
STATISTICA, anno LXXXII, n. 3, 2022

ESTIMATION OF THE PARAMETERS OF POWER FUNCTION
DISTRIBUTION BASED ON PROGRESSIVE TYPE-II RIGHT
CENSORING WITH BINOMIAL REMOVAL

E. I. Abdul Sathar 1

Department of Statistics, University of Kerala, Thiruvananthapuram, India

G.S. Sathyareji
Department of Statistics, University of Kerala, Thiruvananthapuram, India

SUMMARY

In this article, we propose estimates of the unknown parameters of the power function distribu-
tion in the context of progressive type-II censoring with binomial removals, where the number of
units removed at each failure time follows a binomial distribution. The maximum likelihood esti-
mators (MLEs) for the power function parameters are derived using the expectation-maximization
(EM) algorithm. The EM-algorithm is also used to obtain the asymptotic variance-covariance
matrix. By using the variance-covariance matrix of the MLEs, the asymptotic 950/0 confidence
intervals for the parameters are constructed. Bayes estimators under different loss functions are
obtained using the Lindley approximation method and the importance sampling procedure. We
also introduce one and two sample prediction estimates and corresponding confidence intervals
by using Bayesian techniques. To compare performance of the proposed estimators, we introduce
simulation and real-life data studies.

Keywords: Power function distribution; Maximum likelihood estimation; Lindley approxima-
tion; Importance sampling procedure; Prediction.

1. INTRODUCTION

The Power Function distribution (PFD) is also known as a flexible lifetime distribution,
and it provides a good fit to some sets of failure data. It has applications in several sci-
entific areas, including finance, economics, reliability, etc. In addition to this, the PFD
has received considerable attention in the literature as it can also be applied to model
the reliability growth of complex systems and repairable systems. Meniconi and Barry
(1996) have observed that reliability and hazard function plots of some data set suggest
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that the PFD model is the most suitable model compared to Exponential, Lognormal
and Weibull models. This paper aims at developing Bayes estimators for the parameters
of the PFD when the sample data available is a progressive type-II right censored sample.
We will create point and interval estimators for the parameters of PFD. The probability
density function (pdf) of the PFD is defined as

f (y,β,α) =
α

β

�

β

y

�−(α−1)

, 0< y <β, α > 0, β> 0. (1)

The cumulative distribution function (cdf) of the PFD is defined as

F (y,β,α) =
�

y
β

�α

, α > 0, β> 0, (2)

where α and β are the shape and the scale parameter, respectively.
Censoring is an important concept used in reliability and life-testing experiments.

When we face experimental difficulties and other restrictions during data collection in
life testing experiments, we cannot precisely identify the survival period of all the ex-
perimental units. Researchers in medicine and industry use censored data frequently
because they rarely have the time to follow all of the patients in the study throughout
their lives. Furthermore, subjects/items may fail for reasons unrelated to the ones being
studied. Among different censoring schemes, progressive type-II censoring is generally
used in reliability and survival analysis. One can refer to Balakrishnan and Aggarwala
(2000) and Balakrishnan (2007) for a detailed discussion of progressive censoring and its
applications.

Progressive censoring can be formulated as follows. Assume that Y1, . . . ,Yn are n
random lifetimes that are independent and identically distributed (iid). We put n items
on test, and the test is terminated at the time of the mth failure. At the time of first
failure, r1 surviving units are randomly selected and removed from the experiment. At
the second failure, r2 of the remaining n−r1−1 units are randomly selected and removed
from the experiment. Finally, the remaining units rm = n−m− r1− r2− . . .− rm−1 are
removed at the mth failure. In a clinical trial, Yuen and Tse (1996) pointed out that the
number of patients that drop out at each stage is random and cannot be prefixed. In such
cases, the pattern of removal at each failure is random. For studies related to estimation
using progressive censoring with binomial removals or random removals, one may refer
to Yan et al. (2011), Tse et al. (2000), Wu and Chang (2002), Wu and Chang (2003), Sarhan
and Abuammoh (2008) and Hashemi and Amiri (2011). In the present work, we focus
on estimating the parameters of the PFD when both the parameters are unknown using
progressive censored samples with binomial removals.

The rest of the paper is arranged as follows. In Sections 2 and 3, we introduce the
problem and derive the MLE of the unknown parameters. In Section 4, the Bayes esti-
mators of the parameters are obtained. The problem of one and two sample predictions
is discussed in Section 5. A simulation study is carried out in Section 6, and a real-life
data study is carried out in Section 7. A brief conclusion is given in Section 8.
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2. ESTIMATION UNDER PROGRESSIVE CENSORING WITH BINOMIAL REMOVAL

Let Y = (y1:m:n , y2:m:n , . . . , ym:m:n) denote a progressive type-II censored sample of size
m drawn from a parent sample of size n. With censoring scheme R1 = r1, R2 = r2, . . . ,
Rm = rm , the conditional likelihood takes the following form:

L1(α,β, y|R= r ) = B
m
∏

i=1

g (yi )[1−G(yi )]
ri , (3)

where B = n(n − 1 − r1)(n − 2 − r1 − r2) . . . (n − m + 1 − r1 − . . . − rm), g (yi ) and
G(yi ) represent the pdf and the cdf of the population from which the sample is drawn,
respectively. Also, yi is used instead of yi :m:n to simplify notation. Using Eq. (1) and (2)
in Eq. (3) the conditional likelihood simplifies to

L1(α,β, y|r )∝
�

α

βα

�m

exp

�

(α− 1)
m
∑

i=1

log(yi )+
m
∑

i=1

ri log
�

1−
�

yi

β

�α�
�

. (4)

The scheme R1, R2, . . . , Rm is pre-fixed in typical progressive type-II censoring. How-
ever, in some practical situations, these numbers may occur at random. For example,
in some reliability trials, an experimenter may decide that continuing to test any of the
tested units, even though they have not failed, is unsuitable or too unsafe. In such cases,
the pattern of removal at each failure is random. This leads to progressive censoring
with random removals. In this paper, we assume that the random removal Ri follows
a binomial distribution with parameter p. It means that each unit leaves with equal
probability p, and the probability of Ri units leaving after the i th failure is

P (r1) =
�

n−m
r1

�

p r1(1− p)n−m−r1 0≤ r1 ≤ n, (5)

and

P (ri |ri−1, . . . , r1) =
�

n−m−
∑i−1

k=1
rk

ri

�

p ri (1− p)n−m−
∑i−1

k=1
rk , (6)

where 0≤ ri ≤ n−m−
∑i−1

k=1
rk ; i = 2,3, . . . , m− 1. Furthermore, we assume that Ri

is independent of Yi for all i . A schematic illustration of progressive type-II censoring
with binomial removals is given in Table 1.

TABLE 1
Schematic illustration of progressive type-II censoring with binomial removals.

Process The number in life testing Failures Binomial removals Remains

1 n 1 R1 ∼ B(n−m, p) n− 1−R1
2 n− 1−R1 1 R2 ∼ B(n−m−R1, p) n− 2−R1−R2
. . . . . . . . . . . . . . .
m− 1 n− (m− 2)−

∑m−2
k=1

Rk 1 Rm−1 ∼ B(n− (m− 2)−
∑m−2

k=1
Rk , p) n− (m− 1)−

∑m−1
k=1

Rk
m n− (m− 1)−

∑m−1
k=1

Rk 1 Rm = n−m−
∑m−1

k=1
Rk 0
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The joint likelihood function of Y = (Y1,Y2, . . . ,Ym) and R= (R1, R2, . . . , Rm) can
be expressed as

L(α,β, p; y, r ) = L(α,β, y|R= r )P (R= r ), (7)

where

P (R= r ) = P (Rm−1 = rm−1|Rm−2 = rm−2, . . . , R1 = r1)
. . . P (R2 = r2|R1 = r1)P (R1 = r1). (8)

Substituting Eq. (5) and (6) in Eq. (8), we get

P (R= r ) =
(n−m)!

∏m−1
i=1 ri !(n−m−

∑m−1
i=1 ri )!

p
∑m−1

i=1 ri (1− p)(m−1)(n−m)−
∑m−1

i=1 (m−i)ri . (9)

Now using Eq. (4), (7) and (9), the full likelihood function can be written as

L(α,β, p) =W L1(α,β)L2(p),

where W = W ∗ (n−m)!
∏m−1

i=1 ri !(n−m−
∑m−1

i=1 ri )!
, and W ∗ = 2mB , which is independent of the parame-

ters α, β, and p. Further, we have

L1(α,β)∝
�

α

βα

�m

× exp

�

(α− 1)
m
∑

i=1

log(yi )+
m
∑

i=1

ri log
�

1−
�

yi

β

�α�
�

(10)

and
L2(p)∝ p

∑m−1
i=1 ri (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri . (11)

In the next section, we use the MLE method to estimate the unknown parameters.

3. MAXIMUM LIKELIHOOD ESTIMATION

In this Section, we discuss the process of obtaining the MLEs of the parameters α, β,
and p based on progressive type-II censored data with binomial removals. Both point
and interval estimators are derived. From Eq. (10), we can observe that L1 does not
involve the unknown parameter p. Therefore, the MLE of α and β can be derived by
maximizing Eq. (10) directly, and the log of L1 can be written as

log L1(α,β) = m log
�

α

βα

�

+
�

(α− 1)
m
∑

i=1

log(yi )+
m
∑

i=1

ri log
�

1−
�

yi

β

�α�
�

. (12)

To obtain the normal equation for the unknown parameter α, we differentiate
Eq. (12) partially with respect to the parameter α and then equate to zero. The resulting
normal equation of α will be of the following form:

∂ log[L1(α,β)]
∂ α

=
m
α
−m log[β]+

m
∑

i=1

log[yi ]+
m
∑

i=1

ri

log[ yi
β ]
�

yi
β

�α

�

1−
�

yi
β

�α� = 0. (13)
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The MLE of β can be obtained as

β̂mle = Y(m).

Similarly, since L2 does not involveα andβ, the MLE of p can be derived by maximizing
Eq. (11). The MLE of binomial parameter p is of the following form:

p̂ml e =
∑m−1

i=1 ri

(m− 1)(n−m)−
∑m−1

i=1 (m− i − 1)ri

.

Since Eq. (13) has no analytical solution, we have to use the expectation-maximization
(EM) algorithm to derive the MLE of α. This is discussed in the next Section.

3.1. EM algorithm

The EM algorithm is a beneficial iterative method for computing MLEs in estimation
problems involving missing information such as censored samples. It was first intro-
duced by Dempster et al. (1977) and further explored by Ng et al. (2002), who obtained
several applications of this algorithm in life testing experiments. In this section, we de-
rive the MLE of α on the basis of progressive censored samples. Now, suppose that Y =
(y1:m:n , y2:m:n , . . . , ym:m:n) denotes the observed data, and that Q = (q1, q2, . . . , qm) de-
notes the censored data. Here, Q j represents 1× r j vector with Q j = (q j 1, q j 2, . . . , q j m),
j = 1,2, . . . , m. The complete data set is of the form (Y,Q) = X . The corresponding
log of L1(α,β) is given by

log[L1(α,β)] = n log[α]−αn log[β]+ (α− 1)

 

m
∑

i=1

log[yi ]+
m
∑

i=1

ri
∑

j=1

log[qi j ]

!

.

In the EM algorithm, the E-step involves the computation of conditional expecta-
tions of unobserved data given the observed data. This gives the following expression
for the log-likelihood function:

log L∗1(Y,α,β)∝ n log[α]−αn log[β]+ (α− 1)
�

m
∑

i=1

log[yi ]+
m
∑

i=1

ri A(yi ,α( j ),β( j ))
�

,

(14)
where A(yi ,α( j ),β( j )) = E[log[qi j ]|qi j > yi ] =

�−qi
β

�α log[qi j ]
�

1−
� qi
β

�α� . The second step of the

EM algorithm is the M-step, which involves maximization of Eq. (14) with respect to
α, and hence the derived estimate of α is given by

α̂ml e =
n

n log[β]+D
, (15)
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where

D =
m
∑

i=1

[yi + ri A(yi ,α( j ),β( j ))].

Using the updated estimate of α from Eq. (15), we can find the initial estimate of α.

3.2. Fisher information matrix

Based on the asymptotic distribution of the MLE of the parameters α, β, and p, we
obtain appropriate confidence intervals for the parameters in this section. The Fisher
information matrix elements for the parameters based on progressive censored samples
are formally derived. The Fisher information matrix can be defined as

I =−E









∂ 2 l nL
∂ α2

∂ 2 l nL
∂ α∂ β

∂ 2 l nL
∂ α∂ p

− ∂ 2 l nL
∂ β∂ α

∂ 2 l nL
∂ β2

∂ 2 l nL
∂ β∂ p

− ∂ 2 l nL
∂ p∂ α

∂ 2 l nL
∂ p∂ β

∂ 2 l nL
∂ p2









.

Unfortunately, exact mathematical expressions for the elements of the above matrix
are difficult to obtain. As a result, we give the approximate asymptotic distribution of
the MLE of the parameters α,β, and p, which is obtained by dropping the expectation
operator E , and hence I can be written as

I = −









∂ 2 l nL
∂ α2

∂ 2 l nL
∂ α∂ β

∂ 2 l nL
∂ α∂ p

∂ 2 l nL
∂ β∂ α

∂ 2 l nL
∂ β2

∂ 2 l nL
∂ β∂ p

∂ 2 l nL
∂ p∂ α

∂ 2 l nL
∂ p∂ β

∂ 2 l nL
∂ p2









=





Lαα Lαβ Lα p
Lβα Lββ Lβp
Lpα Lpβ Lp p



 , (16)

where

Lαα =−
n
α2

, Lαβ = Lβα =−
n
β

, Lββ =
nα
β2

,

Lp p =
∑m−1

i=1 ri

p2
+
(m− 1)(n−m)

∑m−1
i=1 (m− i)ri

(1− p)2
,

and
Lα p = Lβp = Lpα = Lpβ = 0.

The variance-covariance matrix can be approximated as

I =





Tαα Tαβ 0
Tβα Tββ 0

0 0 Tp p



=





Lαα Lαβ 0
Lβα Lββ 0

0 0 Lp p





−1

.
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Thus, the asymptotic distribution of the MLE of (α̂, β̂, p̂) is given by

I =





α̂

β̂
p̂



≈N









α̂

β̂
p̂



 ,





Tαα Tαβ 0
Tβα Tββ 0

0 0 Tp p







 .

Hence, the asymptotic distribution of the MLE can be written as
h

(α̂−α), (β̂−β), ( p̂ − p)
i

∼N3(0,T ), (17)

where T is the variance-covariance matrix. Using the MLE estimators of α,β, and p, we
can derive an estimate of T , which is denoted by T̂ , because T involves the parameters
α,β, and p. Utilizing Eq. (17), approximate 100(1−ζ )0/0 confidence intervals for α,β,
and p are obtained, respectively, as

α̂± zζ /2

Ç

T̂αα, β̂± zζ /2

Ç

T̂ββ and p̂ ± zζ /2

Ç

T̂p p ,

where zζ /2 is the upper censored (ζ /2)th percentile of the standard normal distribution.

4. BAYESIAN ESTIMATION

In this section, we provide the Bayes estimates of the unknown parameters of the PFD
using different loss functions. We consider symmetric as well as asymmetric loss func-
tions for our estimation purposes. One of the symmetric loss functions we consider here
is the squared error loss function (SELF), which is defined as L(η,δ(Y )) = [δ(Y )−η]2.
Varian (1975) proposed an asymmetric linear-exponential loss function known as Linex
loss function (LLF), which is defined as L(η,δ(Y )) = exp[h(δ − η)]− h(δ − η)− 1,
h 6= 0, where p is the shape parameter known as the degree of asymmetry. Also, another
asymmetric loss function is the Entropy loss function (ELF) proposed by Calabria and
Pulcini (1996). It is defined as L[δ,η]∝

� η
δ

�p− p
�

log
� η
δ

��

−1, p 6= 0. Under the SELF,
LLF, and ELF, Bayes estimators of η are defined, respectively, as

δ(Y )self = E(η|Y ),

δ(Y )llf =−
1
h

log(E(e (−hη) | Y ))

and
δ(Y )elf = [E(η

−c ) | Y ]−1/c .

In the Bayesian approach, unknown parameters are considered as random variables
that follow some specified distribution, and this distribution is known as the prior dis-
tribution. It may be noted that if all the parameters α, β, and p are unknown, joint
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conjugate priors do not exist. In such cases, there are several ways to choose the pri-
ors. One way is to consider the piecewise independent priors. In this article, we assume
that α and β have independent gamma priors and p has a beta prior. The priors are
formulated as

F1(α)∝ αa1−1e−b1α, α > 0, a1, b1 > 0,

F2(β)∝βa2−1e−b2β, β> 0, a2, b2 > 0,

and
F3(p)∝ pa3−1(1− p)b3−1, 0< p < 1, a3, b3 > 0.

Then the joint prior distribution of α, β and p is given by

F ∗(α,β, p)∝ αa1−1βa2−1e−(b1α+b2β) pa3−1(1− p)b3−1.

Hence, the joint posterior distribution of α, β, and p is obtained as

Π(α,β, p)∝ αµ1−1e−µ4αβµ2−1e−µ5β

�

1−
�

yi

β

�α�ri

e−S pµ3−1(1− p)µ6−1, (18)

where µ1 = m + a1, µ2 = a2 − mα, µ3 = a3 +
∑m−1

i=1 ri , µ4 = b1 − S, µ5 = b2, µ6 =
(m− 1)(n−m)+ b3−

∑m−1
i=1 (m− i)ri and S =

∑m
i=1 log[yi ].

The Bayes estimator of η= (α,β, p) under the SELF, LLF, and ELF are the posterior
expectations of η. They are defined, respectively, as

η̂
self
=











1
∫

0

∞
∫

0

∞
∫

0
ηΠ(α,β, p)dα dβ d p

1
∫

0

∞
∫

0

∞
∫

0
Π(α,β, p)dα dβ d p











, (19)

η̂
elf
=











1
∫

0

∞
∫

0

∞
∫

0
η−c Π(α,β, p)dα dβ d p

1
∫

0

∞
∫

0

∞
∫

0
Π(α,β, p)dα dβ d p











− 1
c

, (20)

and

η̂
llf
=− 1

h
l o g











1
∫

0

∞
∫

0

∞
∫

0
e−hη Π(α,β, p)dα dβ d p

1
∫

0

∞
∫

0

∞
∫

0
Π(α,β, p)dα dβ d p











. (21)

Equations (19), (20), and (21) cannot be computed analytically. From the various ex-
isting methods to approximate the ratio of integrals of the above form, here we use
two approximation methods, namely Lindley approximation and importance sampling
method, for obtaining Bayes estimates of α,β, and p. This is discussed in the following
sections.
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4.1. Lindley approximation

In this section, we discussed the approximation method proposed by Lindley (1980).
First we consider the function I (y), which is defined as

I (y) = E[Ψ(α,β, p)] =

∫

Ψ(α,β, p)eL(α,β, p)+F ∗(α,β, p)d(α,β, p)
∫

eL(α,β, p)+F ∗(α,β, p)d(α,β, p)

≈ Ψ(α,β, p)+ (U1ν1+U2ν2+U3ν3+ ν4+ ν5)+
1
2
[∆1(U1δ11

+ U2δ12U3δ13)+∆2(U1δ21+U2δ22+U3δ23)
+ ∆3(U1δ31U2δ32+U3δ33)], (22)

where Ψ(α,β, p) is a function of α, β, and p, L(α,β, p) is the log likelihood, and
F ∗(α,β, p) is the log joint prior. Here we denote

∆1 = δ11L∗ααα+ 2δ12L∗αβα+ 2δ13L∗α pα+ 2δ23L∗βpα+δ22L∗ββα+δ33L∗p pα,

∆2 = δ11L∗ααβ+ 2δ12L∗αββ+ 2δ13L∗α pβ+ 2δ23L∗βpβ+δ22L∗βββ+δ33L∗p pβ,

∆3 = δ11L∗αα p + 2δ12L∗αβp + 2δ13L∗α p p + 2δ23L∗βp p +δ22L∗ββp +δ33L∗p p p ,

and
νi = ε1δi1+ ε2δi2+ ε3δi3, i = 1,2,3,

ν4 = u12δ11+ u13δ13+ u23δ23 and ν5 =
1
2
(u11δ11+ u22δ22+ u33δ33).

Let φ1 = α, φ2 = β, and φ3 = p, εi =
�

∂ ε
∂ φi

�

, i = 1,2,3, Ui =
�

∂ Ψ(φ1,φ2,φ3)
∂ φi

�

,

i = 1,2,3, Ui j =
h

∂ Ψ2(φ1,φ2,φ3)
∂ φi∂ φ j

i

, i , j = 1,2,3, L∗i j =
h

∂ 2L∗(φ1,φ2,φ3)
∂ φi∂ φ j

i

, i , j = 1,2,3,

L∗i j k =
h

∂ 3L∗(φ1,φ2,φ3)
∂ φi∂ φ j ∂ φk

i

, i , j , k = 1,2,3, where α = 1, β = 2 and p = 3. Also, δi j is

the (i , j )th element of the inverse of the matrix L∗i j . Moreover, εi denotes the deriva-
tives of the log of the prior with respect to φ1, φ2, φ3. The values of L∗i j k are de-

rived as Lααα =
�

∂ 3L
∂ α3

�

, Lβββ =
�

∂ 3L
∂ β3

�

, Lp p p =
�

∂ 3L
∂ p3

�

, Lβp p =
�

∂ 3L
∂ β∂ p2

�

, Lββp =
�

∂ 3L
∂ β2∂ p

�

, Lααβ =
�

∂ 3L
∂ α2∂ β

�

, Lα pβ =
�

∂ 3L
∂ β∂ p∂ β

�

, Lαα p =
�

∂ 3L
∂ α2∂ p

�

, Lαββ =
�

∂ 3L
∂ α∂ β2

�

,

Lα p p =
�

∂ 3L
∂ α∂ p2

�

.
Hence, the Bayes estimators of α under the SELF, ELF, and LLF using the Lindley

approximation can be approximated as

α̂
self
≈ [α+(u1ν1+ u2ν2+ u3ν3+ ν4+ ν5)+

1
2
[∆1(u1δ11+ u2δ12)

+ ∆2(u1δ21+ u2δ22)+∆3(u3δ33)]], (23)
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α̂
elf
≈ [α−c +(u1ν1+ u2ν2+ u3ν3+ ν4+ ν5)+

1
2
[∆1(u1δ11+ u2δ12)

+ ∆2(u1δ21+ u2δ22)+∆3(u3δ33)]]
− 1

c , (24)

and

α̂
llf
≈ − 1

h
log[e−hα+(u1ν1+ u2ν2+ u3ν3+ ν4+ ν5)+

1
2
[∆1(u1δ11+ u2δ12)

+ ∆2(u1δ21+ u2δ22)+∆3(u3δ33)]]. (25)

Similarly, retracing the same steps we can also derive the Bayes estimates of β and p.

4.2. Importance sampling procedure

The Bayes estimators of α, β and p are derived using the joint posterior distribution in
Eq. (18). It can be rearranged as

Π (α,β, p)∝ f (α;µ1,µ4) f (β|α;µ2,µ5) f (p;µ3,µ6) h (α,β, p) ,

where

h (α,β, p) =
Γ (a2−mα) e−

�

S−
∑m

i=1 ri log
�

1−
� yi
β

�α�
+(µ3−1) log(p)+(µ6−1) log(1−p)

�

exp [−(a2−mα) log[b2]]
. (26)

The prior distributions for the parameters are defined as

f1(α)∝ αa1+m−1e−α(b1−S), (27)

f2(β)∝βa2−mα−1e−b2β, (28)

and
f3(p)∝ pa3+

∑m−1
i=1 ri−1(1− p)b3−(m−1)(n−m)−

∑m−1
i=1 (m−i)ri−1. (29)

The following are the steps used in the importance sampling procedure:

1. Generate α1 from f (β;a1, b1).

2. For the generated value of α1, generate β1 from f (β|α;a2, b2).

3. Generate p1 from f (p;a3, b3).

4. Repeat steps 1 to 3 K times to obtain the importance sample
(α1,β1, p1),(α2,β2, p2),. . . ,(αK ,βK , pK ).
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Hence, using the SELF, ELF, and LLF, the Bayes estimate of β using the importance
sampling procedure is defined, respectively, as

β̂
self
=











K
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j=1
β h

�

α j ,β j , p j

�

K
∑

j=1
h
�

α j ,β j , p j

�











,

β̂
elf
=











K
∑

j=1
β−c h

�

α j ,β j , p j

�

K
∑

j=1
h
�

α j ,β j , p j

�











− 1
c

,

and

β̂
llf
=− 1

h
log











K
∑

j=1
e−hβ h

�

α j ,β j , p j

�

K
∑

j=1
h
�

α j ,β j , p j

�











,

where h
�

α j ,β j , p j

�

, j = 1,2,3, are given by Eq. (26). Similarly the Bayes estimates of
α and p can be derived.

4.3. HPD credible interval

In this Section, we discuss the HPD credible intervals for η as described by Chen and
Shao (1999). Define

η1 = (α
ϕ ,βϕ , pϕ);ϕ = 1,2, . . . ,ρ,

where αϕ ,βϕ , and pϕ are given, respectively, by Equations (27), (28), and (29). Let α(ϕ),
β(ϕ), and p (ϕ) be the ordered values of αϕ , βϕ , and pϕ , respectively.

Also, define

ωi =
h(αϕ ,βϕ , pϕ)

∑ρ
i=1 h(αϕ ,βϕ , pϕ)

.

Then αv , the v th quantile of α, can be obtained as

α̂v =
�

α(1) if v = 0
α(i) if

∑i−1
j=1ω j < v <

∑i
j=1ω j .

Hence, the 100 (1− ζ ) 0/0, where 0< ζ < 1, confidence interval for α is given by
�

α j/ρ,α( j+(1−ζ )ρ)/ρ
�

, j = 1,2, . . . ,ρ.

Similarly, we can obtain the HPD credible interval for β and p.
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4.4. Metropolis-Hastings algorithm

In this Section, we used the MCMC approach to generate samples from the posterior
distribution Eq. (18) and then compute Bayes estimates of the three parameters using
various loss functions. We use a Metropolis-Hastings (M-H) algorithm proposed by
Metropolis et al. (1953) and Hastings (1970) to generate a sample from the posterior
density. The conditional posterior distributions of the parameters are given by

Π1 (α|β, p,Y )∝ αm+a1−1e−α(b1−
∑m

i=1 log[yi ])
�

1−
�

yi

β

�α�ri

, (30)

Π2 (β|α, p,Y )∝βa2−mα−1e−b2β

�

1−
�

yi

β

�α�ri

, (31)

and
Π3 (p|α,β,Y )∝ pa3+

∑m−1
i=1 ri−1(1− p)b3+(m−1)(n−m)−

∑m−1
i=1 (m−i)ri−1. (32)

The following steps are used to create samples from the posterior distribution.

1. Start with initial guess (α(0) = α̂,β(0) = β̂ and p (0) = p̂).

2. Generate αI using Eq. (30) by assuming the proposal distribution as N (α(n−1),σ1).

3. GenerateβI using Eq. (31) by assuming the proposal distribution as N (β(n−1),σ2).

4. Generate p I using Eq. (32) where

p ∼ Beta(a3+
m−1
∑

i=1

ri , b3+(m− 1)(n−m)−
m−1
∑

i=1

(m− i)ri ).

5. Set I = I + 1.

6. Repeat the steps 2 to 5 M times, and collect a sufficient number of replicates.

Bayes estimates of the parameters α, β, and p with respect to the SELF, ELF, and
LLF are given, respectively, by

p̂
self
=





1
M −T0





M
∑

I=T0+1

(p I )







 ,

p̂
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1
M −T0
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− 1
c

,
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and

p̂
llf
=− 1

h
log





1
M −T0





M
∑

I=T0+1

e−h p I







 ,

where T0 is the number of iterations of the burn-in-period. The credible interval with
100(1− ζ )0/0 0< ζ < 1 is

�

α((M−T0)(ζ /2))
,α((M−T0)(1−ζ /2))

�

.
Retracing the above steps, Bayes estimates of α and β can be derived.

5. PREDICTION

Dey et al. (2018) discussed the prediction of censored data and the accompanying pre-
diction intervals using progressive censoring. In this section, we discuss one and two
sample prediction estimation as well as estimation of future observations.

5.1. One sample prediction

In this section, we calculate one sample predictive estimates and predictive bounds for
censored samples. Suppose that y = (y1, y2, . . . , ym) denotes an informative sample of size
m observed using the progressive censoring scheme r = (r1, r2, . . . , rm). Further assume
that xi = (xi1, xi2, . . . , xi ri

) denotes a sample censored at the i th failure. The censored
observation x = (xi d , i = 1,2, . . . , m; d = 1,2, . . . , ri ) is then predicted. The conditional
distribution of x given (y1, y2, . . . , ym) is given by

g (x|y,η) = d
�

ri
d

� d−1
∑

j=0

(−1)d−1− j
�

d − 1
j

�

(1− F (yi ))
j−ri (1− F (x))ri−1− j f (x),

where η= (α,β, p). In the observed data, the posterior predictive density of x is given
by

g ∗(x|y) =
∫

Θ

g (x|y,η)Π(η|y) dη,

where Θ = {(α,β, p) : α > 0,β> 0,0< p < 1}. Hence, the predictive values of x using
the SELF, ELF, and LLF are

x̂
self
=

∫ ∞

yi

x g ∗(x|y,η) dx

=
∫ 1

0

∫ ∞

0

∫ ∞

0
I1(yd |α,β)Π(α,β, p|y) dα, dβ d p

=
1

M −T0

M
∑

d=T0+1

I1(yd |αd ,βd ), (33)
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x̂
elf
=

�

∫ ∞

yi

x−c g ∗(x|y,η) dx

�− 1
c

=
�∫ 1

0

∫ ∞

0

∫ ∞

0
I2(yd |α,β)Π(α,β, p|y) dα, dβ d p
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, (34)

and
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log

�
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e−h x g ∗(x|y,η) dx

�

= − 1
h

log
�∫ 1
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0

∫ ∞
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I3(yd |α,β)Π(α,β|y) dα, dβ, d p

�

= − 1
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log
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 . (35)

In the following, we compute Ii (yd |αd ,βd ), for i = 1,2,3, as follows:

I1(yd |α,β) =
∫ ∞

yi

x g ∗(x|y,η)dx

=
�

α

βα

�

d
�

ri
d

� d−1
∑
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×
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x
�
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�
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β
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�
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�

x
β
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xα−1dx, (36)

I2(yd |α,β) =
∫ ∞
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x−c g ∗(x|y,η)dx
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α
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and
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I3(yd |α,β) =
∫ ∞

yi

e−h x g ∗(x|y,η)dx

=
�

α

βα

�

d
�

ri
d

� d−1
∑
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(−1)d−1+ j

×
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e−h x
�

1−
�
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β

�α� j−ri
�

1−
�

x
β

�α�ri−1− j

xα−1dx. (38)

To determine the prediction bounds, we need the survival function, which is derived
as

S(x|y,η) =
P (x > t |y,η)
P (x > yi |y,η)

=

∫∞
1 g (x|y,η)du
∫∞

xi
g (x|y,η)du

=

∑d−1
j=0 (−1)d−1− j

�

d − 1
j

�

(1−F (y j ))
j−ri (1−F (x))ri− j

ri− j

∑k−1
j=0

�

d − 1
j

�

(−1)d−1− j

ri− j

. (39)

Also, the posterior survival function is defined as

S∗(x|y) =
∫

Θ

S(x|y,η)ϕ(η|y)dη.

The 100(1 − ζ )0/0 0 < ζ < 1 prediction bounds (L1, U1) for x are obtained as
S∗(L1|x) = 1− ζ

2 and S∗(U1|x) =
ζ
2 , where L1 and U1 are the lower bounds and up-

per bounds, respectively.

5.2. Two sample prediction

In this section, we assume that y = (y1, y2, . . . , ym) denote the progressive type-II cen-
sored data under the binomial removal scheme r = (r1, r2, . . . , rm). We write
U ∗ = U1, U2, . . . , UM1

to represent a future sample taken from the PFD. The marginal
density of U ∗j is

H (u j |η) = j
�

M1
j

� j−1
∑

d=0

(−1) j−1−d
�

j − 1
k

�

(1− F (u j ))
M1−1−d f (u j ), u j > 0.

The Bayesian predictive density is given as

g (u j |y) =
∫

Θ

H (u j |η)Π(η|y)dη, (40)
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where Θ = {(α,β, p) : α > 0,β> 0,0< p < 1}. The Bayes prediction estimators of the
U ∗j using SELF, ELF, and LLF are j th future observed samples and are obtained as

û
self
=
∫ ∞

0
u j g (u j |y) du j =

1
M −T0

M
∑
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I4(αi ,βi ),
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and
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where
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6. SIMULATION STUDY

In this section, we present a simulation study of the performance of the estimators pro-
posed in the previous sections. For the simulation study, we choose the sample sizes as
n = 15, 18, 20 and m = 5, 8, 10, 15, 18 using various values of the parameters such as α
= 0.80, 1.5, β = 0.5,0.75, and p = 0.35, 0.50, 0.80. Table 2 presents the values of MSE,
ACI, and HPD corresponding to MLEs.

TABLE 2
MSE for MLE, ACI, and HPD for α, β, and p

(n,m) (r1, r2, . . . , rm) (α, β, p) α̂mle β̂mle
p̂mle ACI HPD

AIL CP

(15,5) (0,. . . ,0,2) (0.80,0.5,0.35) 0.02 0.00 0.56 (0.10,0.11,0.46 ) (0.10,0.26,0.32) (0.93,0.92,0.94)
(15,8) (2,2,0,. . . ,0) (1.5,0.75,0.35) 0.02 0.02 0.45 (0.18,0.28,0.48) (0.10,0.28,0.36) (0.93,0.91,0.92)
(18,10) (3,0,. . . ,0) (0.80,0.5,0.50) 0.02 0.04 0.42 (0.11,0.24,0.48) (0.10,0.18,0.36) (0.99,0.95,0.93)
(18,15) (5,0,. . . ,0,5) (1.5,0.75,0.50) 0.02 0.09 0.36 (0.13,0.23,0.36) (0.23,0.16,0.35) (0.93,0.90,0.91)
(20,15) (5,0,. . . ,0) (0.80,0.5,80) 0.01 0.02 0.33 (0.11,0.26,0.36) (0.32,0.26,0.22) (0.91,0.95,0.93)
(20,18) (2,2,2,. . . ,1,3) (1.5,0.75,80) 0.00 0.01 0.32 (0.17,0.23,0.52) (0.24,0.28,0.25) (0.95,0.93,0.94)

Bayes estimates using the Lindley approximation, importance sampling, and one and
two sample predictions are presented, respectively, in Tables 3-5.

TABLE 3
MSE of the Bayes estimators of α, β, and p using the Lindley approximation method.

(n,m) (r1, r2, . . . , rm) (α,β, p) SELF ELF LLF
α̂ β̂ p̂ α̂ β̂ p̂ α̂ β̂ p̂

(15,5) (0,. . . ,0,2) 0.80,0.5,0.35 0.00 0.00 0.02 0.01 0.00 0.04 0.00 0.00 0.01
(15,8) (2,2,0,. . . ,0) 1.5,0.75,0.35 0.00 0.02 0.02 0.01 0.02 0.03 0.00 0.00 0.01
(18,10) (0,. . . ,0,3) 0.80,0.5,0.50 0.00 0.02 0.02 0.02 0.02 0.03 0.00 0.00 0.01
(18,15) (5,0,. . . ,0,5) 1.5,0.75,0.50 0.01 0.02 0.03 0.02 0.02 0.03 0.00 0.00 0.01
(20,15) (5,0,. . . ,0) 0.80,0.5,0.80 0.01 0.05 0.05 0.02 0.02 0.03 0.01 0.00 0.02
(20,18) (2,2,2,. . .,1,3) 1.5,0.75,0.80 0.01 0.09 0.05 0.02 0.02 0.03 0.01 0.01 0.02

TABLE 4
MSE of the Bayes estimators of α, β, and p using the importance sampling procedure.

(n,m) (r1, r2, . . . , rm) (α,β, p) SELF ELF LLF
α̂ β̂ p̂ α̂ β̂ p̂ α̂ β̂ p̂

(15,5) (0,. . . ,0,2) 0.80,0.5,0.35 0.01 0.00 0.03 0.00 0.01 0.05 0.00 0.02 0.02
(15,8) (2,2,0,. . . ,0) 1.5,0.75,0.35 0.01 0.00 0.06 0.00 0.01 0.05 0.00 0.02 0.02
(18,10) (0,. . . ,0,3) 0.80,0.5,0.50 0.01 0.00 0.07 0.00 0.03 0.05 0.01 0.02 0.02
(18,15) (5,0,. . . ,0,5) 1.5,0.75,0.50 0.01 0.00 0.05 0.01 0.02 0.05 0.01 0.02 0.03
(20,15) (5,0,. . . ,0) 0.80,0.5,0.80 0.02 0.00 0.05 0.02 0.02 0.06 0.01 0.02 0.04
(20,18) (2,2,2,. . .,1,3) 1.5,0.75,0.80 0.02 0.00 0.08 0.03 0.02 0.06 0.01 0.03 0.04
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TABLE 5
MSE of one and two sample predictions of Y .

(n,m) (r1, r2, . . . , rm) p i k One sample prediction Two sample prediction
x̂self x̂elf x̂llf ûself ûelf ûllf

(15,5) (0,. . . ,0,2) 0.35 1 1 0.05 0.06 0.01 0.03 0.02 0.01
(15,8) (2,2,0,. . . ,0) 0.35 1 2 0.05 0.06 0.01 0.03 0.02 0.01
(18,10) (0,. . . ,0,3) 0.50 1 1 0.05 0.07 0.01 0.03 0.02 0.02
(18,15) (5,0,. . . ,0,5) 0.50 1 2 0.05 0.08 0.02 0.03 0.02 0.02
(20,15) (5,0,. . . ,0) 0.80 1 1 0.05 0.08 0.02 0.03 0.02 0.02
(20,18) (2,2,2,. . .,1,3) 0.80 1 2 0.05 0.08 0.02 0.03 0.02 0.02

Based on the simulation results reported in Tables 2-5, we can list the following con-
clusions.

1. The MSE of the MLE decreases when the number of censored samples increases.

2. The average length of the approximate confidence interval and HPD are decreases
as the sample size increases.

3. The value of the MSE decreases when the sample size increases for Bayes estima-
tors.

7. DATA ANALYSIS

In this section, we consider two real data sets: the duration of remission of 13 leukemia
patients treated with a single drug (Balakrishnan and Cramer (2014)) and the breaking
strength of jute fibres under gauge lengths of 15mm and 20mm (Chaturvedi et al. (2018)).

The first real data set, which includes the duration of remission of 13 leukemia pa-
tients, is reported in Table 6:

TABLE 6
First real data set.

Duration of remission of 13 leukemia patients:

1.013, 1.034, 1. 109, 1.266, 1.509, 1.533, 1.563,
1.929, 1.965, 2.061, 2.344, 2.546, 2.626.
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The second real data set consists of two data sets, each of which contains gauge length
of 15mm and 20mm of 30 fibres (Table 7).

TABLE 7
Second real data set.

Gauge length of 30 fibres:

15mm 594.40, 202.75, 168.37, 574.86, 225.65, 76.38, 156.67, 127.81, 813.87, 562.39,
468.47, 135.09, 72.24, 497.94, 355.56, 569.07, 640.48, 200.76, 550.42, 748.75,
489.66, 678.06, 457.71, 106.73, 716.30, 42.66, 80.40, 339.22, 70.09, 193.42.

20mm 71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58,
578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70,
547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

Table 8 shows the test values obtained by fitting PFD to the data set. The Kolmogorov-
Smirnov (K-S) and Anderson-Darling (A-D) statistics and the corresponding p-values are
given. As a result, we generate point and interval estimates of the unknown parameters
using the binomial removal pattern based on progressive type-II censored samples. For
the Bayes estimation, we choose the values of the hyperparameters as a1 = 1.6, b1 = 3.2,
a2 = 2, b2 = 2, a3 = 2.5, and b3 = 2.5. Bayesian estimates using LLF and ELF are
evaluated by fixing h = c = 2.

TABLE 8
Fitting the PFD to the real data-sets.

Data set Parameters K-S Test A-D Test
α β Statistic p-value Statistic p-value

Lekumia patients 0.38 2.14 0.21 0.55 1.26 0.24
Gauge length 15mm 0.00 0.90 0.15 0.44 1.40 0.20
Gauge length 20mm 0.00 0.86 0.15 0.44 1.03 0.34

The MLEs of α, β, and p and are given in Table 9, and the Bayes estimates of α, β
and p under the SELF, LLF, and ELF are given in Table 10.
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TABLE 9
MLE of α, β, and p using the duration of remission of the leukemia data-set.

(n,m) α̂mle β̂mle
p̂mle

(8,5) 0.14 0.14 0.13
(8,8) 0.18 0.16 0.28
(10,6) 0.19 0.18 0.36
(10,8) 0.29 0.22 0.46
(12,10) 0.39 0.38 0.48

TABLE 10
Estimators of α, β, and p using the duration of remission of the leukemia data set using the M −H

algoritham.

(n,m) M-H
α̂self β̂self p̂self α̂elf β̂elf p̂elf α̂llf β̂llf p̂llf

(8,5) 0.10 0.12 0.31 0.34 0.12 0.13 0.42 0.33 0.44
(8,8) 0.15 0.15 0.35 0.42 0.14 0.18 0.44 0.40 0.45
(10,6) 0.19 0.19 0.36 0.44 0.19 0.18 0.47 0.48 0.45
(10,8) 0.21 0.26 0.41 0.45 0.28 0.27 0.50 0.49 0.45
(12,10) 0.21 0.36 0.52 0.49 0.32 0.33 0.55 0.58 0.62

Table 11 contains the details of one or two sample predictive estimates and predictive
intervals using different loss functions.

TABLE 11
Prediction of Y using duration of remission of leukemia data-set.

(n, m) p i k N1 j Prediction Prediction interval
One sample Two sample

x̂self x̂elf x̂llf ûself ûelf ûllf One sample Two sample

(8,5) 0.2 2 1 8 1 0.12 0.26 0.18 0.39 0.23 0.20 (0.16,0.72) (0.20,0.76)
(8,8) 0.5 2 2 8 2 0.12 0.36 0.28 0.38 0.52 0.31 (0.44,1.00) (0.23,0.75)
(10,6) 0.7 2 1 10 1 0.12 0.33 0.46 0.42 0.31 0.40 (0.22,0.73) (0.47,0.98)
(10,8) 0.9 2 2 10 2 0.12 0.29 0.38 0.44 0.44 0.57 (0.46,0.98) (0.25,0.75)
(12,10) 1.2 2 1 12 2 0.12 0.33 0.49 0.48 0.53 0.39 (0.24,0.74) (0.46,1.00)
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The MLE and Bayes estimators of the parameters are given in Tables 12 and 13.

TABLE 12
Bayes estimators using the real data-set of gauge length 15mm.

(n, m) Estimators Estimation Methods Prediction
MLE LAM ISP M-H One sample Two sample

(30,20) α̂mle 0.22 - - - - -
β̂mle 0.34 - - - - -
p̂mle 0.58 - - - - -
α̂self - 0.52 0.44 0.56 - -
β̂self - 0.36 0.28 0.47 - -
p̂self - 0.42 0.46 0.58 - -
α̂elf - 0.25 0.51 0.45 - -
p̂elf - 0.55 0.48 0.36 - -
β̂elf - 0.87 0.62 0.75 - -
α̂llf - 0.23 0.27 0.44 - -
β̂llf - 0.68 0.46 0.63 - -
p̂llf - 0.56 0.53 0.49 - -
x̂self - - - - 0.25 -
x̂elf - - - - 0.35 -
x̂llf - - - - 0.29 -
ûself - - - - - 0.33
ûelf - - - - - 0.36
ûllf - - - - - 0.30
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TABLE 13
Bayes estimators using the real data-set of gauge length 20mm.

(n, m) Estimators Estimation Methods Prediction
MLE LAM ISP M-H One sample Two sample

(30,25) α̂mle 0.29 - - - - -
β̂mle 0.49 - - - - -
p̂mle 0.52 - - - - -
α̂self - 0.26 0.31 0.38 - -
β̂self - 0.38 0.23 0.42 - -
p̂self - 0.47 0.53 0.55 - -
α̂elf - 0.48 0.32 0.39 - -
β̂elf - 0.45 0.52 0.51 - -
p̂elf - 0.54 0.56 0.58 - -
α̂llf - 0.18 0.26 0.46 - -
β̂llf - 0.10 0.49 0.59 - -
p̂llf - 0.48 0.36 0.65 - -
x̂self - - - - 0.13 -
x̂elf - - - - 0.52 -
x̂llf - - - - 0.47 -
ûself - - - - - 0.18
ûelf - - - - - 0.31
ûllf - - - - - 0.56

MLE and Bayes estimators of α, β, and p using different loss functions and the
varying values of m are plotted in Figures 1-6.



Estimation of the Parameters of the Power Function Distribution 223

5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

m

α

αllf
αelf
αself
αmle

Figure 1 – MLE and Bayes estimators of α
under SELF, ELF and LLF using Lindley
approximation methods
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Figure 2 – MLE and Bayes estimators of β
under SELF, ELF and LLF using Lindley
approximation methods
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Figure 3 – MLE and Bayes estimators of p
under SELF, ELF, and LLF using the Lind-
ley approximation method
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Figure 4 – MLE and Bayes estimators of α
under SELF, ELF, and LLF using the impor-
tance sampling procedure
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Figure 5 – MLE and Bayes estimators of β
under SELF, ELF, and LLF using the impor-
tance sampling procedure
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Figure 6 – MLE and Bayes estimators of p
under SELF, ELF, and LLF using the impor-
tance sampling procedure
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8. CONCLUSIONS

This paper discusses the Bayes estimation of the unknown parameters of the PFD us-
ing progressive type-II censored data with binomial removal scheme. The MLEs of the
parameters α, β, and p are obtained. The Bayes estimates are obtained using different
loss functions such as SELF, ELF, and LLF. To evalute the Bayes estimates, the MCMC
method has been applied. Further, with the help of the posterior density and using the
importance sampling procedure, we also computed highest posterior density credible
intervals of the parameters α, β, and p. Also, we discussed one and two sample pre-
diction and its confidence intervals. Based on the simulation study, Bayes estimation
provides better results than the MLE in terms of the MSE. The estimation techniques
described in this paper are demonstrated using two real data sets. Moreover, we showed
that as m increases, the values of the estimator also increase.
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