�

�

�

�

�

�

(S2
y ,S2

z ,S2
z )
= 1. (3)

Consider the following regularity conditions satisfied:

(i) Whatever the chosen samples,
�

s∗2yu
, s2

zu
, s2

z ′u

�

assumes values in a closed convex sub-

space R3 of the three-dimensional real space containing the points
�

S2
y , S2

z , S2
z

�

;

(ii) The function F
�

s∗2yu
, s2

zu
, s2

z ′u

�

is continuous and bounded on R3;

(iii) The first and second partial derivatives of F
�

s∗2yu
, s2

zu
, s2

z ′u

�

exist and are continuous
and bounded on R3 .

The following estimators of S2
y are the members of the class defined by Tu :

t1 = s∗2yu

s2
zu
′

s2
zu

, t2 = s∗2yu

s2
zu

s2
zu
′

,

t4 = s∗2yu
exp

 

s2
zu
′ − s2

zu

s2
zu
′ + s2

zu

!

, t5 = s∗2yu
exp

 

s2
zu
− s2

zu
′

s2
zu
+ s2

zu
′

!

, t6 = s∗2yu

 

s2
zu

s2
zu
′

!α2

,
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t7 = s∗2yu



2−

 

s2
zu

s2
zu
′

!α3


 , t8 = s∗2yu





s2
zu
′

s2
zu
′ +α4

�

s2
zu
− s2

zu
′

�



 ,

t9 = s∗2yu



α5

s2
zu
′

s2
zu

+(1−α5)

 

s2
zu
′

s2
zu

!2


 , t10 = s∗2yu



α6

s2
zu

s2
zu
′

+(1−α6)

 

s2
zu

s2
zu
′

!2


 ,

t11 = s∗2yu



α7+(1−α7)
s2
zu

s2
zu
′



 , t12 = s∗2yu



α8+(1−α8)
s2
zu

s2
zu
′





t13 = s∗2yu





α9 s2
zu
′ +(1−α9) s

2
zu

α9 s2
zu
+(1−α9) s2

zu
′



 , ..., etc.

where αi are scalar constants so that the MSE′ s of the estimators defined above could be
minimized.

4.2. Formulation of the estimator Tm

Another estimator of the current variance of the population S2
y , based on size m (matched

sample size) is defined as:

Tm =G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

. (4)

For any chosen sample, Tm = G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

assumes values in a bounded set,

containing the points
�

S2
y , S2

x , S2
x , S2

z , S2
z

�

, where G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

is a composite

function of
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

, such that

G
�

S2
y , S2

x , S2
x , S2

z , S2
z

�

= S2
y ⇒

∂ G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

∂ s2
ym

�

�

�

�

�

�

(S2
y ,S2

x ,S2
x ,S2

z ,S2
z )
= 1. (5)

Given product, ratio, regression, and exponential type estimators of S2
y are the members

of the class defined by Tm ,

k1 = s2
ym

s∗2xn

s2
xm

s2
zn′

s2
zn

, k2 = s2
ym

s∗2xn

s2
xm

s2
zn

s2
zn′

, k3 = s2
ym

s2
xm

s∗2xn

s2
zn′

s2
zn

,

k4 =
�

s2
ym
+ b1

�

s∗2xn
− s2

xm

�� s2
zn′

s2
zn

, k5 = s2
ym

exp

�

s∗2xn
− s2

xm

s∗2xn
+ s2

xm

�

s2
zn′

s2
zn

,
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k6 =
�

s2
ym
+ b2

�

s∗2xn
− s2

xm

��

exp

�

s2
zn′
− s2

zn

s2
zn′
+ s2

zn

�

,

k7 = s2
ym

exp

�

s∗2xn
− s2

xm

s∗2xn
+ s2

xm

�

exp

�

s2
zn′
− s2

zn

s2
zn′
+ s2

zn

�

, k8 =
s2
ym

s2
xm

�

s∗2xn
+ b3

�

s2
zn′
− s2

zn

��

,

k9 = s2
ym
+ b4

�

s∗2xn

s2
zn

s2
zn′
+ s2

xm

�

, k10 = s2
ym
+ b5

��

s∗2xn
− s2

xm

�

+ b4

�

s2
zn
− s2

zn′

��

,

k11 = s2
ym

s2
xm

�

s∗2xn
+ b6

�

s2
zn′
− s2

zn

�� , k12 = s2
ym
+ b7

�

s∗2xn

s2
zn

s2
zn′

− s2
xm

�

,

where βi are scalar constants so that the MSE′ s of the estimators defined above could
be minimized.

4.3. Properties of suggested estimator T

The bias and MSE′ s of the presented classes of estimators Tu and Tm are derived up to
the first order of approximation under the assumption that distribution of results should
approach a normal curve, and applying the following transformations:

s∗2yu
= S2

y (1+ e1) , s∗2zu
= S2

z (1+ e2) , s2
zu′
= S2

z (1+ e3) , s2
ym
= S2

y (1+ e4) ,

s∗2xn
= S2

x (1+ e5) , s2
xm
= S2

x (1+ e6) , s2
zn′
= S2

z (1+ e7) , s2
zn
= S2

z (1+ e8) ,

s2
yu
= S2

y (1+ e9) , s2
zu
= S2

z (1+ e10) , s2
xn
= S2

x (1+ e11) , s2
xm
= S2

z (1+ e12) ,

such that E (ek ) = 0.
Thus, we have following expectations:

E (e1)
2 = f ∗2 (λ040− 1) , E (e2)

2 = f ∗2 (λ004− 1) , E (e3)
2 = f ′2 (λ004− 1) ,

E(e4)
2 = f1 (λ040− 1) , E (e5)

2 = f ∗1 (λ400− 1) , E (e6)
2 = f1 (λ400− 1) ,

E (e7)
2 = f ′ (λ004− 1) , E (e8)

2 = f (λ004− 1) , E(e9)
2 = f2 (λ040− 1) ,

E (e10)
2 = f2 (λ004− 1) , E (e11)

2 = f (λ400− 1) , E (e1e2) = f ∗2 (λ22− 1) ,

E (e2e3) = f ′2 (λ004− 1) , E (e1e3) = f ′2 (λ022− 1) , E (e1e9) = f2 (λ040− 1) ,

E (e2e9) = f2 (λ022− 1) , E (e3e9) = f ′2 (λ022− 1) , E (e6e7) = f ′ (λ202− 1) ,

E (e5e6) = f ∗1 (λ400− 1) , E (e5e4) = f ∗1 (λ220− 1) , E (e4e6) = f1 (λ220− 1) ,

E (e7e8) = f ′ (λ004− 1) , E (e7e4) = f ′ (λ022− 1) , E (e8e5) = f (λ202− 1) ,

E (e8e4) = f (λ022− 1) , E (e6e8) = f (λ202− 1) , E (e3e10) = f ′2 (λ004− 1) ,
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E (e3e9) = f ′2 (λ022− 1) , E (e10e9) = f2 (λ022− 1) , E (e11e7) = f ′ (λ202− 1) ,

E (e11e8) = f (λ202− 1) , E (e11e4) = f (λ220− 1) , E
�

e12
2�= f1 (λ004− 1) ,

E (e12e4) = f1 (λ022− 1) , E (e12e6) = f1 (λ202− 1) , E (e7e5) = f ′ (λ202− 1) ,

E (e12e11) = f (λ202− 1) and E (e1e10) = f2 (λ022− 1) ,

where λs t = µr s t/
�

µr/2
200µ

r/2
020µ

r/2
002

�

, µr s t = E
�

�

xi − X̄
�r �

yi − Ȳ
�s �

zi − Z̄
�t�

with
(r, s , t )≥ 0 are integers. Furthermore we have that

f ∗2 =
�

1
uq2+2 p2

− 1
N

�

, f2 =
�

1
u −

1
N

�

, f ′2 =
�

1
u ′ −

1
N

�

, f ∗1 =
�

1
nq1+2 p1

− 1
N

�

,

f =
�

1
n −

1
N

�

f1 =
�

1
m −

1
N

�

and f ′ =
�

1
n′ −

1
N

�

.

Now, in order to express the classes of estimators Tu in terms e ’s we expand
F
�

s∗2yu
, s2

zu
, s2

zu
′

�

about the point S2
y , S2

z , S2
z bar in a third order Taylor’s series expansions,

and the following results are obtained

F
�

s∗2yu
, s2

zu
, s2

zu
′

�

=F
�

S2
y , S2

z , S2
z

�

+
�

s∗2yu
− S2

y

�

I1+
�

s2
zu
− S2

z

�

I2+
�

s2
zu
′ − S2

z

�

I3

+
1
2

n

�

s∗2yu
− S2

y

�2
I11+

�

s2
zu
− S2

z

�2
I22+

�

s2
zu
′ − S2

z

�2
I33

+2
�

s2
zu
− S2

z

��

s∗2yu
− S2

y

�

I12+ 2
�

s∗2
yu
− S2

y

��

S2
zu′
− S2

z

�

I13

©

× 1
6

¨

�

s∗2yu
− S2

y

� ∂

∂ s∗2yu

+
�

s2
zu
− S2

z

� ∂

∂ s2
zu

+
�

s2
zu′
− S2

z

� ∂

∂ s2
zu

«3

F
�

s∗2yu
, s2

zu
, s2

z ′u

�

+ . . . ,

where

I1 =
∂ F

�

s∗2yu
, s2

zu
, s2

zu
′

�

∂ s∗2yu

�

�

�

�

�

�

(S2
y ,S2

z ,S2
z )

, I2 =
∂ F

�

s∗2yu
, s2

zu
, s2

zu
′

�

∂ s2
zu

�

�

�

�

�

�

(S2
y ,S2

z ,S2
z )

,

I3 =
∂ F

�

s∗2yu
, s2

zu
, s2

zu
′

�

∂ s2
zu
′

�

�

�

�

�

�

(S2
y ,S2

z ,S2
z )

and (I11, I22, I33, I12, I13, I23) are the second-order partial derivatives of F
�

s∗2yu
, s2

zu
, s2

zu
′

�

at

the point
�

S2
y , S2

z , S2
z

�

and s∗2
′

yu
= S2

y + θ
�

s∗2yu
− S2

y

�

, s2′
zu
= S2

z + θ
�

s2
zu
− S2

z

�

, s2′
zu
′ =

S2
z + θ

�

s2
zu
′ − S2

z

�

for 0 < θ < 1 . Under the conditions described above, regarding

F
�

s∗2
yu

, s2
zu

, s2
z ′u

�

in the Equations (3), it is noted that



Efficient Classes of Estimators in Two-Phase Sampling 185

F
�

s∗2yu
, s2

zu
, s2

zu
′

�

= S2
y ⇒ I1 = 1,

and

I11 =
∂ 2

∂
�

s∗2yu

�2 F
�

s∗2yu
, s2

zu
, s2

zu
′

�

�

�

�

�

�

�

(S2
y ,S2

z ,S2
z )
= 0.

By imposing the constraint as
I2 =−I3,

the expression of suggested estimators is shown as

Tu =F
�

s∗2
yu

, s2
zu

, s2
z ′u

�

= S2
y (1+ e1)+ S2

z (e10− e3) I2

+
1
2

¦

�

S4
z

� �

e10
2I22+ e2

3 I33+ 2e10e3I23

�

+ 2S2
y S2

z (e1e10I12+ e1e3I13)
©

.
(6)

To express Tm in terms of e ’s, we expand G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

z ′n

�

about the point

S2
y , S2

x , S2
x , S2

z , S2
z bar in third order Taylor’s series expansions and following results are

obtained

Tm =S2
y +

∂ Tm

∂ ym

�

ym − S2
y

�

+
∂ Tm

∂ xm

�

xm − S2
x

�

+
∂ Tm

∂ xn

�

xn − S2
x

�

+
∂ Tm

∂ zn

�

zn − S2
z

�

+
∂ Tm

∂ zn′

�

zn′ − S2
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Tm =G
�

s2
ym

, s2
xm

, s∗2
xn

, s2
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, s2
n′

�

= S2
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where
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,

where K2 = −K3 and K4 = −K5 and (K22,K33,K44,K55, . . . ,K35) are the second order
partial derivatives of order G

�

s2
ym

, s2
xm

, s∗2
xn

, s2
zn

, s2
z ′n

�

at the point
�

S2
y , S2

x , S2
x , S2

z , S2
z

�

. The
bias and MSE up to the first-order approximation of the estimator T , respectively, are

B(T ) = ϕB (Tu )+ (1−ϕ)B (Tm) (8)

and
MSE(T ) = ϕ2MSE (Tu )+ (1−ϕ)

2MSE (Tm) , (9)

where
B (Tu ) =

1
2

��

S4
z

�

(λ004− 1)
�

f2I22+ f ′2 I33+ 2 f ′2 I23

�

+ 2S2
y S2

z (λ022− 1)
�

f2I12+ f ′2 I13

�	

,
(10)

B (Tm) =
1
2

��

S4
x

�

(λ400− 1) ( f1K22+ f ∗1 K33+ 2 f ∗1 K23)

+
�

S4
z

�

(λ004− 1)
�

f K44+ f ′K55+ 2 f ′K45

�

+ 2S2
y S2

x (λ220− 1) ( f1K12+ f ∗1 K13)

+ 2S2
y S2

z (λ022− 1)
�

f K14+ f ′K15

�

+2S2
x S2

z (λ202− 1)
�

f K24+ f ′K25+ f K34+ f K35

�	

,

(11)
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MSE (Tu ) =E
�

Tu − S2
y

�2
= S4

y f ∗2 (λ040− 1)+ S4
z

�

f2− f ′2
�

(λ004− 1) I 2
2

+ 2S2
y S2

z

�

f2− f ′2
�

(λ022− 1) I2

(12)

and

MSE (Tm) = E
�

Tm − S2
y

�2
= S4

y f1 (λ040− 1)+ S4
x ( f1− f ∗1 ) (λ400− 1)K2

2

+ S4
z

�

f − f ′
�

(λ004− 1)K2
4 + 2S2

x S2
y ( f1− f ∗1 ) (λ220− 1)K2

+ 2S2
y S2

z

�

f − f ′
�

(λ022− 1)K4.

(13)

The two samples are considered as non-overlapping; thus, C (Tu ,Tm) will be ignored.

4.4. Minimum MSE of the classes of estimators T

Let’s consider

I2 =
−S2

y (λ022− 1)

S2
z (λ004− 1)

, K2 =
−S2

y (λ220− 1)

S2
x (λ400− 1)

, K4 =
−S2

y (λ022− 1)

S2
z (λ004− 1)

. (14)

Under above conditions the presented classes of estimators Tu and Tm are minimum.
The MSE of the suggested estimator T is

MSE(T )M i n = ϕ
2MSE (Tu )M i n +(1−ϕ)

2MSE (Tm)M i n (15)

MSE (Tu )M i n = S4
y

�

f ∗2 (λ040− 1)−
�

f2− f ′2
� 1
(λ004− 1)

(λ022− 1)2
�

, (16)

and

MSE (Tm)M i n =S4
y

�

f1 (λ040− 1)− ( f1− f ∗1 )
1

(λ400− 1)
(λ220− 1)2−

�

f − f ′
�

1
(λ004− 1)

(λ022− 1)2
�

.
(17)

Since the minimum MSE of the estimator T in Equation (15) is a function of the
unknown scalar (constant) ϕ, it is minimum with respect to ϕ, and afterwards the opti-
mum value of ϕ is obtained as

ϕo pt =
MSE (Tm)M i n

MSE (Tu )M i n +MSE (Tm)M i n

(18)

Now putting the value of ϕo pt in Equation (15), we have the optimum MSE of the esti-
mator T as

MSE(T )o pt =
MSE (Tu )M i n ·MSE (Tm)M i n

MSE (Tu )M i n +MSE (Tm)M i n

(19)
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4.5. Some special propositions

Here are two propositions regarding random non-response to test the performance of
the estimators suggested above.

PROPOSITION 1. When random non-response occurs only on the first occasion, the
classes of estimators of population variance S2

y on the current occasion may be formulated as

T ∗ = ϕ∗T ∗u +(1−ϕ
∗)Tm , (20)

where T ∗u = F ∗
�

s∗2yu
, s2

zu
, s2

zu
′

�

, Tm = G
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

zn′

�

and ϕ∗ (0≤ ϕ∗ ≤ 1) is an
unknown scalar (constant).

Properties of classes of estimators T ∗

B (T ∗) =
1
2

��

S4
z

�

(λ004− 1)
�

f2I22+ f ′2 I33+ 2 f2I23

�

+2S2
y S2

z (λ022− 1)
�

f2I12+ f ′2 I13

�

©

.

The bias of Tm is shown above in Equation (11).
The MSE of estimator T ∗ is obtained as

MSE (T ∗) = ϕ∗MSE (T ∗u )+ (1−ϕ
∗)MSE (Tm) , (21)

where
MSE (T ∗u ) =S4

y f ∗2 (λ040− 1)+ S4
z

�

f2− f ′2
�

(λ004− 1) I 2
2

+ 2S2
y S2

z

�

f2− f ′2
�

(λ022− 1) I2.
(22)

Also MSE (Tm) is shown in Equation (13).
The minimum MSE of estimator T ∗ is derived as

MSE (T ∗)M i n = ϕ
∗2MSE (T ∗u )M i n +(1−ϕ

∗)2 MSE (Tm)M i n , (23)

where

MSE (T ∗u )M i n = S4
y

�

f ∗2 (λ040− 1)−
�

f2− f ′2
� 1
(λ004− 1)

(λ022− 1)2
�

(24)

and the minimum MSE of Tm is shown in Equation (17).
Further,

ϕ∗o pt =
MSE (Tm)M i n

MSE (T ∗u )M i n +MSE (Tm)M i n

. (25)

Thus, the minimum MSE of the estimator T ∗ is defined as

MSE (T ∗)o pt =
MSE (T ∗u )M i n ·MSE (Tm)M i n

MSE (T ∗u )M i n +MSE (Tm)M i n

. (26)
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PROPOSITION 2. When random non-response occurs only on the second (current) oc-
casion, the classes of estimators of population variance S2

y on the current occasion may be
formulated as

T ∗∗ = ϕ∗∗Tu +(1−ϕ
∗∗)T ∗∗m , (27)

where T ∗∗m = F ∗∗
�

s2
ym

, s2
xm

, s∗2xn
, s2

zn
, s2

n′

�

T = ϕTu + (1−ϕ)Tm and, ϕ∗∗ (0≤ ϕ∗∗ ≤ 1) is an
unknown scalar (constant).

Properties of classes of estimators T ∗∗

The bias of the estimators T ∗∗m is derived as

B (T ∗∗m ) =
1
2

¦

�

S2
x

�2 (λ400− 1) ( f1K22+ f ∗1 K33+ 2 f ∗1 K23)

+
�

S2
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f K44+ f ′K55+ 2 f ′K45
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+ 2S2
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y S2
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�

+2S2
x S2
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f K24+ f ′K25+ f K34+ f ′K35

�	

.

(28)

The MSE of estimators T ∗∗ up to the first-order approximation is derived as

MSE (T ∗∗) = ϕ∗∗MSE (Tu )+ (1−ϕ
∗∗)MSE (T ∗∗m ) , (29)

where MSE (Tu ) is given in Equation (12) and

MSE (T ∗∗m ) = E
�

Tm − S2
y

�2
=
�

S2
y

�2
f1 (λ040− 1)

+
�

S2
x

�2 ( f1− f ∗1 ) (λ400− 1)K2
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f − f ′
�

(λ022− 1)K4.

(30)

Using the values of derivatives given in Equations (14), the MSE of the classes of estima-
tors T ∗∗ is derived as

MSE (T ∗∗)M i n = ϕ
∗∗2MSE (Tu )M i n +(1−ϕ

∗∗)2 MSE (T ∗∗m )M i n (31)

and

MSE (T ∗∗m )M i n =S4
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f1 (λ040− 1)+ ( f1− f ∗1 )
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(λ400− 1)
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−
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.
(32)
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Further, we have

ϕ∗∗opt =
MSE (T ∗∗m )M i n

MSE (Tu )M i n +MSE (T ∗∗m )M i n

(33)

and

MSE (T ∗∗)o pt =
MSE (Tu )M i n ·MSE (T ∗∗m )M i n

MSE (Tu )M n +MSE (T ∗∗m )M i n

. (34)

4.6. Efficiency comparisons

We check the performance of the suggested classes of estimators T ,T ∗ and T ∗∗ w.r.t the
estimator τ, which does not involve the auxiliary information and is proposed for the
complete response scenario. The estimator τ is defined as:

τ =ψτu +(1−ψ)τm , (35)

where τu = s2
yu

,τm = S2
ym

�

s2
xn

s2
xm

�

and ψ(0 ≤ ψ ≤ 1) is an unknown constant. The mean

squared error of the estimator τ is formulated as:

M (τ)M i n =
V (τu )M (τm)

V (τu )+M (τm)
, (36)

where
V (τu ) = S4

y [ f2 (λ040− 1)] (37)

and
M (τm) = S4

y [ f1 ∗ (λ400+λ040− 2λ220)+ f ∗ (2λ220−λ400)] . (38)

Thus, the P RE ′ s of the suggested estimators are as follows:

E =
�

M (τ)M i n

M (T )O pt

�

× 100, E∗ =
�

M (τ)M i n

M (T ∗)O pt

�

× 100, E∗∗ =
�

M (τ)M i n

M (T ∗∗)O pt .

�

× 100. (39)

5. NUMERICAL STUDY

For empirical study a numerical comparison is done to investigate by employing the
following two data sets taken from earlier studies in the literature. Data taken from
Murthy (1967) called population 1 here, and data considered from Sukhatme and
Sukhatme (1970), called population 2.

Population 1, data source: Murthy (1967), page-399.
Let y, x and z be the area under wheat in 1964,1963 and 1961, respectively. The data
statistics are given as:

N = 34,λ004 = 2.8082,λ400 = 2.9122,λ040 = 3.7256,
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λ022 = 2.9789,λ220 = 3.1045,λ202 = 2.7389

Population 2, data source: Sukhatme and Sukhatme (1970), page-185.
Let y, x and z are the area under wheat in 1937,1936 and 1931, respectively.
The data statistics are given as:

N = 34,λ040 = 3.5469,λ400 = 3.3815,λoo4 = 2.7425,

λ20 = 2.5068,λ02 = 2.6868,λ202 = 2.0652.

5.1. Simulation Study

By using the statistical software R we carried out simulation studies relevant to
our theoretical results. For our purpose data is generated from Normal (Gaussian)
distributions, with given parameters for the study and the auxiliary variables. The
population parameters for the data generated are given below:

Population 3
N = 50,λ040 = 3.0128,λ400 = 2.6061,λ004 = 2.5541,λ220 = 2.7023,λ02 = 2.6395,λ202 =
2.5195.

5.2. Interpretations of Empirical results

One can note from Table 1 and 2, that

(i) P RE ′ s increase with the decreasing values of n, n′, m, and u for constant values
of the non-response probabilities p1 and p2,

(ii) P RE ′ s decrease with increasing values of p2 for constant values of p1, n, n′, m,
and u ′,

(iii) P RE ′ s decrease with increasing values of p1 for constant values of p2, n, n′, m,
and u ′,

(iv) P RE ′ s increase with decreasing values of p2 for constant values of p1, n, n′, m,
and u ′,

(v) P RE ′ s increase with decreasing values of p1 for constant values of p2, n, n′, m,
and u ′.

Moreover, note that from Tables 3,4,5 and 6, it is obvious that the P RE ′ s follow the
same sequence as that of note from Table 1 and 2.

From Tables 7 we observe that our proposed classes of estimators are more effective
than the conventional one in absence of non-response also.
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TABLE 1
Percentage Relative Efficiencies (E) of the proposed estimator when non-response occurs on both

occasions.

Population� I II

n=20, n′=27, u ′=15 P1 P1
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

11 9 0.05 179.53 165.48 153.08 142.06 148.39 146.23 143.96 141.57
0.10 175.36 161.31 148.91 137.89 143.75 141.58 139.31 136.93
0.15 171.57 157.52 145.12 134.10 139.45 137.29 135.02 132.63
0.20 168.12 154.07 141.68 130.65 135.47 133.30 131.03 128.65

13 7 0.05 197.48 179.18 163.44 149.75 162.81 159.25 155.56 151.75
0.10 193.63 175.32 159.58 145.89 159.12 155.56 151.88 148.06
0.15 190.16 171.86 156.11 142.42 155.72 152.16 148.47 152.16
0.20 187.04 168.73 152.99 139.30 152.57 149.00 145.32 141.51

15 5 0.05 212.98 190.17 170.99 150.63 177.05 171.50 165.86 160.12
0.10 209.85 187.04 167.86 151.51 174.61 169.05 163.41 157.68
0.15 207.05 184.24 165.06 148.71 172.34 166.79 161.14 155.41
0.20 204.53 181.73 162.55 146.19 170.23 164.68 159.03 153.30

n=13, n′=24, u ′=8
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

6 7 0.05 174.47 163.96 154.24 145.21 131.72 130.48 129.17 127.78
0.10 172.16 161.66 151.94 142.90 128.83 127.60 126.29 124.90
0.15 169.93 159.43 149.70 140.67 126.03 124.79 123.48 122.09
0.20 167.76 157.26 147.53 138.50 123.30 122.06 120.75 119.36

8 5 0.05 215.27 198.72 183.89 170.51 163.37 160.63 157.78 154.79
0.10 212.96 196.42 181.58 168.20 160.96 158.22 155.36 152.37
0.15 210.76 194.21 179.37 166.00 158.62 155.89 153.03 150.04
0.20 208.65 192.10 177.27 163.89 156.38 153.64 150.78 147.80

10 3 0.05 255.27 231.73 211.17 193.06 198.51 193.18 187.72 182.13
0.10 253.76 230.22 209.66 191.55 197.32 191.98 186.52 180.93
0.15 252.31 228.77 208.21 190.10 196.16 190.82 185.36 179.77
0.20 250.92 227.38 206.83 188.71 195.03 189.70 184.23 178.64

n=10, n′=22, u ′=7
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

4 6 0.05 171.73 163.65 155.98 148.71 128.59 127.78 126.92 126.00
0.10 169.29 161.21 153.54 146.27 125.59 124.78 123.92 123.00
0.15 166.92 158.83 151.17 143.89 122.67 121.86 121.00 120.08
0.20 164.60 156.52 148.85 141.58 119.81 119.00 118.14 117.23

6 4 0.05 227.33 212.12 198.25 185.56 168.52 166.15 163.68 161.10
0.10 225.03 209.81 195.94 183.26 166.22 166.86 161.39 158.81
0.15 222.81 207.60 193.73 181.04 164.00 161.64 159.17 156.59
0.20 220.69 205.47 191.60 178.92 161.85 159.48 157.01 154.43

8 2 0.05 283.88 259.86 238.61 219.68 216.33 210.81 210.17 199.40
0.10 283.88 259.86 238.61 219.68 216.33 210.81 210.17 199.40
0.15 283.88 259.86 238.61 219.68 216.33 210.81 210.17 199.40
0.20 283.88 259.86 238.61 219.68 216.33 210.81 210.17 199.40
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TABLE 2
Percentage Relative Efficiencies of the proposed estimator (E) when non-response occurs on both

occasions (Simulated Data).

Population III

n=20, n′=27, u ′=15 P1
m ↓ u ↓ P2 0.05 0.1 0.15 0.2

11 9 0.05 157.29 146.60 136.71 127.54
0.10 155.31 144.62 134.73 125.56
0.15 153.42 142.74 132.85 123.68
0.20 151.63 140.94 131.06 121.89

13 7 0.05 171.97 159.09 147.30 136.46
0.10 170.25 157.37 145.58 134.73
0.15 168.62 155.79 143.95 133.10
0.20 167.07 154.59 142.40 131.56

15 5 0.05 185.89 170.73 156.97 144.41
0.10 184.59 169.45 155.69 143.13
0.15 183.38 168.23 154.47 141.92
0.20 182.23 167.08 153.32 146.77

n = 13, n′ = 24, u ′ = 8 P1
m ↓ u ↓ P2 0.05 0.1 0.15 0.2

6 7 0.05 167.57 156.77 146.73 137.36
0.10 166.17 155.38 145.33 135.96
0.15 164.80 154.00 143.96 134.59
0.20 163.45 152.66 142.61 133.25

8 5 0.05 201.61 186.40 172.52 159.80
0.10 200.37 185.17 171.29 158.57
0.15 199.17 183.97 170.09 157.37
0.20 198.00 182.80 168.92 156.20

10 3 0.05 236.56 216.48 198.39 182.00
0.10 235.90 215.82 197.73 181.35
0.15 235.27 215.18 197.09 180.71
0.20 234.64 214.56 196.47 180.09

n = 10, n′ = 22, u ′ = 7 P1
m ↓ u ↓ P2 0.05 0.1 0.15 0.2

4 6 0.05 168.43 158.76 149.69 141.15
0.10 166.99 157.32 148.24 139.71
0.15 165.57 155.90 146.82 138.29
0.20 164.17 154.50 145.43 136.89

6 4 0.05 217.98 202.14 187.66 174.37
0.10 216.82 200.98 186.50 173.21
0.15 215.69 199.84 185.36 172.08
0.20 214.59 198.74 184.26 170.97

8 2 0.05 270.88 247.82 227.12 208.43
0.10 270.88 247.82 227.12 208.43
0.15 270.88 247.82 227.12 208.43
0.20 270.88 247.82 227.12 208.43
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TABLE 3
Percentage Relative Efficiencies (E∗) of the estimator T ∗ when non-response occurs only on the second

occasion.

Population� I II

n = 20, n′ = 27, u ′ = 15 P1 P1
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

11 9 183.20 169.15 156.75 145.73 152.39 150.23 147.96 145.57
13 7 200.91 182.60 166.86 153.17 165.99 162.42 158.73 154.93
15 5 215.76 192.95 173.77 157.42 179.15 173.60 167.95 162.22

n = 13, n′ = 24, u ′ = 8
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

6 7 176.36 165.86 156.13 147.10 134.08 132.85 131.54 130.15
8 5 217.20 200.65 185.81 172.44 165.37 162.63 159.77 156.79
10 3 256.53 232.10 212.44 194.33 199.50 194.16 188.70 183.11

n = 10, n′ = 22, u ′ = 7
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
4 6 173.73 165.65 157.98 150.71 131.03 130.23 129.36 128.45
6 4 229.25 214.03 200.16 187.48 170.40 168.03 165.56 162.98
8 2 283.88 259.86 238.61 219.68 216.33 210.81 205.17 199.40

TABLE 4
Percentage Relative Efficiencies (E∗) of the estimator T ∗ when non-response occurs only on the second

occasion (simulated data)

Population� III

n = 20, n′ = 27, u ′ = 15 P2
m ↓ u ↓ 0.05 0.1 0.15 0.2

11 9 194.09 189.73 185.70 181.97
13 7 213.74 209.16 205.01 201.22
15 5 231.79 227.43 223.53 220.02

n = 13, n′ = 24, u ′ = 8
m ↓ u ↓ 0.05 0.1 0.15 0.2

6 7 187.07 184.74 182.46 180.24
8 5 239.66 237.12 234.69 232.36
10 3 284.96 283.00 281.13 279.34

n = 10,n′ = 22, u ′ = 7
m ↓ u ↓ 0.05 0.1 0.15 0.2

4 6 198.22 195.84 193.51 191.23
6 4 260.81 258.28 255.85 253.51
8 2 329.36 329.37 329.37 329.37
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TABLE 5
Percentage Relative Efficiencies (E∗∗) of the estimator T ∗∗ when non-response occurs only on the first

occasion.

Population� I II

n = 20, n′ = 27, u ′ = 15 P1 P2
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

11 9 183.20 169.15 156.75 145.73 152.39 150.23 147.95 145.57
13 7 200.91 182.60 166.86 153.17 165.98 162.42 158.74 154.93
15 5 215.76 192.95 173.77 157.42 179.15 173.59 167.95 162.22

n = 13, n′ = 24, u ′ = 8
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

6 7 176.36 165.86 156.13 147.10 134.08 132.85 131.54 130.15
8 5 217.20 200.65 185.81 172.44 165.37 162.63 159.77 156.79
10 3 256.53 232.10 212.44 194.33 199.50 194.16 188.70 183.11

n = 10, n′ = 22, u ′ = 7
m ↓ u ↓ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

4 6 173.73 165.65 157.98 150.71 131.04 130.23 129.36 128.45
6 4 229.25 214.03 200.16 187.48 170.40 168.04 165.54 162.98
8 2 283.88 259.86 238.61 219.68 216.33 210.81 205.17 199.40

TABLE 6
Percentage relative efficiencies (E∗∗) of estimator T ∗∗ when non-response occurs only on the first

occasion (Simulated Data).

Population� III

n = 20, n′ = 27, u ′ = 15 P1
m ↓ u ↓ 0.05 0.1 0.15 0.2

11 9 159.38 148.69 138.80 129.63
13 7 173.79 160.91 149.12 138.28
15 5 187.22 172.08 158.32 145.76

n = 13, n′ = 24, u ′ = 8
m ↓ u ↓ 0.05 0.1 0.15 0.2

6 7 168.99 158.20 148.15 138.79
8 5 202.87 187.67 173.79 161.07
10 3 237.23 217.15 199.06 182.67

n = 10, n′ = 22, u ′ = 7
m ↓ u ↓ 0.05 0.1 0.15 0.2

4 6 169.90 160.23 151.15 142.61
6 4 219.17 203.33 188.84 175.56
8 2 270.88 247.82 227.12 208.43
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TABLE 7
Percentage Relative Efficiencies (E) of proposed estimator, when there is no non response on both

occasions.

Population� I II III

n = 20, n′ = 27, u ′ = 15
m ↓ u ↓

11 9 179.66 129.98 170.97
13 7 202.39 146.97 187.91
15 5 224.24 165.63 203.97

n = 13, n′ = 24, u ′ = 8
m ↓ u ↓

6 7 174.35 116.69 180.63
8 5 219.74 148.04 219.59
10 3 266.03 185.34 259.65

n = 10, n′ = 22, u ′ = 7
m ↓ u ↓

4 6 166.63 110.76 180.21
6 4 266.62 149.70 236.59
8 2 289.96 200.07 296.72

6. CONCLUSION

From the above discussion, we may conclude that the suggested class of estimators T , T ∗

and T** contributes significantly to deal with the different realistic situations of random
non-responses while estimating population variance on current (second) in two-occasion
successive sampling using a two-phase setup. For multi-phase case readers refer to Bhatti
(2012). This, the suggested classes of estimators in comparison with the estimator τ are
highly rewarding in terms of increased precision of the estimates with reduced cost of
the survey even when non-responding units are increasing on either of the occasions.
Hence, the proposed class of estimators may be recommended for practical applications
to the survey practitioners.
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