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1. INTRODUCTION

Survival analysis plays an important role in many fields such as medicine, epidemiology,
biology, demography, economics, engineering and so forth. In many survival studies the
outcome of interest is the time to an event. Such events may be adverse, such as death,
recurrence of an illness, failure of an equipment, births, divorces, promotions and so
forth. In analyzing time to event (survival) data, however, because of possible censoring
rate (CR), the summary statistics may not have the desired statistical properties, such
as unbiasedness. So other methods to present the data have to be used. One way is to
estimate the underlying true distribution of survival time (T ) (Borovkova, 2002).

Let T be the survival time having a continuous distribution with finite expectation
and represents the time being in a given state or the time between two events. The dis-
tribution of the random variable T can be described in a number of equivalent ways.
Probability density function f (t ), survival function S(t ) or hazard function h(t ) char-
acterize the distribution of T . In survival analysis, it is often common to use survival
function,

S(t ) = P (T > t ) =
∫ ∞

t
f (x)d x, 0< t <∞ (1)

which gives the probability that failure will occur after time t . Many parametric and
non-parametric approximations are used to estimate survival function. The estimation
of the survival function turns into estimating the unknown parameters of the distribu-
tions for parametric distributed survival data.In generally, if the parameters of distribu-
tions are not known, they are usually estimated. The well known classical estimation
method is the maximum likelihood (ML). So the parameters of the distribution are usu-
ally estimated by the ML method.
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First of all, ML relies on numerical methods since there is no explicit solution to
the log-likelihood maximization problem. Second, the ML estimator is very sensitive
to outliers in the data. Empirical and simulation evidence for this is given in He and
Fung (1999), Shier and Lawrence (1984) and among others. Boudt et al. (2011) com-
plements this by deriving formal robustness measures. They consider the breakdown
point, which is defined as the smallest proportion of observations that needs to be re-
placed with arbitrary values in order for the estimation of λ orβ to be arbitrarily close
to zero (implosion) or infinity (ex-losing). It is easy to see that the breakdown point
of the ML estimator is 1/n→ 0. The influence function, which quantifies the effect of
small contaminations on the estimator, is considered as a second robustness measure .

The remainder of our paper is organized as follows. In the next section, we first
represent the methods used to estimate the parameters of Weibull distribution. In Sec-
tion 3 the estimation of survival function is given. We present the ML, quantile (Q) and
quantile least squares (QLS) estimators of scale and shape parameters for the survival
function in Section 3.1. We illustrate the proposed estimators with Hodgkin’s data in
Section 4. In Section 5, Monte Carlo studies that compare the survival function of the
Q and QLS estimators with the ML estimator of Weibull distribution are presented.
Finally, the results sum up in the last Section 6.

2. METHODOLOGY

Any distribution of non-negative random variables could be used to describe survival
time. If the assumption of a particular probability distribution for the data is valid,
inferences based on such assumption will be more precise (Collett, 2003). Throughout
the literature on survival analysis, certain parametric distributions such as exponential,
Gamma and Weibull have been widely used.

The simplest possible censored data distribution is exponential distribution. How-
ever, its constant hazard rate is improper and unrealistic in many cases. Gamma distri-
bution is another candidate distribution for censored data. Nevertheless, distribution
function or survival function of gamma distribution cannot be expressed in a closed
form if the shape parameter is not an integer. Since it is in terms of an incomplete
gamma function, one needs to obtain the distribution function, survival function or
the hazard rate by numerical integration. This makes gamma distribution little bit un-
popular compared to the Weibull distribution, which has a nice distribution function,
survival function and hazard function (Gupta and Kundu, 2001).

Weibull distribution, also known as Extreme Value Type III minimum distribution,
is widely used distribution in reliability and survival analysis. The Weibull distribution
was introduced by the Swedish physicist Weibull (1951). He claimed that his distribu-
tion applied to a wide range of problems and illustrated this point with seven examples
ranging from the strength of steel to the height of adult males in the British Isles (Aber-
nethy et al., 1983). It has been used in many different fields like material science, engi-
neering, physics, chemistry, meteorology,medicine, pharmacy, economics and business,
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quality control, biology, geology and geography (Almalki and Nadarajah, 2014).
The primary advantage of Weibull distribution is the ability to provide reasonably

accurate survival analysis and survival forecasts with extremely small samples. Solutions
are possible at the earliest indications of a problem without having to "crash a few more".
Small samples also allow cost effective component testing. For example, "sudden death"
Weibull tests are completed when the first failure occurs in each group of components,
(say,groups of four bearings). If all the bearings are tested to failure, the cost and time
required is much greater. Second advantage of Weibull is that it provides a simple and
useful graphical plot of the failure data. The data plot is extremely important and partic-
ularly informative. The horizontal scale is a measure of life or ageing. The vertical scale
is the cumulative percentage failed. The slope of the line, β, is particularly significant
and may provide a clue to the physics of the failure (Abernethy et al., 1983). Another
advantage is that the Weibull probability distribution of censored data is defined by two
parameters; λ is called the scale parameter and β is called the shape parameter. These
two parameters provide additional flexibility that potentially increases the accuracy of
the description of collected censored data (Bain, 1976).

The probability density function of Weibull distribution has the form

f (t ) =
β

λ

� t
λ

�β−1
exp
�

− (t/λ)β
�

, (2)

where t ,λ,β> 0. Weibull cumulative distribution function is given by

F (t ) = 1− exp
�

− (t/λ)β
�

(3)

and survival function is then

S(t ) = exp
�

− (t/λ)β
�

. (4)

The mean and variance of a Weibull distribution can be expressed as

E(t ) = λΓ (1+
1
β
) (5)

V (t ) = λ

�

Γ (1+
2
β
)− (Γ (1+ 1

β
))2
�

, (6)

where Γ is the gamma function. Weibull distribution has broader application since it
does not assume a constant hazard rate, unlike exponential distribution. So that, the
hazard function and corresponding cumulative hazard and corresponding cumulative
hazard functions are,

h(t ) =
β

λ

� t
λ

�β−1
, (7)

H (t ) =
1
λβ

tβ. (8)
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When β = 1, the hazard function remains constant as time increases and Weibull
and the exponential survival probabilities are identical. Weibull distribution allows the
hazard function to increase when β > 1 with increasing time. Human mortality and
disease patterns typically have increasing hazard rates with age. Whenβ< 1, the hazard
function decreases also in a non-linear pattern with increasing time. For example, the
risk of a recurrence of a tumour after surgery might decrease as time passes. Decreasing
hazard rates are less commonly encountered in epidemiology and medical survival data.

3. ESTIMATIONS OF SURVIVAL FUNCTION FOR WEIBULL DISTRIBUTION

The estimator of the survival function for Weibull distributed survival data is obtained
as follows by using Eq. (4):

Ŝ(t ) = exp

�

−
�

t/λ̂
�β̂
�

, (9)

where λ̂ and β̂ is the parameter estimators of Weibull distribution which are given in
Section 3.1. Survival function estimation based on ML estimators is obtained by using
Eq. (12) and Eq. (13). Survival function estimation based on Q estimators is obtained by
setting the parameter estimators given by Eq. (14) and Eq. (15). Finally, survival function
estimation based on QLS estimators is obtained by setting the parameter estimators
given by Eq. (20) and Eq. (19).

In order to obtain the variance of survival function, we use of a general result known
as Taylor series approximation to the variance of a function of a random variable. Ac-
cording to this result, the variance of a function g (X ) of the random variable X is given
by V {g (x)} ≈ {d g (X )/dX }2 V (X ) (Collett, 2003). In our study, the variance of the
survival function is obtained as follows:

V
¦

Ŝ(t )
©

≈

(

−exp
�

−t/λ̂
�β̂ β̂

λ̂β̂
t β̂−1

)2

ˆV (t ), (10)

where ˆV (t ) is the estimation for variance of survival time which has the Weibull distri-
bution.

As seen in Eq. (10) the variance of survival function is the function of the estimated
distribution parameters, λ̂ and β̂, and variance of the distribution V (t ). To obtain
the variance of survival function, firstly the parameter estimators of Weibull must be
obtained by using ML, Q and QLS methods.

3.1. The parameter estimators of Weibull distribution for the censored data

ML estimators of the Weibull parameters are the most efficient estimates (lowest vari-
ances) but are numerically complex. The ML process takes into account censored ob-
servations making the estimates unbiased (Selvin, 2005). ML estimator of the Weibull
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parameters λ and β involves equations to be solved simultaneously. Numerical meth-
ods such as the Newton-Raphson iterative procedure can be applied. When data are
progressively censored, we have t1 ≤ t2 ≤ ... ≤ tr , t+r+1, ..., t+n . The log-likelihood func-
tion is given by,

I (λ,β) = r log(β)+ r log(1/λ̂)+
r
∑

i=1

(β− 1) log ti − (1/λ̂)
β̂

r
∑

i=1

t β̂i + log ti

−(1/λ̂)β̂
n
∑

i=r+1

t+β̂i = 0. (11)

The ML estimators of the λ and βmay be obtained by solving the following two equa-
tions simultaneously (Lee and Wang, 2003):

r − (1/λ̂)β̂
�

r
∑

i=1

t β̂i +
n
∑

i=r+1

t+β̂i

�

= 0, (12)

r

β̂
+ r log(1/λ̂)+

r
∑

i=1

log ti − (1/λ̂)
β̂

r
∑

i=1

t β̂i (log(1/λ̂)+ log ti )

− (1/λ̂)β̂
n
∑

i=r+1

t+β̂i (log(1/λ̂)+ log t+i ) = 0. (13)

As an alternative to the ML estimators of the Weibull parameters we consider two robust
and explicit Weibull parameter estimators proposed by Boudt et al. (2011): the Q and
QLS which are all robust to left, right and interval censored data. These estimators are
identical to the estimator based on the data without censoring if the amount of right
censoring is moderate. If the robust estimators are used, the proportion of right, left
and interval censored data is 33% which is bigger than the method of median proposed
by He and Fung (1999).

In the rest of the paper, the robust shape and scale parameter estimators are based
on α1 =CR and α2 = 1−CR. Boudt et al. (2011) illustrated not only that these are the
estimators for which the shape parameter has the highest breakdown point, but also that
the influence function of ML estimator is unbounded, whereas the influence functions
of the Q and QLS estimators are all bounded.

Denote q̂α, quantile of the observations t1, t2, ..., tn . The difference between the
logs of any two high and low Weibull quantiles qα2 = λ [− log (1−α2)]

1/β and qα1 =
λ [− log (1−α1)]

1/β, (0 < α1 < α2 < 1) depends only on the shape parameter. Replac-
ing the theoretical quantiles with the corresponding empirical quantiles log (q̂α1) and
log (q̂α2), yields the following quantile-estimator of shape parameter (Boudt et al., 2011)

β̂Q =
1

log q̂α2/q̂α1
log

log (1−α2)
log (1−α1)

. (14)
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The corresponding scale estimator is obtained by plugging the quantile-estimator of
shape in the Weibull quantile function. After some algebra, this yields the following
estimate for the scale parameter (Boudt et al., 2011)

λ̂Q =
F (α)−1

(− log (1−α))1/β̂Q

. (15)

The Weibull distribution function in qα = λ [− log (1−α)]1/β can be transformed into
a straight line by a double logarithmic transformation, with parameters that are non-
linear functions of λ and β. The quantiles of the general log-Weibull distribution is

log qα = logλ+
1
β

log (− log (1−α)) (16)

a linear with intercept b0 = logλ and slope b1 = 1/β. The QLS estimators are:

b̂1 =
r
∑n−⌊ n−r

2 ⌋
i=⌊ n−r

2 ⌋+1
zi yi −
∑n−⌊ n−r

2 ⌋
i=⌊ n−r

2 ⌋+1
zi
∑n−⌊ n−r

2 ⌋
i=⌊ n−r

2 ⌋+1
yi

r
∑n−⌊ n−r

2 ⌋
i=⌊ n−r

2 ⌋+1
z2

i −
�

∑n−⌊ n−r
2 ⌋

i=⌊ n−r
2 ⌋+1

zi

�2 , (17)

b̂0 =
1
r

n−⌊ n−r
2 ⌋
∑

i=⌊ n−r
2 ⌋+1

yi −
1
r

b̂1QLS

n−⌊ n−r
2 ⌋
∑

i=⌊ n−r
2 ⌋+1

zi , (18)

where yi = log q̂i/(n+1), zi = log (− log (1−αi )), 0 < n−r
n < 0.5 (Boudt et al., 2011).

Considering these two estimators of the regression parameters, we can easily obtain the
estimators of the Weibull distribution parameters

λ̂QLS = exp
�

b̂0QLS

�

, (19)

β̂QLS = 1/b̂1QLS . (20)
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4. NUMERICAL EXAMPLE

Our example consists of survival times in months for a group of patients with advanced
Hodgkin’s disease who received little or no previous therapy: 1.25, 1.41, 4.98, 5.25,
5.38, 6.92, 8.89, 10.98, 11.18, 13.11, 13.21, 16.33, 19.77, 21.08, 22.07, 42.92, 21.84+,
31.38+, 32.62+, 37.18+ (He and Fung, 1999). The last four observations were right
censored, then the censoring rate is 20%. With this Weibull distributed real data, we
obtain survival function estimates and also their variances of ML, Q and QLS estimators.
The results are given by Table 1. For Hodgkin’s disease data, the variance of Q estimator
is the smallest variances whereas the variance of ML estimator is the largest within the
three estimators for each survival time.

TABLE 1
Survival estimation and its variance using ML, Q and QLS with respect to Hodgkin’s data.

ML Q QLS

t ˆS(t ) ˆV (S(t ) ˆS(t ) ˆV (S(t ) ˆS(t ) ˆV (S(t )

1.25 0.96 0.45 0.96 0.25 0.96 0.30
1.41 0.95 0.45 0.96 0.26 0.95 0.31
4.98 0.81 0.44 0.81 0.33 0.81 0.36
5.25 0.80 0.44 0.80 0.33 0.80 0.36
5.38 0.80 0.43 0.79 0.32 0.79 0.36
6.92 0.74 0.40 0.73 0.31 0.73 0.33
8.89 0.67 0.35 0.65 0.28 0.66 0.29
10.98 0.61 0.29 0.57 0.24 0.58 0.25
11.18 0.60 0.29 0.57 0.23 0.57 0.25
13.11 0.55 0.25 0.50 0.19 0.51 0.27
13.21 0.54 0.25 0.50 0.19 0.51 0.21
16.33 0.46 0.19 0.40 0.14 0.42 0.15
19.77 0.38 0.14 0.32 0.09 0.34 0.10
21.08 0.36 0.12 0.29 0.08 0.31 0.09
22.07 0.34 0.11 0.28 0.07 0.29 0.08
42.92 0.34 0.11 0.27 0.07 0.29 0.08
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5. SIMULATION STUDY

In this section, Monte Carlo simulation is performed to compare the behaviours of the
proposed robust estimators.

TABLE 2
Robust quantile estimator for interval, right and left censored Weibull data.

[β,λ] Censoring β̂ SD(β̂) MSE(β̂) λ̂ SD(λ̂) MSE(λ̂)

[2.50,1]
Right 2.216 0.357 0.132 1.000 0.066 0.004
Left 2.219 0.358 0.133 1.000 0.066 0.004

Interval 2.227 0.364 0.138 0.998 0.067 0.005

[2.15,1]
Right 2.216 0.357 0.132 1.000 0.066 0.004
Left 2.219 0.358 0.133 1.001 0.066 0.004

Interval 2.227 0.364 0.138 0.998 0.067 0.005

[1.57,1]
Right 1.617 0.264 0.072 1.002 0.091 0.008
Left 1.619 0.264 0.072 1.002 0.091 0.008

Interval 1.620 0.259 0.070 1.002 0.092 0.009

[1.20,1]
Right 1.2410 0.2004 0.042 1.002 0.122 0.015
Left 1.243 0.201 0.042 1.002 0.121 0.015

Interval 1.242 0.198 0.041 1.001 0.120 0.014

[1.00,1]
Right 1.031 0.165 0.028 1.004 0.146 0.021
Left 1.032 0.165 0.028 1.004 0.145 0.021

Interval 1.037 0.166 0.029 1.004 0.143 0.020

[0.86,1]
Right 0.887 0.142 0.021 1.007 0.170 0.029
Left 0.888 0.143 0.021 1.006 0.169 0.029

Interval 0.892 0.144 0.022 1.006 0.170 0.029

[0.77,1]
Right 0.793 0.127 0.017 1.011 0.189 0.036
Left 0.794 0.127 0.017 1.010 0.188 0.036

Interval 0.801 0.129 0.018 1.009 0.189 0.036

In the first part of simulation study, by considering increasing, constant, and decreas-
ing failure rates, the Weibull distribution is used with the shape parameter (β) which
is equal to 2.5, 1.57, 1.20, 1.00, 0.86, 0.77 , whereas the scale parameter is set to 1. For
Weibull distribution it is mentioned that the skewness increases when the value of shape
parameter decreases. Weibull (λ,β) observations are generated among 10,000 samples
of size n=100. Then for the left censored data we replaced Y68 . . .Y100 by Y67 and for the
right censored data we replaced Y1 . . .Y32by Y33.

We use 10,000 repetitions to obtain the estimations of parameters achieved via Eq. (14)
and Eq. (15) for Q. The estimations of parameters with their standard deviations are
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given in Table 2. The mean square error of an estimator shows how much an estimated
value of parameter differs from the true value. For a Monte-Carlo simulation using
M = 10000 repetitions, the mean-square error MSEβ for the shape parameterβ is given
by

MSEβ =
1
M

M
∑

i=1

(β̂i −β)
2 (21)

and the mean-square error MSEλ for the shape parameter λ is given by

MSEλ =
1
M

M
∑

i=1

(λ̂i −λ)
2. (22)

The estimations of distribution parameters, standard deviation of estimation parameters
and MSE of estimation parameters are obtained for right, left and interval censoring
data under Weibull distribution. Then λ̂, β̂, standard deviations and MSEs of these
parameters were estimated by using Q method and the results obtained are given in
Table 2.

In the presence of 33% right, left and interval censored observations, Monte Carlo
simulation results shows that these estimators are applicable. And also that the bias and
variability of shape parameter estimations β̂ decreases as skewness increases and the bias
and variability of scale parameter estimations λ̂ increases as skewness increases.

In the second part of simulation study, the reference distribution is the Weibull dis-
tribution with the shape parameter (β) is equal to 0.5, 1, 2 corresponding to decreasing,
constant, and increasing failure rates, respectively whereas the scale parameter is set to
1. We generate M = 10,000 samples of sizes n = 20, n = 80 to represent small and large
sample sizes. Simulating censoring time Ci ’s, i = 1,2, ..., n are drawn from the uniform
distribution U (0,a) where a is chosen to ensure a desired censoring rate (CR). There-
fore, CR is set equal to 10% and 30% in each sample, respectively. For each sample, we
obtained the empirical values of upper percentiles(U p)at arbitrarily selected points, 0.1,
0.3, 0.5, 0.7, and 0.9, based on the Q, QLS and ML estimators. Suppose the Q and QLS
estimators are computed using α1 = 1/3 and α2 = 2/3. We compute for each sample the
scale estimate λ̂ j and shape estimate β̂ j , for j = 1, ..., M according to different simula-
tion schemes. For each censoring rate and each type of estimator, we obtain the survival
function estimators to compare the ML and robust estimators. For a Monte-Carlo sim-
ulation using M = 10000 repetitions, the root-mean-square error RMSE for the variance
of survival function ˆV (S(t )) is given by

RMSE ˆV (S(t )) =

√

√

√

√

1
M

M
∑

i=1

�

ˆV (S(t ))i −V (S(t ))
�2

. (23)

We give the RMSE of survival function estimations for right, left and interval cen-
sored data respectively in Tables 3-5.
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Estimates of the median value or other percentiles of a Weibull distribution follow
directly from the estimated survival function. For the probability p, the corresponding
p-level percentile is denoted tp. The percentile estimate is found by solving the rela-
tionship S(tp) = 1− p for the value tp. The expression for tp produces estimates of
any number of percentiles characterizing the entire survival distribution (Selvin, 2005).
For example, the estimated Weibull parameters yield the estimated pth-percentile of A
months. Thus, this means that p% are expected to failed within A months based on the
estimated Weibull distribution. One possible approach for the analysis of time-to-event
data is the evaluation of survival percentiles, defined as the time by which a certain frac-
tion of the population has experienced the event of interest (Orsini et al., 2012). When
focusing on survival percentiles, a specific probability of the event is fixed and is the time
point to be estimated (Bellavia et al., 2016).

Survival percentiles can be defined as the time points by which specific proportions
of the study population have experienced the event D. For example, the time by which
the first 50% of the individuals have experienced the event is defined as 50th survival
percentile or median survival. The survival curve depicts a complete summary of the
entire range of observed survival percentiles, presenting the proportion of events during
the follow-up time (Bellavia et al., 2016). A common approach to evaluate the survival
function is to fix a specific time t usually the end of follow up and to estimate survival
probabilities or rates of the event D in the time interval [0, t ], possibly according to lev-
els of specific exposures or risk factors. In a percentile approach, on the other hand, the
incidence proportion p is fixed to a specific level and the outcome to be evaluated is the
corresponding survival percentile, the time t by which the study population reaches the
specific fraction of events p (Bellavia et al., 2016). In this simulation study we consider
survival percentiles as 0.10, 0.30, 0.5, 0.7, 0.9.

The flow diagram for the simulation study 2 is given in Figure 1. The results of
RMSE for the simulation study 2 are given in Table 3-5.
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Figure 1 – Flow diagram for the simulation study 2.
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TABLE 3
RMSE( ˆV (S(t )) by using ML, Q and QLS estimators for right censored data.

n=20

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

18 0.158 0.152 0.176 0.294 0.266 0.243
14 0.279 0.263 0.283 0.371 0.389 0.335
10 0.263 0.273 0.257 0.370 0.399 0.338
6 0.155 0.158 0.158 0.249 0.338 0.287
2 0.064 0.061 0.077 0.069 0.082 0.083

1

18 0.075 0.090 0.091 0.142 0.152 0.130
14 0.103 0.114 0.107 0.174 0.194 0.145
12 0.111 0.120 0.106 0.176 0.203 0.149
6 0.099 0.105 0.093 0.170 0.264 0.204
2 0.059 0.064 0.058 0.100 0.133 0.116

2

18 0.313 0.340 0.302 0.217 0.301 0.308
14 0.235 0.268 0.230 0.138 0.132 0.173
10 0.122 0.128 0.131 0.113 0.088 0.146
6 0.047 0.063 0.054 0.063 0.143 0.087
2 0.075 0.081 0.063 0.108 0.144 0.124

n=80

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

72 0.165 0.139 0.162 0.280 0.243 0.186
56 0.287 0.259 0.281 0.389 0.423 0.342
40 0.248 0.243 0.241 0.389 0.427 0.345
24 0.083 0.085 0.087 0.200 0.300 0.254
8 0.070 0.059 0.074 0.041 0.041 0.040

1

72 0.066 0.054 0.065 0.130 0.113 0.078
56 0.084 0.071 0.079 0.160 0.194 0.117
40 0.081 0.079 0.075 0.160 0.198 0.120
24 0.062 0.069 0.058 0.144 0.247 0.198
8 0.031 0.039 0.031 0.071 0.126 0.109

2

72 0.305 0.340 0.310 0.224 0.289 0.342
56 0.240 0.274 0.246 0.127 0.095 0.172
40 0.125 0.135 0.132 0.119 0.082 0.163
24 0.029 0.036 0.034 0.034 0.128 0.082
8 0.061 0.072 0.058 0.0970 0.149 0.137
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Figure 2 – RMSE( ˆV (S(t )) versus t by using ML, Q and QLS estimators for right censored data
n=80, on the left side figures for 10% CR, β = 0.5,1,2, on the right side figures for 30% CR,
β= 0.5,1,2, respectively.
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TABLE 4
RMSE( ˆV (S(t )) by using ML, Q and QLS estimators for left censored data.

n=20

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

18 0.135 0.126 0.137 0.193 0.211 0.207
14 0.235 0.207 0.206 0.267 0.268 0.288
10 0.200 0.202 0.184 0.163 0.262 0.193
6 0.112 0.145 0.165 0.153 0.258 0.188
2 0.061 0.086 0.105 0.069 0.137 0.096

1

18 0.072 0.103 0.086 0.087 0.209 0.204
14 0.088 0.134 0.105 0.121 0.316 0.314
10 0.093 0.117 0.109 0.127 0.188 0.115
6 0.080 0.086 0.094 0.125 0.184 0.111
2 0.056 0.056 0.064 0.091 0.102 0.095

2

18 0.363 0.392 0.367 0.320 0.508 0.500
14 0.244 0.312 0.286 0.131 0.473 0.462
10 0.111 0.169 0.180 0.063 0.218 0.126
6 0.054 0.067 0.072 0.068 0.208 0.111
2 0.075 0.055 0.042 0.098 0.098 0.104

n=80

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

72 0.121 0.089 0.118 0.180 0.012 0.026
56 0.241 0.181 0.198 0.259 0.196 0.161
40 0.119 0.116 0.104 0.079 0.264 0.171
24 0.096 0.136 0.169 0.075 0.264 0.172
8 0.069 0.090 0.123 0.051 0.140 0.095

1

72 0.031 0.061 0.039 0.045 0.161 0.152
56 0.045 0.090 0.063 0.085 0.330 0.267
40 0.049 0.079 0.080 0.086 0.194 0.100
24 0.042 0.054 0.077 0.085 0.192 0.098
8 0.029 0.032 0.055 0.059 0.074 0.060

2

72 0.364 0.403 0.369 0.325 0.502 0.492
56 0.251 0.321 0.296 0.133 0.521 0.453
40 0.116 0.178 0.189 0.037 0.236 0.136
24 0.027 0.045 0.070 0.040 0.231 0.131
8 0.060 0.042 0.021 0.085 0.067 0.074
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Figure 3 – RMSE( ˆV (S(t )) versus t by using ML, Q and QLS estimators for left censored data
n=80, on the left side figures for 10% CR, β = 0.5,1,2, on the right side figures for 30% CR,
β= 0.5,1,2, respectively.
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TABLE 5
RMSE( ˆV (S(t )) by using ML, Q and QLS estimators for interval censored data.

n=20

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

18 0.132 0.135 0.150 0.245 0.184 0.207
14 0.260 0.239 0.248 0.326 0.245 0.257
10 0.220 0.223 0.202 0.273 0.236 0.218
6 0.130 0.143 0.155 0.160 0.172 0.171
2 0.062 0.075 0.092 0.069 0.100 0.115

1

18 0.063 0.088 0.078 0.103 0.121 0.078
14 0.090 0.113 0.091 0.135 0.128 0.099
10 0.101 0.108 0.093 0.151 0.119 0.1018
6 0.091 0.089 0.087 0.138 0.113 0.114
2 0.056 0.055 0.057 0.095 0.081 0.115

2

18 0.344 0.360 0.334 0.265 0.358 0.324
14 0.240 0.283 0.254 0.177 0.293 0.262
10 0.118 0.150 0.156 0.062 0.146 0.145
6 0.048 0.067 0.066 0.078 0.087 0.078
2 0.075 0.064 0.050 0.104 0.078 0.068

n=80

Censoring rate 10% 30%

β t ML Q QLS ML Q QLS

0.5

72 0.134 0.112 0.138 0.233 0.160 0.209
56 0.275 0.236 0.256 0.344 0.241 0.273
40 0.178 0.160 0.149 0.245 0.169 0.158
24 0.086 0.105 0.124 0.079 0.108 0.128
8 0.068 0.077 0.100 0.045 0.095 0.133

1

72 0.040 0.045 0.046 0.0850 0.063 0.074
56 0.058 0.060 0.049 0.117 0.070 0.065
40 0.0601 0.058 0.048 0.124 0.066 0.055
24 0.049 0.048 0.050 0.103 0.058 0.060
8 0.028 0.029 0.036 0.066 0.043 0.057

2

72 0.337 0.367 0.335 0.273 0.355 0.300
56 0.244 0.290 0.264 0.172 0.284 0.244
40 0.121 0.157 0.161 0.050 0.156 0.158
24 0.024 0.044 0.057 0.056 0.059 0.079
8 0.062 0.054 0.033 0.092 0.052 0.036
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Figure 4 – RMSE( ˆV (S(t )) versus t by using ML, Q and QLS estimators for interval censored data
n=80, on the left side figures for 10% CR, β = 0.5,1,2, on the right side figures for 30% CR,
β= 0.5,1,2, respectively.
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The main findings from these tables for n=20 are summarized below.

• For right censored data and 10% CR:

– ML is best estimator at the first points of time, then Q is the best estimator
for decreasing failure rates,

– QLS is best estimator at the first points of time, then ML is the best estimator
for constant failure rates,

– ML is best estimator at the first points of time, then QLS is the best estimator
for increasing failure rates.

• For right censored data and 30% CR:

– ML is best estimator at the first points of time, then QLS is the best estimator
for decreasing failure rates,

– ML is best estimator at the first points of time, then QLS is the best estimator
for constant failure rates,

– ML is best estimator at the first points of time, then Q is the best estimator
for increasing failure rates.

• For left censored data and 10% CR:

– ML is best estimator at the first points of time, then Q is the best estimator
for decreasing failure rates,

– ML is best estimator for constant and increasing failure rates.

• For left censored data and 30% CR:

– ML is best estimator for increasing failure rates.

• For interval censored data and 10% CR:

– ML is best estimator at the first points of time, then Q is the best estimator
for decreasing failure rates,

– ML is best estimator for constant and increasing failure rates.

• For interval censored data and 10% CR:

– Q is best estimator at the first points of time, then ML is the best estimator
for constant failure rates,

– ML is best estimator for constant and increasing failure rates.

• For interval censored data and 30% CR:

– Q is best estimator at the first points of time, then QLS is the best estimator
for constant failure rates,
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– QLS is best estimator at the first points of time, then ML is the best estimator
for increasing failure rates.

• Considering upper percentile cases, we can see that the RMSE increases while the
upper percentile increases, except the case of β< 1, U p = 0.9.

• When the shape parameter of Weibull distribution increases, the Weibull distribu-
tion converges to normal distribution. As seen from the Table 3 to 5, the results
of RMSE forβ= 2 is obviously larger than the others. Therefore, as the skewness
decreases the RMSE of survival function increases.

Tables 3-5 give the results for n=80 for different scenarios. Figures 2-4 allow us to
see the results of the estimations of survival function at different time points visually for
right, left and interval censored data with n=80, respectively.

• For 10% CR, Q is better for decreasing and constant failure rates and ML is similar
with QLS for increasing failure rates. For 30% CR, ML is best estimator at the
first points of time, then QLS is the best estimator for decreasing and constant
failure rates and Q is the best estimator for increasing failure rates.

• For 10% CR, ML is best estimator at the first points of time, then Q is the best
for decreasing failure rates and ML is the best estimator for constant failure rates.
QLS is best estimator at the first points of time, then ML is the best for increasing
failure rates. For 10% CR, ML is best estimator at the first points of time, then
Q is the best for decreasing failure rates and ML is the best estimator for constant
and increasing failure rates.

• The results are similar with left censored data except the case of 30% CR for in-
creasing failure rates. For this case, Q is best estimator at the first points of time,
then ML is the best estimator.

6. CONCLUSIONS

In this paper, we propose to use of new Weibull parameter estimators which are explicit
and robust for censored data. We obtain survival function estimators and their variances
based on Q, QLS and ML methods. We consider Monte Carlo simulation study to ob-
tain the RMSE of these estimators and a numerical example for comparing the variances
of survival function estimators.

The real dataset example suggests that Q estimator has the smallest variance whereas
ML has the largest variance. Then, to see the differences over sample sizes, censoring
types and censoring rates, two simulation studies are conducted. In simulation studies,
RMSE is used to compare between the methods of estimator over 10000 replications.
Different censoring types right, left, interval are considered. The shape parameters are
selected differently to show increasing, constant, and decreasing failure rates where the
scale parameter is set to 1.
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In simulation 1, sample size is chosen as 100 and censoring rate is chosen as 33%.
The bias and the variability of the shape parameter estimations decreases whereas the
bias and the variability of the scale parameter increases as skewness increases.

In simulation 2, we choose the samples with size n= 20 (small) and 80 (large) with va-
rieties of shape parameter values namely 0.5, 1, 2 corresponding to decreasing, constant,
and increasing failure rates, respectively.

We can conclude that for right data set with n=20, generally ML is prepared to robust
methods at the first time points whereas robust methods are preferred to ML later in time
points. For left censored data with n=20, ML is the best estimator. For interval censored
data with n=20, ML is preferred to robust estimators for decreasing hazard rates for 10%.
For right censored data with n=80, ML is best estimator at the first points of time, then
robust estimators. Q is the best estimator for decreasing and constant failure rates for
10% CR. For left censored data with n=80, ML is generally the best estimator. For
interval censored data with n=80, ML is the best estimator for constant failure rates.
For decreasing failure rates, ML is prepared to robust methods at the first time points
whereas robust methods are preferred to ML later in time points and just the opposite for
increasing failure rates. Consequently, for the estimation of survival function based on
Weibull distribution, the robust estimators can be alternative to ML for right censored
data, The most common estimator, ML, maintains its superiority for left censored data
set. For interval censored data set, no generalization can be derived. For future work,
extensive simulations can be done for large samples and censoring rates.
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SUMMARY

The aim of this study is to estimate the robust survival function for the Weibull distribution.
Since the survival function of Weibull distribution is based on the parameters, we consider two
robust and explicit Weibull parameter estimators proposed by Boudt et al. (2011). The quantile
and the quantile least squares which are all robust to censored data is used as an alternative to the
maximum likelihood estimation of the Weibull parameters. The proposed estimators are applied
to Hodgin’s disease data which produces smaller variances for the robust survival function. The
advantage of new methods is that they are numerically explicit in applications. Monte Carlo sim-
ulation is performed to compare the behaviours of the proposed robust estimators in the presence
of right, left and interval censored observations considering different censoring rates. The simu-
lation results show that the proposed robust estimators are better than the maximum likelihood
estimator.

Keywords: Quantile estimators; Quantile least squares estimators; Survival function; Weibull
distribution.
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