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ON THE COMPUTATION OF UPPER APPROXIMATIONS 
TO ULTIMATE RUIN PROBABILITIES IN CASE OF DFR 
CLAIMSIZE DISTRIBUTIONS 

L. Barzanti, C. Corradi 

1. INTRODUCTION

In the classical continuous time model of the collective theory of risk, see 
Gerber (1979), under which premiums are paid continuously at rate c, the aggre-
gate claims process is a compound Poisson process with parameter , individual 
claims are independent of each other and of the number of claims, and identically 
distributed with distribution function F, and is the expected claim size, the infi-
nite time probability of ruin, (u), for an initial risk reserve of u, satisfies the 
Volterra integral equation 
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In the present contribution we assume that the claimsize distribution is DFR 
(decreasing failure rate) so that, according to well known queueing results, see 
Szekli (1986),  can be proved to be convex. It will be shown that this property, 
together with the convexity of the stop loss transform of the distribution F,
namely, 

h(u) = (1 ( ))
u

F t dt

can be exploited to construct an efficient and stable recursive procedure yielding 
upper approximations to , with a remarkable improvement over analogous ex-
isting methods. It may be noted that several distributions of actuarial interest, e.g. 
Pareto, exponential, gamma, etc., belong to the DFR class. 

2. THE PROPOSED ALGORITHM

For our purpose, let us first cast equation (1) in the form 
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whence, integrating by parts, 
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Now, let us divide the interval [0, u] into N subintervals of common length d
and note that, thanks to the convexity of h, we have 
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where we have denoted 
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As a consequence, from (3) we obtain 
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whence, integrating by parts, 
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Now, the convexity of  yields 
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therefore, the inequality (6) becomes: 
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and, rearranging, we obtain the following inequality: 
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Finally, let 0 (0)
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Then we have, for N = 1, 2, ....., 

( ) Nu . (11) 

We point out that the coefficients of the recursion are positive, so that the 
procedure is strongly stable, see Panjer and Wang (1993). 

Remark. For N = 1 the sum in the r.h.s of (9) vanishes; then we obtain the up-
per bound 
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It is a matter of tedious calculations to show that it is sharper than the bound 
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 (13) 

established by Corradi (1991) without any assumption on the claimsize distribu-
tion.

3. SOME NUMERICAL RESULTS

The advantage of the proposed procedure will be illustrated in the following 
examples, where we compare numerical results produced by formula (10) with 
those produced by Goovaerts’ and De Vylder’s (1984) recursive algorithm. 

Example 1 (see Dickson et al., 1995). 
We assume that individual claim amounts have an exponential distribution 

with mean 1 and that  = 1/(1.1); we take the interval of discretization to be 1. 
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TABLE 1 

Exponential, with mean 1, =(1.1)-1, d=1 

u (1) (2) (3) (4) 

0 0.9090909 0.0000000 0.9090909 0.0000000 
2 0.7683947 0.0104375 0.8076102 0.0496530 
4 0.6494734 0.0175244 0.7174577 0.0855087 
6 0.5489571 0.0220678 0.6373688 0.1104795 
8 0.4639973 0.0247019 0.5662201 0.1269247 
10 0.3921863 0.0259225 0.5030137 0.1367499 
20 0.1691911 0.0216270 0.2783250 0.1307609 
40 0.0314882 0.0075355 0.0959186 0.0612586 
60 0.0058603 0.0019723 0.0260881 0.0222001 
80 0.0010907 0.0004596 0.0079871 0.0073560 
100 0.0002030 0.0001005 0.0024453 0.0023428 

The columns in Table 1 show for the values of u indicated: 
(1) an approximation of (u) based on formula (10); 
(2) the difference between the approximation in (1) and the exact value; 
(3) an approximation of (u) calculated by the Goovaerts’ and De Vylder’s algo-

rithm;
(4) the difference between the approximation in (3) and the exact value. 

The better performance of the present algorithm is so strikingly evident that 
very little needs to be added to the mere inspection of the reported results, see 
also Fig. 1. 
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                       Figure 1 – Exponential, with mean 1, =1/1.1, d=1.
                                       1.  Goovaerts’ and De Vylder’s approximation. 
                                       2.  Approximation based on formula (10).
                                       3.  Exact value. 

Example 2 (see Ramsay and Usabel, 1997). 
Now we assume that individual claim amounts have a Pareto (2,1) distribution 

and that  = 1/(1.1); the relevant interval is divided into 320 intervals of equal 
length.
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The results are illustrated in Figure 2 and in Table 2, where we show for the 
values of u indicated: 
(1) an approximation of (u) based on formula (10); 
(2) an approximation of (u) calculated by the Goovaerts’ and De Vylder’s algo-

rithm.

TABLE 2 

Pareto, with mean 1, =(1.1)-1, using 320 discretization points 

u (1) (2) 

0 0.9090909 0.9090909 
12.5 0.6383196 0.7095667 
25 0.4970101 0.5815087 
50 0.3337626 0.4138032 
75 0.2416450 0.3084746 
100 0.1837325 0.2376186 
200 0.0829193 0.1050071 
300 0.0494909 0.0594826 
500 0.0259990 0.0289254 
700 0.0173531 0.0185869 
1000 0.0115109 0.0120156 
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                     Figure 2 – Pareto, with mean 1, =1/1.1, using 320 discretization points. 
                                     1.  Goovaerts’ and De Vylder’s approximation. 
                                     2.  Approximation based on formula (10). 

From the foregoing results we can unambiguously conclude that the present 
method provides a remarkable improvement over the traditional Goovaerts’ and 
De Vylder’s algorithm with the same computational effort. 

As a final remark, we may point out that, in principle, the above idea can be 
exploited to obtain a lower approximation as well. Indeed, it is easy to see that 
from the monotonicity and the convexity of h and  it follows 
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so that, replacing (4) and (7) with (14) and (15) respectively, and proceeding in the 

same way, we readily obtain the corresponding recursione for N

However, experimental results indicate that the gain over the traditional meth-
ods is not so marked as for the upper approximation, and in general it is practi-
cally negligible. 
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RIASSUNTO

Sull’approssimazione per eccesso della probabilità di rovina nel caso di funzione di ripartizione di un sin-
golo danno con tasso di eliminazione decrescente (DFR) 

In questa nota si considera il modello classico della teoria collettiva del rischio nell’ipo- 
tesi che la funzione di ripartizione di un singolo danno appartenga alla famiglia delle di-
stribuzioni DFR (decreasing failure rate). Sfruttando la conseguente convessità della probabi-
lità di rovina viene sviluppato un procedimento ricorsivo che permette di ottenere, con la 
medesima complessità computazionale, una maggiorazione della probabilità di rovina no-
tevolmente più accurata di quella fornita da metodi tradizionali, come mostrato attraverso 
esempi numerici. 

SUMMARY

On the computation of upper approximations to ultimate ruin probabilities in case of DFR claimsize 
distributions

In the present note we consider the classical continuous time model of the collective 
theory of risk under the assumption that the claimsize distribution is DFR (decreasing 
failure rate) so that, according to well known queueing results, the ultimate ruin probabil-
ity turns out to be convex. This property is exploited to develop a stable recursive for-
mula for the calculation of a numerical upper approximation to the ultimate ruin prob-
ability with a remarkable improvement over analogous existing algorithms. Numerical re-
sults are reported to show the merits of the proposed approach. 


