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1. INTRODUCTION

The Normal distribution is important in statistics and is widely used in natural and
social sciences to represent the distribution of real-valued random variables and as an
approximation to several other distributions. The normal density curve is a symmetric,
bell-shaped one with a single peak. Its peak corresponds to the mean, median and mode
of the distribution. The normal distribution has come to dominate statistical analysis of
real-time data due to empirical evidence for its relevance and theoretical evidence by the
Central Limit Theorem. Much of the analytical work in Statistics is centered on this dis-
tribution primarily owing to its nice mathematical properties and availability of tables /
statistical packages incorporating normal critical values. Even though normal distribu-
tion approximates several other distributions well, we encounter situations where the
assumption of normality is not satisfied by the original variable nor the transformed
one. So, rather than wrongly assuming normality and drawing incorrect conclusions,
fitting a non-normal distribution reflecting the characteristics of the variable being stud-
ied would lead to appropriate analysis of the data.

1.1. Kurtosis classification

There are three classes of kurtosis that a distribution can be classified into. The three
divisions are made with the standard normal distribution as a benchmark.
MESOKURTIC: A distribution is said to be mesokurtic if its kurtosis value is 3 and the
shape of the distribution is close to that of the normal distribution’s density curve.
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218 K.N. Radhalakshmi and M.L. William

LEPTOKURTIC: Leptokurtic distributions are those with kurtosis value greater than 3.
Leptokurtic distributions have their density curves with shorter tails.
PLATYKURTIC: The distributions which have a kurtosis value less than 3 fall in this
category. The density curve of platykurtic distributions have longer tails.

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 1 – A leptokurtic distribution with kurtosis 5.14.
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Figure 2 – A platykurtic distribution with kurtosis 2.7.

Although kurtosis is an important measure of a distribution, it is not given due
importance in the literature. This paper aims at dealing with distributions that have
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the moment-based kurtosis value different from 3; that is, distributions which are non-
mesokurtic. In saying non-mesokurtic, we emphasize that both platykurtic and lep-
tokurtic distributions are being dealt with.

In many practical applications involving tests of hypotheses, the analysis of the data
is carried out assuming normality. In linear regression, many analytical procedures are
based on the assumption of normality of the residuals from the model. However, in sev-
eral situations, this assumption fails and any follow-up analysis including tests of signif-
icance, outlier detection with the normal critical point thresholds, etc. are not justified.
The residuals may be symmetrically spread but non-mesokurtic and hence, follow-up
analysis and other inferential procedures need to be based on a distribution which is
normal-like but non-mesokurtic. These requirements necessitate the development of
such distributions.

This paper is an attempt to generate a class of univariate non-mesokurtic symmetric
distributions containing both leptokurtic and platykurtic distributions which can be
employed in situations where the distribution is symmetric but normal distribution
assumption fails. Reference is made to Bagnato et al. (2017) for an interesting approach
to generate a class of multivariate leptokurtic normal distributions. The approach in
the above-mentioned paper is interesting and the generated class of distributions is for a
multivariate context. Currently we seek a different route to generate a class of univariate
distributions that are symmetric and non-mesokurtic in nature.

This paper is organized as follows: After this introductory section, in Section 2 we
give a brief review of the literature on leptokurtic distributions. In Section 3, we present
an alternate approach to generate a class of univariate symmetric non-mesokurtic distri-
butions with a different symmetrizer, namely a continuous uniform random variable.
The class of distributions so generated contains both leptokurtic and platykurtic distri-
butions and the mesokurtic (normal) distribution as well. In Section 4, we derive the
density functions of the distributions in the generated class. In Section 5 we bring out
some interesting properties of the distributions in the class. In Section 6, we derive the
estimators of the parameters using the method of moments. In section 7, we give the
concluding remarks.

2. A REVIEW OF CURRENT LITERATURE ON LEPTOKURTIC DISTRIBUTIONS

The present study has been inspired by two research papers: (1) “On the Theory of
Elliptically Contoured Distributions” by Cambanis et al. (1981); (2) “The multivariate
leptokurtic-normal distribution and its application in model-based clustering” by Bag-
nato et al. (2017).

The former paper discusses the important theoretical aspects of elliptically contoured
distributions, of which multivariate normal distributions constitute a sub-class. Statis-
tical inference dealing with continuous multivariate data is commonly focused on ellip-
tical distributions but, among them, the normal distribution is the most widely used
one because of computational and theoretical convenience. Even though there is a rich



220 K.N. Radhalakshmi and M.L. William

theory for elliptically contoured distributions, this class of distributions has not been
generally applied in practical situations owing to lack of awareness and absence of com-
puting software that support the computations related to this class of distributions.

The latter paper draws inspiration from the former and deals specifically with lep-
tokurtic multivariate normal distribution and its application in model based clustering.
In several practical situations, it is found that the kurtosis of the observed distribution
is different from that of the normal distribution even though thecolorred distribution
is symmetric. For instance, the movement in stock indices may be much concentrated
about a central value with a high-peaked and thin-tailed distribution which may appear
like a normal distribution but not exactly normal as found in illustrations in Figure 1
and Figure 2. Reference is made to Szegö (2004) for such instances in finance data. Un-
like the concepts of location, spread and skewness, the meaning of kurtosis is a topic
of considerable debate. For interesting expositions on kurtosis, we refer to Balanda and
MacGillivray (1988, 1990) and Wang and Zhou (2012) besides others.

According to Arevalillo and Navarro (2012) the statistical concept behind kurtosis
is concerned with the curvature, the amount of peakedness, and the tail weight of a
distribution.The classical notion of univariate kurtosis is moment-based and given by
the standardized fourth central moment. A natural multivariate extension for a random
vector X with mean vector µ and covariance matrix Σ is

Kurt(X ) = E[(X −µ)′Σ−1(X −µ)]2.

We refer to Mardia (1970) for details.
Bagnato et al. (2017) have proposed a class of multivariate leptokurtic-normal (MLN)

distributions to handle the high peakedness or high value of kurtosis of the data. Their
formulation is a multivariate Gram-Charlier expansion of the Multivariate Normal (MN)
distribution. The MLN distribution is obtained by reshaping the generating variable of
its elliptical representation. We refer to Cambanis et al. (1981) for details. The result
is a distribution characterized by one additional parameter corresponding to the excess
kurtosis vis-a-vis the original MN distribution. According to the authors of that article,
the distributions thus proposed by them appear suitable in fitting several real data sets
showing different levels of excess kurtosis.

Here, we give a brief review of the literature on generating elliptical leptokurtic
distributions.

A d-variate continuous random vector X, with mean vector µ , has an elliptical dis-
tribution if and only if it can be written as

X =µ+RΛU , (1)

where U is a d -variate random vector uniformly distributed on the unit hypersphere
with d = 1 dimensions {u ∈ Rd :∥ u ∥= 1}, R is a non-negative random variable - called
a generating variate - stochastically independent of U and Λ is a d × d matrix satisfying
the condition

ΛΛ′ =
d

E(R2)
V C (X ), (2)
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where V C (X ) denotes the variance-covariance matrix of X . With this condition, Bag-
nato et al. (2017) developed a family of multivariate leptokurtic normal distributions.
In this paper we seek to take an alternate approach towards developing a family of non-
mesokurtic distributions for dimension d = 1. For this case, the Equation (2) reduces
to

Λ2 =
V (X )
E(R2)

. (3)

Noting that the set {u ∈ Rd :∥ u ∥= 1}, reduces to a two-point set {˘1,+1} and, hence
that E(U 2) = 1, the Equation (3) is mathematically consistent with Equation (1) for
d = 1. However, for the approach to be proposed in the next section, a modification
to the condition laid out in Equation (3) is given and the development of the univariate
non-mesokurtic family is presented.

3. GENERATING A UNIVARIATE NON-MESOKURTIC NORMAL FAMILY

In the existing literature on the development of multivariate leptokurtic normal family,a
discrete uniform symmetrizer is required in the case of dimension d = 1.The objective
of the present paper is to provide an alternate development of a univariate family that
contains leptokurtic as well as platykurtic distributions. The approach proposed here
uses Equation (1) but, with a difference in the distributional aspects of the variables used
to define the random variable X.
Consider R, a random variable which follows Chi-distribution; that is, R2 follows a
Chi-square distribution with m degrees of freedom and let U be a continuous random
variable uniformly distributed in the interval (–1,+1) independent of R. That is, we use
a Chi generator as suggested by Cambanis et al. (1981) and Bagnato et al. (2017), but the
symmetrizer is a continuous uniform variable. The proposed family of non-mesokurtic
distributions is constructed with the following ‘generating equations:

X =µ+RΛU ,

where

Λ2 =
V a r (X )

E(R2)E(U 2)
. (4)

It may be noted that the above formulation for Λ2, works well not only for our choice
of the symmetrizer U , but also for the discrete uniform symmetrizer of Bagnato et al.
(2017).
Now, β2(X ), the moment based kurtosis of X is

β2(X ) =
E(X −µ)4

[V (X )]2
=

E(R4)E(U 4)
[E(R2)]2[E(U 2)]2

.

We have R2 ∼X 2(m) and therefore

E(R2) = m and E(R4) = 2m+m2.
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Also,

E(U 2) =
1
3

and E(U 4) =
1
5

.

Hence

β2(X ) =
9
5

�m+ 2
m

�

. (5)

Special Cases:

When m = 1, β2(X ) = 5.4;

When m = 2, β2(X ) = 3.6;

When m = 3, β2(X ) = 3;

When m = 4, β2(X ) = 2.7.

From the above calculations, we observe that for m = 1,2, the distribution of X is lep-
tokurtic. For m = 3, we get mesokurtic nature. Higher values of m above 3 (degrees of
freedom of Chi-squared variable), gives kurtosis less than 3, i.e., a platykurtic distribu-
tion. Thus, the proposed approach, gives a way to generate a wide class of leptokurtic,
mesokurtic and platykurtic distributions. It is also interesting that the distributions in
the class are symmetric as evidenced by the zero value for the third central moments.

It is easy to note that as m increases, the value of β2(X ) approaches 1.8. The class
that we generate in this approach encompasses a wide class of distributions with the
moment-based kurtosis values ranging from 1.8 to 5.4. While Bagnato et al. (2017) have
taken up the generation of leptokurtic distributions for multivariate set-up, we have
considered only the univariate case but encompassed leptokurtic and platykurtic distri-
butions in the class being generated. Furthermore, we have used a continuous uniform
symmetrizer along with a chi generator for generating the class.

4. DERIVATION OF DENSITY FUNCTIONS

In this Section, we shall derive the density functions of the distributions in the class.
Basically, we need the density functions of X − µ = RΛU = W , say, where Λ is a
constant depending on the distribution of R and distribution of U and takes care of the
variance of X . As specified earlier, R2 is a chi square random variable with m degrees of
freedom. We denote R2 as S in the sequel.

The p.d.f of R is

fR(r ) =
1

Γ (m/2)2
m
2

e−
r 2

2 r m−1, r > 0.

We shall first find the conditional density of W given U fW (W |U ). Consider,

W = RΛU ,
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R=
W
ΛU

,

| d R
dW
|= 1
Λ|U |

,

fW (W |U ) =
2|w|(m−1) exp(− w2

2Λ2 u2 )

Γ m
2 u m2

m
2

, w > 0, u > 0 (o r ) w < 0, u < 0.

The joint probability density function of U and W is

f (u, w) = fw (w|u). f (u) =
|w|(m−1) exp(− w2

2Λ2 u2 )

2
m
2 Γ m

2 Λ
m |u|m

, w > 0, u > 0 (o r ) w < 0, u < 0.

Hence, the marginal density of W is

fW (w) =
|w|m−1

ΛmΓ m
2 2

m
2

∫ 1

0

exp(− w2

2Λ2 u2 )
u m

d u, −∞< w <∞. (6)

5. PROPERTIES OF THE PROPOSED CLASS OF DISTRIBUTIONS

In this Section, we provide some interesting results on the class of distributions gener-
ated. The first result shows that when we choose m = 3, the distribution is normal. The
second result gives an understanding of the shape of the distributions in the class.

THEOREM 1. When the Chi generator has degrees of freedom m = 3, the distribution
generated is normal

PROOF. As derived above, the density function of W is given as

fW (w) =
|w|m−1

ΛmΓ m
2 2

m
2

∫ 1

0

exp(− w2

2Λ2 u2 )
u m

d u, −∞< w <∞.

Taking m = 3, we get

fW (w) =
∫ 1

0

w2 exp(− w2

2Λ2 u2 )

Λ3Γ 3
2 2

3
2 u3

d u, −∞< w <∞.

Taking,
1
u2
= v and

w2

2Λ2
= l
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and carrying out the integration, we get

fW (w) =
1

Λ
p

2π
e−

w2

2Λ2
, −∞< w <∞,

which is the density function of a normal random variable with mean 0 and variance
Λ2. 2

THEOREM 2. The density functions of the generated distributions has two points of
inflexion equidistant on either side of the mean when m > 2.

PROOF. For w> 0, the density function of the generated distributions can be writ-
ten as

fW (w) = c
∫ 1

0

w m−1

u m
e−

w2

2Λ2 u2 ,

where
c =

1

ΛmΓ m
2 2

m
2

.

Now taking

w2

Λ2u2
= z,

we get

fW (w) =
cΛm−1

2

∫ ∞

w2

Λ2

z
m−3

2 d z,

f ′(w) = c e
w2

2Λ2 w m−2

f ′′(w) =−c exp
�

w2

2Λ2

�

(m− 2)− w2

Λ2

��

,











< 0, i f w2 < Λ2(m− 2)
= 0, i f w2 = Λ2(m− 2)
> 0, i f w2 > Λ2(m− 2).

From the above equations, we observe the following about the shape of the density
curve: When m ≥ 2, the curve is convex throughout w > 0. The same convex shape
exists on the negative side of the real line also. And, when m > 2, there is a point of
inflexion at w = Λ

p

(m− 2) on the positive side. By symmetricity, the point w =
−Λ
p

(m− 2) is also a point of inflexion. Between these points, the curve is concave and
outside this it is convex. It is clearly seen that when m = 3, the points of inflexion are
±Λ where Λ is the standard deviation of normal N (0,Λ2). 2
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6. ESTIMATING THE PARAMETERS µ, m and Λ2

From Section 2, we know that X −µ= RΛU =W
From the density function of the random variable W, we find E(W) = 0 and

E(W 2) =
Λ2m

3
, (7)

E(W 4) =
Λ4m(m+ 2)

5
. (8)

From (7), we get

Λ2 =
3E(W 2)

m
=

3V (X )
m

. (9)

Substituting the value of Λ2 in (8), we get

5
9
β2(W ) =

m+ 2
m

.

Solving further, we get

m =
18

5β2(W )− 9
=

18V (X )2

5E(X −µ)4− 9V (X )2
. (10)

Denoting a random sample from the distribution as X1, X2,...,Xn , the moment estimator
of the mean µ is the usual sample first moment given by

µ̂= X̄ . (11)

The moment estimators of m and Λ2 are obtained from Equations (9) and (10) as

m̂ =
18[Σn

i=1(Xi − X̄ )2]2

5nΣn
i=1(Xi − X̄ )4− 9[Σn

i=1(Xi − X̄ )2]2
, (12)

Λ̂2 =
5nΣn

i=1(Xi − X̄ )4− 9[Σn
i=1(Xi − X̄ )2]2

6Σn
i=1(Xi − X̄ )2

. (13)

Using the above equations (11), (12) and (13), one can get the estimates of the parameters.

7. CONCLUDING REMARKS

In many real life situations, we come across datasets which are not exactly normal but
normal like. In such situations, assuming normality and proceeding leads to wrong con-
clusions. This has been the motivation of the theoretical development in the present
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paper. By following an approach different from existing approaches, we have developed
a family of univariate non-mesokurtic distributions. The moment estimators of the pa-
rameters have been derived. The prospective applications of the family of distributions
so developed include outlier detection in real time data analysis. The extension to a fam-
ily of multivariate non-mesokurtic distributions is being addressed by the authors and
will be communicated for publication.
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SUMMARY

In a good number of real life situations, the observations on a random variable of interest tend to
concentrate either too closely or too thinly around a central point but symmetrically like the nor-
mal distribution. The symmetric structure of the density function appears like that of a normal
distribution but the concentration of the observations can be either thicker or thinner around the
mean. This paper attempts to generate a family of densities that are symmetric like normal but
with different kurtosis. Drawing inspiration from a recent work on multivariate leptokurtic nor-
mal distribution, this paper seeks to consider the univariate case and adopt a different approach
to generate a family to be called ’univariate non-mesokurtic normal’ family.The symmetricity of
the densities is brought out by a uniform random variable while the kurtosis variation is brought
about by a chi generator. Some of the properties of the resulting class of distributions and the
pameter estimation are discussed.
Keywords: Kurtosis; Moment estimators; Non-mesokurtic distributions
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