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A STABLE ITERATIVE ALGORITHM FOR EVALUATION OF UPPER 
AND LOWER APPROXIMATIONS TO ULTIMATE 
RUIN PROBABILITIES (*) 

L. Barzanti, C. Corradi 

1. INTRODUCTION 

According to a classical result in the collective theory of risk (see Gerber, 
1979), when claims follow a compound Poisson process with rate  and premi-
ums are paid continuously at rate c then the infinite time probability of ruin, (u), 
for an initial risk reserve of  u, satisfies the Volterra integral equation 
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where c = (1+ ),  is the expected claim size,  is the safety loading factor 
and F is the cumulative distribution function (c.d.f.) of the claim amounts. Modi-
fying the classical surplus process by the inclusion of deterministic interest, , on 
the insurer's surplus leads to the equation 
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where 0 ( ) / (0)u  and 1  is the probability of ultimate survival 

(see Delbaen and Haezendonck, 1987). In case  = 0 the last equation reduces to 
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that can be used in place of equation (1.1) to obtain .
Methods for numerically solving the above equations have been studied by 

several authors (see Dickson and Waters, 1999, for a recent survey). In particular, 
methods providing numerical upper and lower approximations to the solution, 

(*) Work partially supported by M.I.U.R. funds. 
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and hence rigorous error bounds, have been proposed, based on the discretiza-
tion of the interval (0, u) and suitable recursive formulas for the computation of 
the approximate solutions (see Goovaerts and De Vylder, 1984, Sundt and 
Teugels, 1995). From the computational point of view, such methods have been 
proved to be stable, that is, there is no cumulative effect of the propagation of 
errors; however, both present two basic drawbacks. First, the evaluation of the 
stop loss transform of the distribution F, namely, 

hF(u) = (1 ( ))
u

F t dt

(Goovaerts and De Vylder, 1983), is required, but there are many cases of practi-
cal interest where it can not be expressed in closed form. Second, the methods 
involve repeated subtractions of nearly equal terms with consequent loss of sig-
nificant digits and the modifications of the recursion in order to avoid such ef-
fects lead to procedures that may violate the upper and lower bound property 
(see Ramsay, 1992). 

In this context, the purpose of the present contribution is to propose an alter-
native approach yielding numerical upper and lower approximations as well, 
based on an iterative scheme which eliminates the flaws described above. Nu-
merical results are reported to show the effectiveness of the proposed method. 

2. THE PROPOSED METHOD 

Let us first gather some results from Numerical Functional Analysis: the reader 
can refer to Krasnosel'skii et al. (1972) and, in particular, to Rall (1965) and Casa-
dei (1972) for further details and some applications to problems of computational 
physics. 

Given the linear integral equation 
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max ( , ) d   < 1,
b

ax
K x t t  (2.1) 

let us divide the interval [a, b] into N subintervals so that for 

Kij = max K(x, t),
1ix x xi , 1jt t tj

one has 

maxi Si = 
N

j 1

K ij (t j – 
1jt )  <  1. (2.2) 



A stable iterative algorithm for evaluation of upper and lower approximations etc. 15

Moreover, let 

kij = min K(x, t), 1ix x xi , 1jt t tj

si = 
1

N

ij
j

k (t j – 1jt )

Gi = max g(x),  gi = min g(x), 1ix x xi

and let 

M(0) = 1 maxi Gi /(1 Si ) 

m(0) = 1 mini gi /(1 si ) 

where 1 is the N - dimensional unit vector. Then we have 
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we obtain, with obvious notation, 

m (0) m (1)  ….. y(x)  ….. M (1) M (0)

i.e. two sequences of improved approximations to the solution from above and 
from below. If 

M = limk M (k), m = limk m (k) , 

then M and m are the best bounds provided by the above discretization and can 
be used to compute an approximate solution as (M + m)/2 and an upper bound 
for the absolute error as (M – m)/2 (in practice, of course, the iterations are 
stopped when some convergence criterion is met). If the resulting error turns out 
to be larger than some prescribed tolerance, one can refine the subdivision of the 
given interval and repeat, assuming M and m as “initial” guesses: it is clear that, at 

least in principle, any desired degree of accuracy can be achieved
As a final remark, we note that, in actual computations, if rounding is done in 

such a way as not to decrease )1(k
iM and not to increase )1(k

im , then the above 

inequalities will hold with the values obtained numerically. 
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Now, turning to our problem and focusing on equation (1.2), we first point out 
that condition (2.1) is satisfied, since 

0

1
( (1 ( ))) 1

u u
F u t dt

c u c u

for all u > 0. Moreover, taking into account the monotonicity of F and the fact 
that K(x, t) = 0, t > x, we immediately obtain 
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i = 1,…,N , where  is the common length of the subintervals. As mentioned be-
fore, these formulas require to evaluate the c.d.f. F in place of its transform hF

and do not involve subtractions. 
We may note that the procedure can be modified (à la Gauss-Seidel) using 

)1(k
jM  and )1(k

jm , j = 1, ... , i  1, to compute )1(k
iM  and )1(k

im  respectively: 
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so eventually improving the speed of convergence. 

3. NUMERICAL RESULTS 

A number of numerical experiments were carried out using examples in the lit-
erature: from the entire study we have selected the problems illustrated below, 
which provide a significant picture of the performance of the proposed method 
in cases where the c.d.f. can be computed only approximately and hence the tra-
ditional recursive methods based on the use of the transform hF are inherently 
unable to provide two-sided approximations. We may note that in case of Pareto 
or exponential claim size distributions, often considered in the literature for nu-
merical comparisons, such recursive methods can provide very satisfactory two-
sided approximations, so that no appreciable improvement can be obtained using 
an (obviously less efficient) iterative scheme. 
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Example 1. We assume that individual claim amounts for the basic process have 
an inverse Gaussian distribution with mean 1 and variance 5, and let  = 2.5 (see 
Cai and Garrido, 1999, example 4). Fig. 1 gives the results obtained with different 

step sizes,  0.05 and  0.005 respectively. 
In Table 1 we show, for the values of u indicated, a lower bound (col. 1), an 

upper bound (col. 2), the arithmetic mean (col. 3) and a bound for the absolute 

error (col. 4) produced by the present method with  0.005, and the corre-
sponding quantities (col. 5 to 8) obtained using the results reported in Cai and 
Garrido, cit.. From the inspection of the results we see that the present method 
can provide sharper bounds for all values of the initial reserve u less than the 
0.1% quantile (the largest value of u for which  0.001 <  (u) ), while giving com-
parable bounds for the tail of .

Figure 1 – Inverse Gaussian, with mean 1, variance 5 and =2.5, using =0.05 and =0.005.

TABLE 1 

Inverse Gaussian, with mean 1, variance 5 and  = 2.5, using  0.005

u (1) (2) (3) (4) (5) (6) (7) (8) 

1 0.1849580 0.1854476 0.1852028 0.0002448 0.1816754 0.1989151 0.1902953 0.0086199 

5 0.0763735 0.0771642 0.0767689 0.0003954 0.0688665 0.0955412 0.0822039 0.0133374 

10 0.0331910 0.0340958 0.0336434 0.0004524 0.0273207 0.0479647 0.0376427 0.0103220 

20 0.0076854 0.0086610 0.0081732 0.0004878 0.0056672 0.0144194 0.0100433 0.0043761 

30 0.0017561 0.0027492 0.0022527 0.0004966 0.0013919 0.0047061 0.0030490 0.0016571 

40 0.0001618 0.0011599 0.0006609 0.0004991 0.0003757 0.0015901 0.0009829 0.0006072 

50 0 0.0007013 0.0002015 0.0003507 0.0001087 0.0005482 0.0003285 0.0002198 

60 0 0.0005633 0.0000632 0.0002817 0.0000315 0.0001897 0.0001106 0.0000791 

Example 2. We assume that individual claim amounts have a lognormal distri-
bution with mean 1 and variance 25.53372, and let = 1 (see Thorin and Wik-
stad, 1977, Grandell, 1991, Ramsay and Usabel, 1997). The appropriate results, 

obtained with  0.01, are reported in Table 2 and illustrated in Fig. 2. 
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TABLE 2 

Lognormal, with mean 1, variance 25.53372 and  = 1,  using 0.01

u lower bound upper bound arithmetic mean error bound 

1 0.3917950 0.3946384 0.3932167 0.0014217 

5 0.2589595 0.2639675 0.2614635 0.0025040 

10 0.1888733 0.1950716 0.1919725 0.0030992 

20 0.1214117 0.1288418 0.1251268 0.0037151 

30 0.0870403 0.0951393 0.0910898 0.0040495 

50 0.0519708 0.0607856 0.0563782 0.0044074 

70 0.0344636 0.0436493 0.0390565 0.0045929 

100 0.0205734 0.0300596 0.0253165 0.0047431 

150 0.0097978 0.0195198 0.0146588 0.0048610 

200 0.0047131 0.0145467 0.0096299 0.0049168 

Figure 2 – Lognormal, with mean 1, variance 25.53372 and =1, using =0.01.

Example 3. Same as Example 1 in case the reserve is invested at a constant in-

terest rate 5% per annum, using  0.01, see Table 3 and Fig. 3. 

TABLE 3 

Inverse Gaussian, with mean 1, variance 5,  = 2.5 and = ln(1+0.05),  using 0.01

u lower bound upper bound arithmetic mean error bound 

1 0.1685297 0.1706612 0.1695955 0.0010658 

5 0.0622682 0.0655962 0.0639322 0.0016640 

10 0.0233547 0.0270885 0.0252216 0.0018669 

20 0.0030898 0.0070353 0.0050626 0.0019728 

30 0 0.0031775 0.0011846 0.0015888 

40 0 0.0023071 0.0003097 0.0011536 

50 0 0.0020933 0.0000948 0.0010467 

60 0 0.0020378 0.0000391 0.0010189 
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Figure 3 – Inverse Gaussian, with mean 1, variance 5, =2.5 and =ln(1+0.05), using =0.01.

Comments.
1. Condition (2.2) is satisfied for all the above examples: the value of the left 

hand side is 0.28 (for example 1), 0.5 (for example 2) and 0.61 (for example 3) re-
spectively.

2. In order to preserve the required upper and lower bound property, upper 
and lower approximations to the c.d.f.’s have to be used for the computation of

)1(k
iM and )1(k

im  respectively. Now, since the c.d.f.’s in the above examples can 

be expressed in terms of the standard normal distribution, all we need is to em-
ploy suitable upper and lower approximations to the normal itself (see e.g. Zelen 
and Severo, 1965, ch. 26); for our calculations we have employed the approxima-
tion used by Ramsay and Usabel, cit., plus and, respectively, minus the maximum 

error 7.5 10 .
3. In all our tests the “Gauss-Seidel” version of the algorithm, described at the 

end of Section 1, showed a remarkably faster convergence (2 or 3 versus up to 12 
iterations) than the original Rall’s algorithm.  

4. The present method may (obviously) be computationally intensive in case 
“small” step sizes are used. However, thanks to its very fast convergence, it is 
clear that the overall computational cost turns out to be related mainly to the 
number of evaluations of the kernel of the integral equation, as for any method 
based on discretizations, and not to its iterative nature. 

On the basis of our experience we can thus conclude that, as far as upper and 
lower approximations are a goal, the proposed method indeed provides an easy 
and effective tool, allowing to treat cases where numerical two-sided bounds can 
not be obtained by the usual algorithms. 

Dipartimento di Matematica per le Scienze Economiche e Sociali LUCA BARZANTI

Università di Bologna CORRADO CORRADI
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RIASSUNTO

Un algoritmo iterativo per il calcolo di approssimazioni per difetto e per eccesso della probabilità di rovina 

Nel presente lavoro viene proposto un algoritmo iterativo per il calcolo di approssima- 
zioni per difetto e per eccesso della probabilità di rovina nell'ambito della teoria collettiva 
del rischio. Il metodo può essere impiegato con successo anche nel caso di distribuzioni 
per le quali gli algoritmi noti non possono essere utilizzati, come illustrato negli esempi 
presentati. 
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SUMMARY

A stable iterative algorithm for evaluation of upper and lower approximations to ultimate ruin 
probabilities 

In this contribution we present an iterative algorithm for the calculation of two-sided 
numerical approximations to the probability of ultimate ruin for the classical risk model, 
which can be directly used in case of compounding assets as well. Examples involving 
claim size distributions for which the existing recursive algorithms are inherently unable 
to provide numerical upper and lower bounds are illustrated, showing the merits of the 
proposed approach. 


