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MATRIX POLYNOMIALS AND THEIR INVERSION: THE ALGEBRAIC
FRAMEWORK OF UNIT-ROOT ECONOMETRICS REPRESENTATION
THEOREMS (*)

M. Faliva, M. G. Zoia

1. WHAT IS THIS PAPER FOR?

Classical proofs of unit-root econometrics representation theorems – in the
wake of Granger’s seminal paper and Johansen’s key contributions – are some-
what cumbersome. Thus an attempt to develop a more convenient analytical
toolkit to tackle the matter looks attractive and worth exploring. This is what this
paper aims to achieve.

2. MATRIX POLYNOMIALS: PRELIMINARIES

Definition 2.1.  A matrix polynomial of degree K in the scalar argument z is an
expression of the form

A (z) = Ak
k

K

=
∑

0

zk (2.1)

where the ′Ak s are (square) coefficient matrices and AK ≠ 0.
A Taylor series expansion of the matrix polynomial (1) about z = 1 leads to the

representation

A (z) = A (1) + ( )1
0

−
=
∑ z k

k

K

⋅ (– 1)k ⋅ 1

k!
A(k) (1)  (2.2)

where

A(k) (1) = 
∂
∂






=

k

k

z

z

z

A( )

1

= k!
j

kj k

K 








=
∑ ⋅ Aj (2.3)

                
(*)  Support from the Italian Research Council (CNR) is gratefully acknowledged.
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The dot-matrix notation Ȧ  (1), ˙̇A (1) will be henceforth used for k = 1, 2.
The following reparametrizations

A (z) = Q (z) ⋅ (1 – z) + A (1) (2.4)

A (z) = ΨΨΨΨ (z) ⋅ (1 – z)2 – Ȧ  (1) ⋅ (1 – z) + A (1) (2.5)

where

Q (z) = ( )1 1

1

− −

=
∑ z k

k

K

⋅ (– 1)k ⋅ 1

k!
A(k) (1), Q (1) ≡ – Ȧ  (1) (2.6)

ψψψψ (z) = ( )1 2

2

− −

=
∑ z k

k

K

⋅ (– 1)k ⋅ 1

k!
A(k) (1), ΨΨΨΨ (1) ≡ 1

2
˙̇A  (1) (2.7)

are of special interest for the subsequent analysis.

Assumption 2.1.  We will henceforth assume that the roots of the characteristic
polynomial

π (z) = det {A (z)} (2.8)

lie either outside or on the unit circle and, in the latter case, are equal to one.

Theorem 2.1.  Under the assumption above, the inverse of the matrix polynomial
A (z) can be given the following Laurent form

A–1 (z) = 
1

11 ( )−
⋅

=

≤

∑
z j j

j

k K

principal part

N

1 244 344

 + z i
i

i

regular part

⋅
=

∞

∑ M
0

1 24 34

, (2.9)

in a deleted neighborhood of z = 1, where the coefficient matrices Mi of the regu-
lar part have exponentially decreasing entries and the coefficient matrices Nj of
the principal part disappear if A (1) is of full rank.

Proof. The statements of the theorem are matrix extensions of classical results of
Laurent series theory (see, e.g., Jeffrey, 1992).

The following generalized-inverse-like property

lim ( )
( )

( )
z

j j
i

i
ij

K

z
z

z z
→ =

∞

=
⋅

−
⋅ + ⋅












⋅













∑∑
1 01

1

1
A N M A  = lim

z→1

A (z) (2.10)
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of the Laurent expansion, in the right-hand side of (2.9), at the isolated singular-
ity z = 1, is noteworthy.

For notational convenience the regular part of the Laurent expansion will be
henceforth written M (z).

Special forms of the Laurent expansion (2.9) are:

(i) A–1 (z) = 
1

1( )− z
⋅ N1 + M (z) (2.11)

which corresponds to the case of a simple pole at z = 1, with

N1 = lim
z→1

 {(1 – z) ⋅ A–1(z)} (2.12)

playing the role of the (matrix) residue.

(ii) A–1 (z) = 
1

11

2

( )−=
∑

z j
j

⋅ Nj + M (z) (2.13)

which corresponds to the case of a second-order pole at z = 1, with

N2 = lim
z→1

 {(1 – z)2 ⋅ A–1(z)} (2.14)

N1 = – lim
z→1

d z z

dz

{( ) ( )}1 2 1− ⋅ −A
(2.15)

as coefficient matrices of the principal part.

3. CHARACTERIZATION OF MATRIX-POLYNOMIAL INVERSES ABOUT A POLE

Lemma 3.1.  Let A be a square matrix of order n and rank ρ < n. Then there exist
pairs of full column-rank n × ρ matrices B and C such that

A = BC′ (3.1)

The representation (3.1) is called rank factorization of A.
A specular result holds for the Moore-Penrose generalized inverse Ag  of A,

namely

Ag = (BC′)g = (C′)g ⋅ B g  = C ⋅ (C′C)–1 ⋅ (B′B)–1 ⋅ B′ (3.2)

Proof. Result (3.1) is well-known (see, e.g., Rao and Mitra, 1971, p. 5). Factoriza-
tion (3.2) is due to Greville (1960).
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Corollary 3.1.1.  With A as in Lemma 3.1 the following rank factorizations hold

(i) AAg = BB g = B ⋅ (B ′B)–1 ⋅ B ′ (3.3)
(ii)    AgA = (C ′)g C ′ = C ⋅ (C ′C)–1 ⋅ C ′ (3.4)

(iii)  I – AAg = I – BB g = B⊥ B⊥
g (3.5)

(iv) I – AgA = I – (C ′)g C ′ = ( ′⊥C )g ⋅ ′⊥C (3.6)

where B⊥ and C⊥ are the orthogonal complements of B and C, respectively.
Proof. Proofs of (i) and (ii) are simple and are omitted. To prove (iii) observe that
(see Pringle and Rayner, 1971, corollary 4, p. 44)

[B, B⊥]g = [B, B⊥]–1 = 
B

B

g

g
⊥













(3.7)

Proof of (iv) is similar.

Theorem 3.2.   Consider the matrix polynomial

A (z) = Q (z) ⋅ (1 – z) + BC ′′′′ (3.8)

where BC′′′′ is a rank factorization of A (1). Let the inverse of A (z) have a simple
pole at the point z = 1, which entails the Laurent series expansion about z = 1

A–1 (z) = 
1

1− z
N1 + M (z), N1 ≠ 0 (3.9)

Then the following hold:

(a) The matrix-residue N1 satisfies

A (1) N1 = 0 (3.10)
N1 A (1) = 0 (3.11)

Hence, the following representation

N1 = C⊥V ′⊥B (3.12)

holds for a suitable choice of V.

(b)    The coefficient matrix M (1) = M i
i=

∞

∑
0

 satisfies

C′M (1) B = I (3.13)

Proof. Since the equalities
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A (z) ⋅ [ 1

1− z
N1 + M (z)] = I (3.14)

[
1

1− z
N1 + M (z)] ⋅ A (z) = I (3.15)

hold true in a deleted neighborhood of z = 1, the term containing the negative
power of (1 – z) in the left-hand sides of (3.14) and (3.15) must vanish, which
occurs if N1 satisfies (3.10) and (3.11). This proves  the first part of (a).

According to lemma 2.3.1 in Rao and Mitra, 1971, the equations (3.10) and
(3.11) have the common solution

N1 = [I – Ag (1) A (1)] ⋅ ΛΛΛΛ ⋅ [I – A (1) Ag (1)] (3.16)

where ΛΛΛΛ is arbitrary. In view of corollary 3.1.1 the solution can be given the form

(3.12) where V = C⊥
gΛΛΛΛ ( ′⊥B )g. This proves the second part of (a).

Finally, by applying (2.10) simple computations give

A (1) M (1) A (1) = A (1) (3.17)

which leads to (3.13) by pre and postmultiplication by B g  and (C′)g, respectively.
This proves (b)

Corollary 3.2.1.  Either pre or postmultiplying A–1(z) by A (1) the isolated
singularity at z = 1 disappears leading to the Taylor expansions

A–1 (z) B = M (z) B (3.18)
C′A–1 (z) = C′M (z) (3.19)
C′A–1 (z) B = C′M (z) B (3.20)

Proof. Proof is straightforward in view of (3.10) and (3.11).

Theorem 3.3.  Let the inverse of the matrix polynomial

A (z) = ΨΨΨΨ (z) ⋅ (1 – z)2 – Ȧ  (1) ⋅ (1 – z) + BC′ (3.21)

have a second-order pole at the point z = 1, which entails the Laurent series ex-
pansion about z = 1

A–1 (z) = 
1

1
2

( )− z
N2 + 

1

1( )− z
 N1 + M (z) (3.22)

Then the following hold:
(a) The principal-part matrices N2 and N1 satisfy
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A (1) N2 = 0 (3.23)
N2A (1) = 0 (3.24)
Ȧ  (1) N2 = A (1) N1 (3.25)

N2 Ȧ  (1) = N1A (1) (3.26)

(b) N2 ≠ 0 ⇒ det [ ′⊥C Ȧ  (1) B⊥] = 0 (3.27)
(c) N2 has the representation

N2 = C⊥S⊥W ′⊥R ′⊥B (3.28)

for a suitable choice of W, given the rank factorization

′⊥C Ȧ  (1) B⊥ = RS′ (3.29)

(d) N1 has the representation

N1 = Ag (1) Ȧ  (1) N2 + N2 Ȧ  (1) Ag (1) + C⊥U ′⊥B (3.30)

for a suitable choice of U.

(e) The coefficient matrix M (1) = M i
i=

∞

∑
0

 satisfies

C′M (1) B – B g Ȧ  (1) N2 Ȧ  (1) (C g)′ = I (3.31)

Proof. Since the equalities

A (z) ⋅ [ 1

1 2( )− z
N2 + 

1

1− z
N1 + M (z)] = I (3.32)

[
1

1 2( )− z
N2 + 

z−1

1
N1 + M (z)] ⋅ A (z) = I (3.33)

hold true in a deleted neighborhood of z = 1, the terms containing the negative
powers of (1 – z) in the left-hand sides of (3.32) and (3.33) must vanish, which
occurs if N2 and N1 satisfy (3.23), (3.24), (3.25) and (3.26). This proves (a).

Using the same argument as in the proof of (3.12) N2 can be written as

N2 = C⊥ΩΩΩΩ ′⊥B (3.34)

where ΩΩΩΩ is arbitrary.
Substituting (3.34) into (3.25) and pre and B ′postmultiplying by ′⊥B  and

( ′⊥B )g, respectively, we get

′⊥B Ȧ  (1) C⊥ ΩΩΩΩ = 0 (3.35)
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By inspection of (3.34) and (3.35) the conclusion

N2 ≠ 0⇒ΩΩΩΩ ≠ 0⇒ det ( ′⊥B Ȧ  (1) C⊥) = 0 (3.36)

is easily drawn. This proves (b).
The result

ΩΩΩΩ ′⊥B Ȧ  (1) C⊥ = 0 (3.37)

which is specular to (3.35), can be derived similarly.
Let

′⊥B Ȧ  (1) C⊥ = RS′ (3.38)

be a rank factorization of ′⊥B Ȧ  (1) C⊥. Hence (3.35) and (3.37) can be more
conveniently rewritten

′ =
=





S

R

Ω
Ω

0

0
(3.39)

and, in view of the usual arguments, ΩΩΩΩ can be written as

ΩΩΩΩ = S⊥W ′⊥R (3.40)

where W is arbitrary.
Substituting (3.40) into (3.34) eventually leads to (3.28). This proves (c).
According to Theorem 2.3.3 in Rao and Mitra, 1971, the equations (3.25) and

(3.26) have the common solution

N1 = Ag(1) Ȧ (1) N2 + N2 Ȧ (1) Ag(1) – Ag(1) A (1) N2 Ȧ (1) Ag(1)+
             +[I – Ag(1) A(1)] ⋅ ΦΦΦΦ ⋅ [I – A (1) Ag(1)] (3.41)

where ΦΦΦΦ is arbitrary. In view of (3.23) and of Corollary 3.1.1 the solution can be

given the form (3.30) where U = C⊥
gΦΦΦΦ ( ′⊥B )g. This proves (d).

Finally by applying (2.10) and reminding (3.23) and (3.26), simple computa-
tions give

– Ȧ  (1) N2 Ȧ  (1) + A (1) M (1) A (1) = A (1) (3.42)

which leads to (3.31) by pre and postmultiplying by B g  and (C′)g, respectively.
This proves (e).
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Corollary 3.3.1 – The following statements are true:

(i) Should A–1 (z) be either premultiplied by ( )C S⊥ ⊥ ⊥′  or postmultiplied by

(B⊥R⊥)⊥ then the isolated singularity at z = 1 reduces to a simple pole, in view of
(3.28). The following Laurent expansions

( )C S⊥ ⊥ ⊥′ ⋅A–1(z) =
1

1− z
( )C S⊥ ⊥ ⊥′ ⋅ [Ag(1) Ȧ  (1)N2+ C⊥U ′⊥B ]+

+ ( )C S⊥ ⊥ ⊥′ ⋅M(z) (3.43)

A–1(z) (B⊥R⊥)⊥ = 
1

1− z
⋅ [N2 Ȧ  (1)Ag(1) + C⊥U ′⊥B ] (B⊥R⊥)⊥+

 +M( z) ⋅ (B⊥R⊥)⊥ (3.44)
hold accordingly.

(ii) Similar conclusions are drawn, in view of (3.34), by pre/postmultiplying
by C′ and B (which incidentally are submatrices of ( )C S⊥ ⊥ ⊥′  and (B⊥R⊥)⊥, respec-
tively).

This eventually leads to the noteworthy expansions:

C′A–1(z) = 
1

1− z

B g Ȧ  (1)N2 + C′M (z) (3.45)

A–1(z) B = 
1

1− z

N2 Ȧ  (1)(C′)g + M (z) B (3.46)

C′A–1(z) B = C′M (z) B (3.47)

(iii) Premultiplying A–1(z) by (1 – z) Ȧ  (1) – A (1) the isolated singularity at
z = 1 disappears. The following Taylor expansion

[(1 – z) B g Ȧ  (1) – C′ ] ⋅A–1(z) = B g Ȧ  (1)N1 – C′M (z) + (1 – z) B g Ȧ  (1) M(z) (3.48)

holds accordingly.

Proof. Proofs of (i) and (ii) are simple and are omitted. For what concerns propo-
sition (iii) simple computations show that

[(1 – z) Ȧ (1) – A (1)] ⋅ A–1 (z) = 
1

1− z
[ Ȧ (1)N2 – A (1)N1] + Ȧ (1)N1 +

+ [(1 – z) Ȧ  (1) – A (1)] ⋅ M (z) (3.49)

where the terms in (1 – z)–1 cancel out each other in view of (3.25). Hence (3.48)
follows by premultiplying both sides by B g .
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4.  THE COEFFICIENT-MATRICES ASSOCIATED TO FIRST AND SECOND ORDER POLES IN
MATRIX-POLYNOMIAL INVERSION

Lemma 4.1. Let A and D be square matrices of order n and m respectively, and B
and C two matrices of order n × m. Consider the partitioned matrix

P = 
A B

C D′









 (4.1)

Then any one of the following sets of conditions is sufficient for the existence
of P–1:

(a) Both A and its Schur complement E = D – C′A–1B are non singular ma-
trices.

(b) Both D and its Schur complement F = A – B D–1C′ are non singular ma-
trices.

(c) D is a null matrix, B and C are full column-rank matrices and H = ′⊥B AC⊥
is non singular.

Further the following results hold:

(i) Under (a) the partitioned inverse of P is expressible as follows

P–1 = 
A A BE C A A BE

E C A E

− − − − − −

− − −

+ ′ −
− ′











1 1 1 1 1 1

1 1 1
(4.2)

(ii) Under (b) the partitioned inverse of P is expressible as follows

P–1 = 
F F BD

D C F D D C F BD

− − −

− − − − − −

−
− ′ + ′











1 1 1

1 1 1 1 1 1
(4.3)

(iii) Under (c) the partitioned inverse of P is expressible as follows

P–1 = 
C H B I C H B A C

B I AC H B B AC H B A A C

⊥
−

⊥ ⊥
−

⊥

⊥
−

⊥ ⊥
−

⊥

′ − ′ ⋅ ′
− ′ ′ − ⋅ ′











1 1

1 1

( ) ( )

( ) ( ) ( )

g

g g g
(4.4)

(iv) If both (a) and (b) hold then

(A – BD–1C′)–1 = A–1 + A–1B ⋅ (D – C′A–1B)–1 ⋅ C′A–1 (4.5)

(v) If both (c) and (a) hold then

C⊥ ⋅ ( ′⊥B AC⊥)–1 ⋅ ′⊥B  = A–1 – A–1B ⋅ (C′A–1B)–1 ⋅ C′A–1 (4.6)
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(vi) With D = – λI, let (b) hold in a deleted neighborhood of λ = 0 and (c)
hold in λ = 0, then

C⊥ ⋅ ( ′⊥B AC⊥)–1 ⋅ ′⊥B  = lim
λ→ 0

{λ (λA + BC′)–1} (4.7)

Proof. The partitioned inversion formulas (4.2) and (4.3) under the assumption
(a) and (b) respectively, are standard results of the algebraic toolkit of econometri-
cians (see, e.g., Faliva, 1987).

For the proof of the inversion formula (4.4) under the assumptions (c) see
Faliva and Zoia (2002, Theorem 1). Result (4.5) arises from equating the upper
diagonal blocs of the right-hand sides of (4.3) and (4.2). Result (4.6) arises from
equating the upper diagonal blocs of the right-hand sides of (4.4) and of (4.2) for
D = 0.

For the proof of (4.7) see Faliva and Zoia (2002, section 2).

Theorem 4.2.   Let

A( )
( , )

z
n n

 = (1 – z) ⋅ Q (z) + A (1) (4.8)

If

r (A (1)) = ρ < n ⇒ A (1) = B
( , )n ρ

′C
( , )ρ n

, r (B) = r (C) = ρ (4.9)

r ( ′⊥B Ȧ  (1) C⊥) = n – ρ (4.10)

then the inverse of the matrix polynomial (4.8) has the Laurent expansion

A–1 (z) = 
1

1− z
N1 + M (z) (4.11)

about the simple pole z = 1 with matrix-residue N1 given by

N1 = – C⊥ ⋅ [ ′⊥B Ȧ  (1) C⊥]–1 ⋅ ′⊥B (4.12)

Proof. Simple computations show that

′⊥B A(z) C⊥ = (1 – z) ⋅ ′⊥B Q (z) C⊥ (4.13)

where the matrix ′⊥B Q (z) C⊥ turns out to be non singular for z = 1 under the
rank condition (4.10), since

′⊥B Q (1) C⊥ = – ′⊥B Ȧ  (1) C⊥ (4.14)

According to (2.12) the matrix-residue for a simple pole at z = 1 is given by:
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N1 = lim
z→1

{(1 – z) A–1(z)} = lim
z→1

{(1 – z) [(1 – z) Q (z) + BC′]–1} (4.15)

and straightforward application of result (vi) of lemma 4.1 leads to (4.12) in view
of (4.14).

For an alternative proof check that, by (4.6) of lemma 4.1 and in view of cor-
ollary 3.2.1, the following holds

N1 = lim
z→1

{(1 – z) A–1(z)} = lim
z→1

{(1 – z) C⊥ ⋅ [ ′⊥B A (z) C⊥]–1 ⋅ ′⊥B  +

+ (1 – z) A–1(z) B ⋅ [C′A–1(z) B]–1 ⋅ C′A–1(z)} =

= lim
z→1

{C⊥[ ′⊥B Q (z) C⊥]–1 ⋅ ′⊥B + (1 – z) M (z) B ⋅ [C′M (z) B]–1 ⋅ C′M (z)} = 

= – C⊥ ⋅ [ ′⊥B Ȧ  (1) C⊥]–1 ⋅ ′⊥B (4.16)

Theorem 4.3.   Let

A( )
( , )

z
n n

 = ΨΨΨΨ (z) ⋅ (1 – z)2 – Ȧ  (1) ⋅ (1 – z) + A (1) (4.17)

If

r (A (1)) = ρ < n ⇒ A (1) = B
( , )n ρ

′C
( , )ρ n

, r (B) = r (C) = ρ (4.18)

r ( ′⊥B Ȧ  (1) C⊥) = ϑ < n – ρ ⇒ ′⊥B Ȧ  (1) C⊥=

= R
( , )n−ρ ϑ

′
−

S
( , )ϑ ρn

, r (R) = r (S) = ϑ (4.19)

r ( ′⊥R ′⊥B ⋅ [ 1

2
˙̇A  (1) – Ȧ  (1) Ag (1) Ȧ  (1) ] ⋅ C⊥S⊥) = n – ρ – ϑ (4.20)

then the inverse of the matrix polynomial (4.17) has the Laurent expansion

A–1 (z) = 
1

1 2( )− z
N2 + 

1

1− z
N1 + M (z) (4.21)

about the second order pole z = 1 with principal-part matrices N2 and N1 given by

N2 = C⊥S⊥ ⋅ { ′⊥R ′⊥B ⋅ [ 1

2
˙̇A  (1) – Ȧ  (1) Ag (1) Ȧ  (1) ] ⋅ C⊥S⊥}–1 ⋅ ′⊥R ′⊥B (4.22)

N1 = Ag (1) Ȧ  (1) N2 + N2 Ȧ  (1) Ag (1) + C⊥U ′⊥B (4.23)

for a suitable choice of U.



 M. Faliva, M.G. Zoia198

Proof. Let us remember the statements of corollary 3.3.1 together with (3.31),
namely

A–1(z) B = 
1

1− z
N2 Ȧ  (1) (C g)′ + M (z) B (4.24)

C′A–1(z) = 
1

1− z
B g Ȧ  (1) N2 + C′M (z) (4.25)

C′A–1(z) B = C′M (z) B (4.26)

C′M (1) B – B g Ȧ  (1) N2 Ȧ  (1) (C g)′ = I (4.27)

Then by applying result (v) of lemma 4.1 to the matrix polynomial (4.17) and
multiplying by (1 – z)2, we find after proper substitutions:

(1 – z)2 C⊥ ⋅ [ ′⊥B A (z) C⊥]–1 ⋅ ′⊥B  =

= (1 – z)2 A–1 (z) – [N2 Ȧ (1) (Cg)′ + (1 – z) M (z) B] ⋅
[C′M (z) B]–1 ⋅ [B g Ȧ  (1) N2 + (1 – z) C′M (z)] (4.28)

Taking the limit as z → 1 we get

lim
z→1

{(1 – z)2C⊥ ⋅ [ ′⊥B A (z) C⊥]–1 ⋅ ′⊥B } =

= N2 – N2 Ȧ  (1) (Cg)′ ⋅ [B g Ȧ  (1) N2 Ȧ  (1) (Cg)′ + I]–1 ⋅ B g Ȧ  (1) N2 (4.29)

But

N2 – N2 Ȧ (1) (Cg)′ ⋅ [B g Ȧ (1) N2 Ȧ (1) (Cg)′ + I]–1 ⋅ B g Ȧ (1) N2 =

= lim
z→1

( )1 2−( z ⋅ {A–1(z) – A–1(z) Ȧ (1) (Cg)′ ⋅

⋅ [B g Ȧ (1) A–1(z) Ȧ (1) (Cg)′ + 
1

1 2( )− z
I]–1 ⋅ B g Ȧ (1) A − )1( )}z =

= lim
z→1

{(1 – z)2 ⋅ [A (z) + (1 – z)2 ⋅ Ȧ (1) Ag(1) Ȧ (1) ]–1} (4.30)

where the latter result is obtained by applying a by-product of result (iv) of
lemma 4.1, recalling the rank factorization (3.2).

Combining (4.29) and (4.30) gives:

lim
z→1

{(1 – z)2C⊥ ⋅ [ ′⊥B A (z) C⊥]–1 ⋅ ′⊥B } =

= lim
z→1

{(1 – z)2 ⋅ [A (z) + (1 – z)2 ⋅ Ȧ (1) Ag(1) Ȧ (1) ]–1} (4.31)

Now, replace the matrix polynomial A (z) in (4.31) by the matrix polynomial

Ã (z) = A (z) – (1 – z)2 ⋅ Ȧ (1) Ag (1) Ȧ (1) (4.32)
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Then the major result

lim
z→1

{(1 – z)2 ⋅ C⊥ ⋅ [ ′⊥B Ã (z) ′⊥C ]–1 ⋅ ′⊥B } = lim
z→1

[(1 – z)2 A–1 (z)] = N2 (4.33)

ensues.
Consider now the matrix ′⊥B Ã (z) C⊥ appearing in the left-hand side of (4.33).

Simple computations show that:

′⊥B Ã (z) C⊥ = (1 – z) ⋅ [(1 – z) ′⊥B Ψ̃ (z) C⊥ + RS′] (4.34)

where

Ψ̃ (z) = ΨΨΨΨ (z) + Ȧ  (1) Ag (1) Ȧ  (1) (4,35)

From (4.34) it follows that

(1 – z)2 ⋅ C⊥ ⋅ [ ′⊥B Ã (z) C⊥]–1 ⋅ ′⊥B  =

= C⊥ ⋅ {(1 – z) ⋅ [(1 – z) ′⊥B Ψ̃ (z) C⊥ + RS ′]–1}⋅B⊥ (4.36)

which, taking the limit as z → 1 and applying – under the rank condition (4.20)
– result (vi) of lemma 4.1 to the right-hand side, eventually gives:

N2 = C⊥S⊥ ⋅ { ′⊥R ′⊥B ⋅ [ 1

2
˙̇A (1) – Ȧ (1) Ag (1) Ȧ (1)] ⋅ C⊥S⊥}–1 ⋅ ′⊥R ′⊥B (4.37)

as

Ψ̃ (1) = ΨΨΨΨ (1) – Ȧ (1) Ag (1) Ȧ (1) (4.38)

and

ΨΨΨΨ (1) = 
1

2
˙̇A (1) (4.39)

This proves (4.22).
As regards the expression of N1, as quoted in (4.23), see proposition (d) of

theorem 3.3.

5.  REPRESENTATION THEOREMS OF UNIT-ROOT ECONOMETRICS REVISITED

Application of the results obtained so far to modelling integrated processes
leads to elegant closed-form solutions, a glimpse of which is given here below.
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Theorem 5.1. Any process yt ∼ I (d), with 0 ≤ d ≤ 2, specified as a VAR model,
namely

A (L ) yt = εεεεt (5.1)

where

A( )L
(n, n)

= ΨΨΨΨ (L)∇2 – Ȧ (1)∇ + A (1), ∇ = I – L, εεεεt ∼ WN (5.2)

has a closed-form representation such as:

yt = k1 + k2t + N2 ⋅ ( )t
t

+ −
≤
∑ 1 τ
τ

εεεεt + N1 ε τ
τ ≤
∑

t

+ M i
i=

∞

∑
0

εεεεt – i (5.3)

where Nj = 0 and kj = 0 if j > d, and k1 + k2t is the autonomous component associ-
ated with the unit roots.

The following major results hold true:

(i) yt ∼ I (0) (5.4)

under the rank condition

r [A (1)] = n (5.5)

(ii)
y

C y

t

t

I

I

∼

′ ∼




( )

( )

1

0
⇒ yt ∼ CI (1, 1) (5.6)

under the rank conditions

r [A (1)] = ρ < n (5.7)

r [ ′⊥B Ȧ (1) C⊥] = n – ρ (5.8)

which entail

N1 = – C⊥ ⋅ [ ′⊥B Ȧ (1) C⊥]–1 ⋅ ′⊥B (5.9)

k1 = N1v (5.10)

where the symbols have the same meaning as in sections 3 and 4 and v is a vector
depending on the initial conditions.

(iii)

y

C S y

B A y C y

t

g
t t

I

I

I

∼

′ ∼

∇ − ′ ∼









⊥ ⊥ ⊥

2

1

01

( )

˙ ( )

⇒ y

y

t

t

CI

PCI

∼
∼





( , )

( , )

2 1

2 0
(5.11)
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under the rank conditions

r [A (1)] ρ < n (5.12)

r [ ′⊥B Ȧ  (1) C⊥] = ϑ < n – ρ (5.13)

r { ′⊥R ′⊥B ⋅ [ 1

2
˙̇A  (1) – Ȧ (1) Ag (1) Ȧ  (1)] ⋅ C⊥S⊥} = n – ρ – ϑ (5.14)

which entail

N2 = C⊥S⊥ { ′⊥R ′⊥B ⋅ [ 1

2
˙̇A (1) – Ȧ  (1) Ag (1) Ȧ  (1)] ⋅ C⊥S⊥}–1 ′⊥R ′⊥B (5.15)

N1 = Ag (1) Ȧ  (1) N2 + N2 Ȧ  (1) Ag(1) + C⊥U ′⊥B , for a suitable choice of U (5.16).

k2 = N2v (5.17)

k1 = Ag (1) Ȧ  (1) k2 + C⊥w (5.18)

where PCI is an acronym for Polynomially CoIntegrated process and v and w are
vectors depending on the initial conditions.

Proof (hint). Basically the propositions quoted in the theorem can be established
by means of the algebraic toolkit developed in sections 3 and 4. As regards the
autonomous component of the solution (5.3), the classical theory of difference
equations applies with proper matrix technicalities.
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RIASSUNTO

Polinomi matriciali e loro inversione: i fondamenti analitici dei teoremi di rappresentazione
dell’econometria delle serie storiche

L’articolo affronta il problema dell’inversione con lo sviluppo di Laurent di un poli-
nomio matriciale in un intorno di una radice unitaria e perviene ad una caratterizzazione
delle matrici dei coefficienti della parte principale dello sviluppo suddetto in corrispon-
denza di un polo di primo e di secondo ordine.

Le espressioni in forma chiusa delle matrici all’oggetto vengono quindi derivate grazie
ad un recente risultato sull’inversione per parti (Faliva e Zoia, 2002), creando così i pre-
supposti per un’elegante formalizzazione di un teorema generale di rappresentazione per
processi (co)integrati fino al secondo ordine.

SUMMARY

Matrix polynomials and their inversion: the algebraic framework of unit-root econometrics rep-
resentation theorems

In this paper the issue of the inversion of a matrix polynomial about a unit root is
tackled by resorting to Laurent expansion.

The principal-part matrix coefficients associated with a simple and a second order pole
are properly characterized and closed-form expressions are derived by virtue of a recent
result on partitioned inversion (Faliva and Zoia, 2002).

This eventually sheds more light on the analytical foundations of unit-root economet-
rics which in turn paves the way to an elegant unified representation theorem for
(co)integrated processes up to the second order.


