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1. INTRODUCTION

Censoring is the important feature of lifetime modelling, and widely applied when the
exact lifetimes of individuals may not be observable due to various reasons. Different
types of censoring like right, left and interval censoring are commonly considered in
lifetime modelling. Jammalamadaka and Mangalam (2003) introduced a modern con-
cept of censoring scheme known as middle censoring which gets considerable attention
in statistical literature. In this censoring scheme the exact lifetimes of some individu-
als becomes unobservable when it falls into some random censoring intervals. Some
amount of work on middle censoring are found in Abuzaid et al. (2017) and the refer-
ences therein.

Middle censoring refers to the situations where the subject is temporarily absent or
withdrawn from the study, such as an individual leaves town for a temporary period
and returns, if still alive. Moreover, middle censoring also occur when the observations
are being taken, is closed for a period, due to an external emergency such as the out-
break of disease, war or a strike. For illustration of middle censoring, let T1,T2, . . . ,Tn
and [U1,V1], [U2,V2], . . . , [Un ,Vn] are the lifetimes and random censoring intervals re-
spectively of the n individuals who are under observation. Under the notion of middle
censoring, lifetime T is become observable if T /∈ [U ,V ] with Pr(U < V ) = 1, other-
wise unobservable.
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In lifetime studies it is often interesting to observe lifetime with associated causes
(i.e. competing risks) of failure for individuals or units. Competing risks applications
are frequently encountered in medical sciences, demography and engineering sciences.
For example, in cancer clinical trial, complete or partial response to treatment may be
the primary risk of interest, and death could be considered as the competing risk. Sim-
ilarly, in liver transplantation an individual can experiences one of the three possible
outcomes such as death, transplantation and withdraw from the waiting list. In these
illustrations outcomes are the competing risks, because the occurrence of one event ei-
ther precludes or alter the chance of the occurrence of other events. Analysis of lifetime
data in the presence of competing risks utilizes the two main classical approach namely,
latent failure time approach and cause specific quantity approach. Latent failure time ap-
proach is inappropriate to consider due to the independence assumption of hypothetical
failure times in real life problems (Tsiatis, 1975). Cause specific quantities such cause spe-
cific hazard function and cumulative incidence function (CIF) (Fine and Gray, 1999) gets
considerable attention in modelling of competing risks survival data. Because, Kaplan-
Meier estimates of survival function is inappropriate in estimating survival function and
its complement (Kalbfleisch and Prentice, 2002).

Recently, Wang (2016) and Ahmadi et al. (2017) considered the statistical analysis of
middle censored competing risks data with exponential distribution. These literatures
mainly focused on latent failure time approach. But modelling of competing risks using
cause specific quantities in the presence of middle censoring is still sparse and would
be an interesting attempt. We therefore, consider the CIF for modelling of competing
risks in the presence of middle censoring. CIF is a capable quantity in assessing the
effect of covariates on diseases and probability of expected time to event. CIF gives the
probability of failure due to a particular cause in the presence of other competing causes
acting on the individuals which is defined by

F j (t ;X ) = Pr(T ≤ t ,C = j |X ), j = 1,2, . . . , p, (1)

where T is the time to failure, C ∈ {1,2, . . . , p} be the p possible causes of failure, and
X is the m × 1 vector of covariates. Under the assumption that causes are mutually
exclusive, the overall distribution function is defined as

F (t ;X ) =
p
∑

j=1

F j (t ;X ), (2)

each F j (t ;X ) is an improper function in the sense that F j (∞;X ) < 1, because,
F (∞;X ) = 1 is proper. In other words, we can say that the asymptote of CIFs are
less than 1, i.e. the distribution function of any cause is improper, because overall cu-
mulative distribution function due to all causes is necessarily proper. This characteristic
of CIF can be arise in various applications, for instance, proportion of death in liver
transplantation tends to increase for a period of time and then plateau. Those patients
who do not experience the death can be considered as cured population. Therefore, in
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this situation the inference about the distribution of death can be modelled via the cure
model because the cumulative probability of death is less than 1.

Various methods have been proposed for estimating the CIF in statistical literature.
Fine and Gray (1999) proposed the semiparametric model for estimating the CIF by
extending the Cox proportional hazards model into the competing risks setting. This
model is not work for simultaneous modelling of event of interest as well as competing
events. An alternative of this model, Jeong and Fine (2006) proposed the direct parame-
terization of CIF through improper Gompertz distribution (Gompertz, 1825) without
covariates. Further, Jeong and Fine (2007) extended the direct parameterization of CIF
in to the regression setting. Lee (2019) provided the quantile inference on CIF through
improper Gompertz distribution function and compared with Weibull cause specific
proportional hazards model. For more detail on direct parameterization of CIF one
could refer to Haile et al. (2016) and references therein. The aforementioned studies on
CIF are mainly based on right censored survival times. Hence, in this article we con-
sider the competing risks analysis through direct parameterization of CIF under middle
censoring. The direct parameterization of CIF is more flexible and has a more straight-
forward interpretation. Therefore, we consider a two parameter improper Gompertz
distribution for modelling of CIF in Section 2.

However, Bayesian estimation of CIF based on direct parameterization is not fre-
quently discussed in literature. Therefore, we are interested in estimating the unknown
parameters as well as CIF through classical and Bayesian methods of estimation. The
novelty of this article assumes the both point and interval estimations of parameters
of CIF. In classical approach we consider maximum likelihood estimator (MLE) and
midpoint approximation (MPA) methods of point estimation. Asymptotic confidence
interval (ACI) of unknown parameters and CIFs are derived based on the asymptotic
property of MLE. In addition to Bayesian method we utilized informative and non-
informative priors under two loss functions such as squared error loss function (sym-
metric) and LINEX loss function (asymmetric). As expected, the posterior densities
cannot be turns out in any explicit form so we adopt the Markov Chain Mote Carlo
(MCMC) simulation algorithm for generating the posterior samples. A 95% credible
intervals of unknown parameters and CIFs are obtained using MCMC posterior sam-
ples.

The structure of the paper is organised as follows. In Section 2, we formulate the CIF
through improper Gompertz distribution. In Section 3, point estimates of unknown
parameters and CIF are obtained using MLE and MPA methods, the ACI also obtained
in this Section. The Bayes point and credible interval estimates of unknown parameters
and CIF are derived in Section 4. In Section 5, we compared the different estimates using
four sample sizes and two censoring scheme based on simulation study. In Section 6, we
illustrate the estimation procedure using a real data. Finally in section 7, the concluding
remarks are given.
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2. MODEL ASSUMPTION

In this study, for mathematically convenience we consider two mutually exclusive com-
peting risks, j = 1,2, where cause 1 is for event of interest and other competing risks are
combined in cause 2. However, the generalization for more than two causes is straight
forward. Without loss of generality, we consider the two parameter improper Gom-
pertz distribution (Marshall and Olkin, 2007) for parameterizing the CIF. Therefore,
the CIF under the improper Gompertz distribution function is given by

F j (t ;Θ j ) = 1− exp

¨

α j

λ j

�

e−λ j t − 1
�

«

, t > 0,α j ,λ j > 0, (3)

where Θ j = (α j ,λ j ), j = 1,2 is the vector of parameters.
The important feature of survival data with competing risks is the assump-

tion that subject will eventually experience the event of interest or the competing
event. In this setting, the probability of never occurring an event of type j equals
limt→∞(1− F j (t ;Θ j )) = exp(−α j

λ j
). Therefore, CIFs from both causes should add up to

one as time goes to∞ such that

F1(∞;Θ1)+ F2(∞;Θ2) = 1. (4)

The additivity constraint (4) will be well explain in the situation when the death is one
of the competing risks. For example, if we had followed all the patients long enough
in a liver transplant clinical trial, we would have noticed that each patient either had a
transplant or died without a transplant. This additivity constraint (4) intrinsically holds
in nonparametric estimations of CIFs without covariates. However, this additivity con-
straint has not been explicitly observed in previous studies of CIF based on direct param-
eterization, mentioned in Section 1. Therefore, in this paper, we consider a parametric
model that explicitly takes into account the constraint (4) between CIFs. In practice,
constraint (4) can be plugged by solving one parameter in terms of other parameters.
Therefore, in this way number of parameters are reduced by one. For example, in model
(3), j = 1,2, therefore, α2 tern out in the following form α2 =−λ2 log[1− exp(−α1

λ1
)].

3. CLASSICAL METHODS OF ESTIMATION

In this section, MLE and MPA methods of point estimation for unknown parameters
and CIF are expressed. Although, interval estimates obtained based on asymptotic prop-
erty of MLE.

3.1. Maximum likelihood estimation

Let us consider the competing risks survival data with middle censoring. Suppose that
we have n ∈ N individuals with lifetime variate T . It is assumed that T is middle cen-
sored by the random censoring interval [U ,V ] which having a bivariate cumulative
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distribution function G(·, ·). Also, for the ith individual, lifetime Ti , (i = 1,2, . . . , n)
and censoring interval [Ui ,Vi ] are independent. Therefore, the observed lifetime Yi is
given by

Yi =
§

Ti ; if δi = 1
[Ui ,Vi ] ; if δi = 0,

where δi = 1(Ti /∈ [Ui ,Vi ]) is a censoring indicator. Further, we assume that the left
end point of the censored interval Ui and width of the censored interval Wi =Vi−Ui are
independently and identically distributed (i.i.d.) random variables and they are indepen-
dent of Ti . It is also assumed that Ui and Wi are independently follow exponential dis-
tributions, i.e. Ui ∼ exp(ω1) and Wi ∼ exp(ω2). For the ith individual, if Ti /∈ [Ui ,Vi ]
then the causes of failure are observable, otherwise it is assumed that they can be ob-
served in later inspection.

Without loss of generality let us consider (yi ,δi , ji ) are i.i.d. samples of (Y,δ,C )
corresponding to n individuals under study. For the observed data (Y,δ,C ) the likeli-
hood function is then given by

L(Θ)∝
n
∏

i=1

2
∏

j=1

f j (ti ;Θ j )
δi∆i ( j )
�

F j (vi ;Θ j )− F j (ui ;Θ j )
�(1−δi )∆i ( j ) , (5)

where Θ = (Θ1,Θ2), f j (t ;Θ j ) = d F j (t ;Θ j )/d t and ∆i ( j ) = 1(Ci = j ), j = 1,2 is the
indicator function for jth cause. The parameters ω1 and ω2 do not depend on Θ j and
we are not interested to estimate them. Therefore, they do not affect the likelihood of
interest. We assume that first n1 =

∑n
i=1δi are the uncensored and remaining

n2 = n − n1 are censored observations respectively. Let n1 j =
∑n

i=1δi∆i ( j ) and
n2 j =
∑n

i=1(1−δi )∆i ( j ) are the number of the observed events of type j with respect
to uncensored and censored individuals respectively with

∑p
j=1

∑n
i=1∆i ( j ) = n where

n = n1+ n2.
Therefore, the joint likelihood function under model (3) is given by

L(Θ) =K
n1
∏

i=1

2
∏

j=1

�

α j e
−λ j ti exp

¨

α j

λ j

�

e−λ j ti − 1
�

«�∆i ( j )

×
n1+n2
∏

i=n1+1

2
∏

j=1

�

exp

¨

α j

λ j

�

e−λ j ui − 1
�

«

− exp

¨

α j

λ j

�

e−λ j vi − 1
�

«�∆i ( j )

,

(6)

where K is the normalizing constant which depends on ω1 and ω2. Hence, the corre-
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sponding log-likelihood function ℓ= log L(Θ) can be written as

ℓ(Θ) = logK +
2
∑

j=1

n1 j logα j −
2
∑

j=1

λ j

n1 j
∑

i=1

ti +
2
∑

j=1

n1 j
∑

i=1

α j

λ j

�

e−λ j ti − 1
�

+
2
∑

j=1

n1+n2 j
∑

i=n1+1

log

�

exp

¨

α j

λ j

�

e−λ j ui − 1
�

«

− exp

¨

α j

λ j

�

e−λ j vi − 1
�

«�

.

(7)

In survival analysis, the heterogeneity among the individuals are explained by co-
variates or explanatory variables. In order to built the regression model we introduce
covariate X with loglink function and write α1 = exp(β′Xi ), in the likelihood L(Θ).
Where Xi = (1, xi1, xi2, . . . , xi m)

′
and β

′ = (β0,β1, . . . ,βm) is the vector of regression
coefficients. All the parameters of both the competing risks are simultaneously included
in likelihood (6) and estimated, although parameter α2 calculated in terms of other pa-
rameters as discussed in Section 2. Then in order to acquire the MLE of unknown pa-
rameters, the system of normal equations i.e. ∂ ℓ(Θ)∂ β = 0 and ∂ ℓ(Θ)∂ λ j

= 0 has been derived.

Observe that estimates of unknown parameters can not be obtained in closed forms and
so we have employed a numerical technique to compute these estimates. We use the
optim function in R software for obtaining MLEs and variance covariance matrix of
the unknown parameters. By using the invariance property of MLE we obtained the
MLE of the CIF. Suppose the Θ̂ is the MLE of Θ then the estimator of F j (t ;Θ j ,X ) is

given by F̂ j (t ; Θ̂ j ,X ).

3.2. Asymptotic confidence interval

This section deals with deriving interval estimators of unknown parameters and CIFs
based on asymptotic distribution of MLE. The MLEs of the unknown parameters are
not in closed form, therefore, it is not possible to obtained exact distribution of MLEs.
By following the asymptotic property of MLE, the sampling distribution of

(Θ̂−Θ)/
Æ

var(Θ̂) can be approximated by a standard normal distribution. The variance
of MLE i.e. var(Θ̂) are the diagonal elements of the asymptotic variance covariance
matrix Σ(Θ̂) which is the inverse of the Fisher information matrix I (Θ).

The (i , j )th element Ii j of Fisher information matrix I (Θ) is given by

Ii j (Θ) =−E
�

∂ 2ℓ(Θ)
∂ Θ∂ Θ′

�

, i , j = 1,2, . . . , m+ 2.

Unfortunately, the exact mathematical expressions for the above expectations are diffi-
cult to obtain. Therefore, the observed Fisher information matrix I0(Θ) can be used to
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approximate Fisher information matrix I (Θ), which is obtained by dropping the expec-
tation operator E and it can be written as

I0i j
(Θ) =−
�

∂ 2ℓ(Θ)
∂ Θ∂ Θ′

�

, i , j = 1,2, . . . , m+ 2.

Therefore, the variance covariance matrixΣ(Θ̂) is obtained by substituting the MLE
of Θ into the I0(Θ). Thus, for a given confidence level γ , a two-sided 100(1− γ )% ACI
for Θ can be constructed as follows

h

Θ̂− zγ/2
q

var(Θ̂), Θ̂+ zγ/2
q

var(Θ̂)
i

,

where, zγ/2 is the upper γ/2 quantile of the standard normal distribution. Further, we
also computed two-sided 100(1− γ )% confidence interval for CIF which is given by

h

F̂ j (t ; Θ̂ j ,X )− zγ/2
Ç

var(F̂ j (t ; Θ̂ j ,X )), F̂ j (t ; Θ̂ j ,X )+ zγ/2
Ç

var(F̂ j (t ; Θ̂ j ,X ))
i

,

variance of CIF is obtained by using the delta method.

3.3. Midpoint approximation estimation

In this subsection, we employ MPA method of estimation (Chen and Lio, 2010), which is
useful when the actual observation cannot be made beside an interval can be observed.
Teimouri and Gupta (2012) considered the MPA method for parameter estimation of
Gompertz-Makeham distribution under progressive type-I interval censoring. Recently,
Wang (2016) and Yan et al. (2019) utilized the MPA method under middle censoring with
competing risks using latent failure time approach.

In MPA method, when the actual observation is masked by the random interval
[Ui ,Vi ], then the Ti is approximated by T ∗i = (Ui +Vi )/2 with the assumption that the
pseudo actual failure occurred at the middle of the related censoring interval and then
the censoring data can be approximately expressed in form of pseudo-complete data as
follows.

Yi =
§

Ti ; if δi = 1
T ∗i ; if δi = 0

Under the above notion the pseudo-complete likelihood function is given by

LMPA(Θ) =K
n
∏

i=1

p
∏

j=1

f j (ti ;Θ j )
δi∆i ( j ) f j (t

∗
i ;Θ j )

(1−δi )∆i ( j ). (8)
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Further, the log-likelihood function of LMPA(Θ) under proposed model is given by

ℓM PA(Θ) = logK +
2
∑

j=1

n1 j logα j −
2
∑

j=1

λ j

n1 j
∑

i=1

ti +
2
∑

j=1

n1 j
∑

i=1

α j

λ j

�

e−λ j ti − 1
�

+
2
∑

j=1

n2 j logα j −
2
∑

j=1

λ j

n1+n2 j
∑

i=n1+1

t ∗i +
2
∑

j=1

n1+n2 j
∑

i=n1+1

α j

λ j

�

e−λ j t ∗i − 1
�

.

(9)

As in MLE, the expressions of normal equations under MPA likelihood function are not
in explicit form. However, the normal equations of MPA method looks simpler than
the MLE. Hence, the estimates of the parameters are turn out to be more easily.

4. BAYESIAN ESTIMATION

In this section, the Bayesian method is used to estimate the unknown parameters and
CIF. In the Bayesian method, prior distributions of the model parameters are used to
derive their corresponding posterior densities. Usually the selection of prior distribu-
tion is based on past experiences, historical data, expert suggestion, simply mathematical
convenience or wholly subjective.

Here, we assume that informative priors for β and λ j which are independently fol-
lows standard normal and gamma distributions respectively of the form

π1(β)∝ e−
1
2β

2
, −∞<β<∞ (10)

and
π2 j (λ j )∝ λ

a j−1
j e−b jλ j , λ j > 0,a j > 0, b j > 0, j = 1,2, (11)

where a j and b j are the hyper-parameters. The hyper-parameters are assumed to be
known or chosen in such a way that reflects the degree of belief about the unknown
parameters. On the other side, we assume information on the unknown parameters are
not known, i.e. the ignorance of information, the choice of non-informative prior is
also considered, a detail is given in simulation section.

From the priors π1(β) and π2 j (λ j ) the joint prior distribution of β and λ j is given
by

π(Θ)∝π1(β)×
2
∏

j=1

π2 j (λ j ),

π(Θ)∝ e−
1
2β

2 ×
2
∏

j=1

λ
a j−1
j e−b jλ j . (12)
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Thus the joint posterior density of random variablesβ and λ j is obtained through Bayes
theorem by using likelihood (6) and joint prior (12) as follows

p(Θ | data)∝
L(Θ | data)π(Θ)
∫

· · ·
∫

L(Θ | data)π(Θ)dΘ
. (13)

Hence, the conditional posterior of β given λ1,λ2 and data is

p1(β | λ1,λ2, data) =
p(Θ | data)

∞
∫

−∞
p(Θ | data)dβ

, (14)

the conditional posterior of λ1 given β,λ2 and data is

p21(λ1 |β,λ2, data) =
p(Θ | data)

∞
∫

0
p(Θ | data)dλ1

, (15)

and the conditional posterior of λ2 given β,λ1 and data is

p21(λ2 |β,λ1, data) =
p(Θ | data)

∞
∫

0
p(Θ | data)dλ2

. (16)

Clearly, it is not possible to solve the integral involve in the denominator of (13)
explicitly, therefore we cannot obtain the conditional posterior densities (14), (15) and
(16) in closed form. Thus it is not possible to obtain the Byes estimates of β and λ j
explicitly.

Hence, in this situation we proposed MCMC method to approximate the integrals
(Robert and Casella, 2010). MCMC methods are the set of different types of algorithm
which are depend on repeated sampling for obtaining the numerical results. Popularly
used MCMC algorithms are Gibbs sampling algorithm (Geman and Geman, 1984)
and Metropolis-Hastings (M-H) algorithm (Hastings, 1970). Since, conditional poste-
rior densities of random variables β and λ j are not obtained in closed form so in this
situation it is preferable to use M-H algorithm.

We consider two different types of loss functions, namely, squared error (symmet-
ric) and LINEX (asymmetric) loss functions for comprehensive comparison of Bayes
estimates. Squared error loss function (SELF) for a parameter Θ j is defined as

L1(Θ j , Θ̂ j ) = (Θ j − Θ̂ j )
2.

Then the Bayes estimate for parameter Θ j and CIF F j (t ;Θ j ,X ) under SELF can be ob-
tained as the posterior means and calculated by

Θ̂
self
j =

1
N −M

N
∑

l=M+1

�

Θ j

�

Θ j=Θ
(l )
j

,
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F̂ j (t ;Θ j ,X )
self =

1
N −M

N
∑

l=M+1

�

F j (t ;Θ j ,X )
�

Θ=Θ(l )j

,

where Θ(l )j , l = 1,2, . . . ,N are the are MCMC random samples generated from the pos-
terior distribution of Θ j and M is the number of iteration used in burn-in period.

However, we also consider LINEX loss function (LLF) as an asymmetric loss func-
tion which is given by

L2(Θ j , Θ̂ j ) = eρ(Θ̂ j−Θ j )−ρ(Θ̂ j −Θ j )− 1, ρ ̸= 0.

where ρ is the hyper parameter of the LLF and magnitude of ρ reflect the degree of
asymmetry. For ρ > 0 the LLF is quite asymmetric about 0 with overestimation being
more serious than underestimation. The vice versa is true with ρ < 0. If ρ is close
to zero then estimates under LLF are approximately equal to estimates obtained under
SELF. Hence, LLF is more applicable in lifetime modelling, for instance, over estimation
of survival function and failure rate function is usually much more serious than under
estimation.

Under LLF the Bayes estimates of parameterΘ j and CIF F j (t ;Θ j ,X ) can be obtained
as follows

Θ̂
l l f
j =− 1

ρ
log

�

1
N −M

N−M
∑

l=M+1

e
−ρ[Θ]

Θ j =Θ
(l )
j

�

,

F̂ j (t ;Θ j ,X )
l l f =− 1

ρ
log

�

1
N −M

N
∑

l=M+1

e
−ρ[F j (t ;Θ j ,X )]Θ j =Θ

(l )
j

�

.

In Bayesian framework for a γ level of significance, the (1− γ ) interval estimate of a
parameter Θ j is a credible interval based on given data, that covers the parameter with

(1− γ ) level of confidence. The 100(1− γ )% Bayes credible interval (BCI),
�

ΘL
j ,ΘU

j

�

,
for Θ j is obtained by setting ΘL

j equal to the γ/2% quantile and ΘU
j equal to (1−γ/2)%

quantile of the posterior sample of Θ j . Similarly, same procedure is also adopted for
obtaining BCI for F j (t ;Θ j ,X ).

5. SIMULATION STUDY

In this section, numerical investigation of the proposed estimators is carried out through
Monte Carlo simulation. We performed numerical comparisons of MLE, MPA and
Bayes estimators with the different choices of simulated sample sizes n=25, 50, 100 and
200 at prefixed censoring scheme(CS). Each sample was replicated 500 times. The per-
formance of all point estimators are compared numerically in terms of their average esti-
mate (AE) and mean square error (MSE) values. Also, average length (AVL) and coverage
probability (CP) are computed for interval estimates. The results from the simulation
study are presented in Table 1 and Table 2.
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In this scenario, we generated the survival times from the proposed Gompertz model
for both the causes as given in (3) using inverse transformation method. Regression
model is developed through one covariate x which is generated from the standard nor-
mal distribution. We consider λ1 = 1.5 for cause 1 and λ2 = 1 for cause 2. For
α1 = exp(β0+β1x), true parameters are chosen asβ0 = 0.3 andβ1 = 0.4, therefore, sub-
ject to additivity constraint (4) for both CIF, we have α2 = 0.5981 at covariate x =−0.3.
We also generated the censoring intervals for two CSs with following combinations of
(ω1,ω2) = (1,4), and(1,1.3) which are imposing the average censoring proportion ap-
proximately 10% and 20%. Based on different sample sizes and CSs, the ML, MPA and
Bayes estimates of parameters and CIF are calculated. The estimates of CIF are obtained
at time t = 0.5 and covariate x =−0.3 for both the causes and denoted as F1 and F2 with
true values F1 = 0.344 and F2 = 0.210. MLE and MPA point estimates of four unknown
parameters (β0,β1,λ1,λ2) and CIF are computed using model based log-likelihood (7)
and (9) respectively. The ACI were computed from the Fisher information matrix eval-
uated at the MLEs.

In order to compute the Bayes estimates we use informative and non-informative
priors. In case of informative prior (INP), the hyper parameters of gamma priors are
calculated using the likelihood estimates of λ1 and λ2 based on 1000 data set of sample
size 25. Now, we compute the mean and variance of the MLE of λ1 and λ2 and compare
with the mean and variance of gamma priors. Subsequently, we get the hyper parameters
values as a1 = 8.18, b1 = 5.14 and a2 = 6.79, b2 = 6.22. For regression parametersβ0 and
β1 we assumed N (0,1) as informative priors. Further in case of non-informative prior
(NIP) we assume that a1 = b1 = a2 = b2 = 0.0001 and where β0 and β1 are said to be
follow N (0,1000). The hyper parameter of LLF is fixed at ρ=±1.5 known as llf-1 and
llf-2. We also computed the BCI under INP and NIP and denoted as BCI-1 and BCI-2.

Further, as we mentioned in Section 4 that conditional posterior densities of un-
known parameters are not turn out in any distributional form, so we adopt the MCMC
procedure for generating the random samples. For this purpose we used the BUGS
software via R2OpenBUGS package in R software (Lunn et al., 2012).

We generate 10000 Markov chains for each parameter and the first 4000 samples are
removed for reducing the effect of initial values. Furthermore, for minimizing the effect
of the autocorrelation every second equally spaced outcome is considered i.e. thin=2.
By the visualization of the convergence diagnostics plots it is realized that chains are
converging nicely. Therefore, the last 6000 MCMC samples are used to obtained the
Bayes estimates of β0,β1,λ1, andλ2.

From Table 1 it is observed that as the sample size n increases, MSEs decreases for
MLE, MPA and Bayes estimates, for both CSs, which verifies the consistency property
of all the estimators. The Bayes estimators based on INP under both the loss functions
are dominating over other estimates in terms of their MSEs. We can also see that for
small sample sizes n, MPA estimators also performed well in compared to MLE. For
n = 200 the magnitudes of MSEs of all estimators are negligible. For fixed sample size
as censoring proportion is increases, MSEs increases except for some values.
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TABLE 1
AVE and MSE values of the estimates are reported.

CS1 CS2

n Estimates β0 β1 λ1 λ2 F1 F2 β0 β1 λ1 λ2 F1 F2

True 0.300 0.400 1.500 1.000 0.344 0.210 0.300 0.400 1.500 1.000 0.344 0.210

25 MLE AVE 0.309 0.443 1.564 1.104 0.349 0.214 0.299 0.412 1.589 1.150 0.349 0.220
MSE 0.141 0.099 0.264 0.223 0.891 0.548 0.145 0.099 0.331 0.361 0.999 0.716

MPA AVE 0.297 0.441 1.545 1.095 0.347 0.213 0.212 0.406 1.449 1.076 0.334 0.211
MSE 0.139 0.098 0.253 0.211 0.873 0.537 0.142 0.098 0.246 0.273 0.911 0.656

INP AVE 0.226 0.422 1.529 1.038 0.335 0.223 0.218 0.382 1.537 1.051 0.337 0.225
self MSE 0.085 0.076 0.064 0.041 0.585 0.404 0.087 0.078 0.070 0.048 0.643 0.482
INP AVE 0.150 0.370 1.442 0.986 0.330 0.220 0.138 0.320 1.448 0.996 0.332 0.221
llf-1 MSE 0.107 0.073 0.054 0.032 0.585 0.385 0.112 0.082 0.057 0.037 0.638 0.456
INP AVE 0.297 0.476 1.634 1.100 0.340 0.227 0.295 0.445 1.645 1.117 0.343 0.229
llf-2 MSE 0.075 0.086 0.100 0.060 0.590 0.426 0.075 0.083 0.113 0.072 0.654 0.511
NIP AVE 0.189 0.472 1.570 1.076 0.326 0.219 0.182 0.431 1.594 1.130 0.329 0.224
self MSE 0.165 0.111 0.264 0.209 0.840 0.545 0.170 0.109 0.333 0.350 0.929 0.705
NIP AVE 0.076 0.413 1.399 0.959 0.321 0.215 0.061 0.359 1.415 0.987 0.322 0.219
llf-1 MSE 0.222 0.097 0.171 0.118 0.847 0.520 0.232 0.104 0.196 0.152 0.930 0.666
NIP AVE 0.293 0.535 1.836 1.266 0.332 0.223 0.293 0.505 1.895 1.415 0.336 0.229
llf-2 MSE 0.140 0.134 0.652 0.610 0.839 0.574 0.143 0.127 1.050 2.295 0.935 0.751

50 MLE AVE 0.315 0.417 1.566 1.056 0.348 0.214 0.289 0.422 1.549 1.050 0.341 0.217
MSE 0.070 0.049 0.144 0.104 0.466 0.270 0.067 0.040 0.128 0.089 0.428 0.277

MPA AVE 0.302 0.416 1.546 1.050 0.345 0.213 0.201 0.417 1.416 0.993 0.326 0.210
MSE 0.068 0.048 0.134 0.100 0.456 0.265 0.074 0.039 0.103 0.071 0.428 0.249

INP AVE 0.264 0.394 1.546 1.037 0.340 0.218 0.240 0.402 1.536 1.035 0.333 0.222
self MSE 0.050 0.043 0.059 0.038 0.355 0.222 0.050 0.035 0.058 0.039 0.337 0.233
INP AVE 0.223 0.360 1.489 1.003 0.337 0.216 0.198 0.376 1.477 1.001 0.331 0.220
llf-1 MSE 0.056 0.044 0.042 0.028 0.354 0.215 0.059 0.035 0.049 0.033 0.339 0.225
INP AVE 0.304 0.428 1.611 1.074 0.343 0.220 0.282 0.429 1.602 1.073 0.336 0.224
llf-2 MSE 0.047 0.045 0.089 0.054 0.357 0.229 0.046 0.037 0.078 0.049 0.336 0.241
NIP AVE 0.258 0.414 1.568 1.042 0.337 0.216 0.231 0.419 1.552 1.038 0.331 0.219
self MSE 0.074 0.050 0.144 0.101 0.448 0.271 0.074 0.040 0.128 0.086 0.422 0.278
NIP AVE 0.207 0.378 1.485 0.991 0.334 0.214 0.178 0.392 1.466 0.987 0.328 0.217
llf-1 MSE 0.083 0.050 0.111 0.078 0.448 0.263 0.087 0.039 0.100 0.067 0.426 0.269
NIP AVE 0.307 0.450 1.668 1.103 0.341 0.218 0.283 0.447 1.657 1.099 0.334 0.221
llf-2 MSE 0.070 0.054 0.212 0.145 0.450 0.279 0.067 0.043 0.194 0.123 0.420 0.288

100 MLE AVE 0.294 0.406 1.514 1.023 0.343 0.213 0.313 0.404 1.520 1.031 0.348 0.210
MSE 0.033 0.022 0.053 0.029 0.193 0.124 0.034 0.022 0.057 0.039 0.222 0.144

MPA AVE 0.282 0.405 1.498 1.017 0.341 0.212 0.229 0.399 1.396 0.980 0.333 0.203
MSE 0.032 0.022 0.050 0.028 0.190 0.123 0.037 0.022 0.054 0.032 0.213 0.135

INP AVE 0.264 0.395 1.515 1.024 0.337 0.216 0.287 0.391 1.520 1.031 0.344 0.213
self MSE 0.029 0.021 0.036 0.020 0.172 0.117 0.028 0.021 0.038 0.027 0.188 0.127
INP AVE 0.242 0.379 1.482 1.006 0.336 0.216 0.265 0.376 1.486 1.012 0.343 0.212
llf-1 MSE 0.032 0.022 0.033 0.018 0.173 0.115 0.029 0.021 0.035 0.024 0.187 0.125
INP AVE 0.286 0.412 1.550 1.043 0.339 0.217 0.309 0.405 1.556 1.053 0.345 0.214
llf-2 MSE 0.028 0.022 0.042 0.023 0.172 0.119 0.027 0.021 0.045 0.031 0.190 0.129
NIP AVE 0.262 0.407 1.514 1.016 0.336 0.215 0.284 0.399 1.521 1.026 0.343 0.211
self MSE 0.035 0.023 0.053 0.028 0.194 0.126 0.034 0.022 0.057 0.038 0.214 0.143

Continued
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CS1 CS2

n Estimates β0 β1 λ1 λ2 F1 F2 β0 β1 λ1 λ2 F1 F2

NIP AVE 0.237 0.390 1.474 0.995 0.335 0.214 0.259 0.385 1.480 1.002 0.341 0.210
llf-1 MSE 0.038 0.022 0.048 0.026 0.195 0.125 0.036 0.022 0.051 0.034 0.213 0.141
NIP AVE 0.286 0.423 1.557 1.039 0.338 0.215 0.308 0.414 1.566 1.052 0.344 0.212
llf-2 MSE 0.033 0.023 0.062 0.032 0.193 0.128 0.034 0.023 0.069 0.045 0.215 0.145

200 MLE AVE 0.304 0.401 1.518 1.012 0.345 0.211 0.296 0.406 1.515 1.012 0.342 0.213
MSE 0.016 0.009 0.029 0.014 0.097 0.061 0.017 0.009 0.030 0.015 0.107 0.068

MPA AVE 0.292 0.400 1.501 1.007 0.343 0.211 0.210 0.401 1.390 0.963 0.327 0.205
MSE 0.015 0.009 0.028 0.014 0.095 0.060 0.024 0.009 0.034 0.013 0.126 0.062

INP AVE 0.289 0.396 1.519 1.014 0.342 0.213 0.281 0.402 1.516 1.014 0.340 0.214
self MSE 0.014 0.009 0.024 0.012 0.090 0.059 0.015 0.008 0.025 0.013 0.100 0.065
INP AVE 0.278 0.389 1.501 1.004 0.341 0.212 0.269 0.396 1.498 1.004 0.339 0.214
llf-1 MSE 0.015 0.009 0.023 0.011 0.090 0.058 0.016 0.008 0.023 0.012 0.100 0.065
INP AVE 0.300 0.403 1.537 1.024 0.343 0.213 0.292 0.409 1.535 1.025 0.340 0.215
llf-2 MSE 0.014 0.009 0.027 0.013 0.090 0.059 0.015 0.008 0.027 0.014 0.099 0.066
NIP AVE 0.288 0.400 1.518 1.007 0.341 0.212 0.279 0.407 1.515 1.008 0.339 0.213
self MSE 0.016 0.009 0.029 0.014 0.096 0.062 0.017 0.009 0.030 0.015 0.108 0.068
NIP AVE 0.276 0.394 1.499 0.997 0.341 0.211 0.267 0.400 1.495 0.996 0.338 0.213
llf-1 MSE 0.016 0.009 0.028 0.013 0.096 0.061 0.018 0.008 0.028 0.014 0.108 0.068
NIP AVE 0.299 0.407 1.539 1.018 0.342 0.212 0.292 0.414 1.536 1.019 0.340 0.214
llf-2 MSE 0.016 0.010 0.032 0.015 0.096 0.062 0.017 0.009 0.033 0.016 0.107 0.069

Form Table 2 it is clear that as the sample size n increases, average length of ACI,
BCI-1 and BCI-2 decreases. Similarly, in most of the cases, for fixed sample size n as the
censoring proportion increases, AVL of ACI, BCI-1 and BCI-2 increases except for β1.
For all the interval estimates, we observe very stable CPs around 95%. The AVL of BCI
estimates based on NIP are slightly larger than the other interval estimates.
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TABLE 2
AVL and CP of ACI and Bayes credible intervals.

CS1 CS2

n Estimates β0 β1 λ1 λ2 F1 F2 β0 β1 λ1 λ2 F1 F2

25 ACI AVL 1.434 1.089 1.935 1.609 0.360 0.275 1.495 1.196 1.980 1.741 0.388 0.299
CP 0.946 0.926 0.950 0.936 0.930 0.910 0.960 0.960 0.956 0.934 0.946 0.910

BCI-1 AVL 1.220 1.027 1.365 1.049 0.309 0.260 1.259 1.124 1.379 1.076 0.331 0.277
CP 0.968 0.940 0.992 0.992 0.952 0.952 0.984 0.962 0.986 0.988 0.972 0.970

BCI-2 AVL 1.472 1.101 1.920 1.521 0.336 0.280 1.525 1.213 1.961 1.656 0.360 0.303
CP 0.942 0.926 0.936 0.922 0.930 0.934 0.946 0.944 0.942 0.928 0.952 0.952

50 ACI AVL 0.998 0.852 1.330 1.038 0.258 0.191 1.025 0.751 1.355 1.049 0.257 0.191
CP 0.938 0.952 0.936 0.932 0.934 0.926 0.960 0.946 0.950 0.932 0.960 0.910

BCI-1 AVL 0.909 0.830 1.091 0.832 0.237 0.194 0.927 0.732 1.108 0.838 0.235 0.195
CP 0.958 0.948 0.964 0.968 0.958 0.972 0.976 0.940 0.982 0.972 0.962 0.956

BCI-2 AVL 1.005 0.852 1.315 0.999 0.249 0.203 1.031 0.749 1.342 1.011 0.247 0.205
CP 0.946 0.946 0.938 0.918 0.938 0.960 0.956 0.938 0.958 0.942 0.958 0.950

100 ACI AVL 0.702 0.582 0.917 0.677 0.170 0.124 0.708 0.550 0.924 0.717 0.181 0.130
CP 0.954 0.946 0.944 0.946 0.950 0.916 0.952 0.942 0.954 0.938 0.948 0.908

BCI-1 AVL 0.666 0.574 0.827 0.607 0.161 0.131 0.669 0.541 0.835 0.637 0.172 0.138
CP 0.958 0.952 0.968 0.964 0.954 0.944 0.962 0.936 0.972 0.954 0.956 0.956

BCI-2 AVL 0.701 0.579 0.905 0.656 0.166 0.134 0.707 0.545 0.917 0.696 0.177 0.142
CP 0.950 0.948 0.944 0.946 0.948 0.940 0.942 0.936 0.950 0.934 0.952 0.948

200 ACI AVL 0.493 0.369 0.644 0.479 0.123 0.089 0.503 0.368 0.655 0.492 0.126 0.091
CP 0.948 0.946 0.940 0.960 0.940 0.930 0.940 0.948 0.940 0.960 0.932 0.938

BCI-1 AVL 0.477 0.369 0.606 0.448 0.120 0.096 0.485 0.368 0.612 0.460 0.122 0.099
CP 0.940 0.948 0.946 0.962 0.940 0.946 0.940 0.956 0.944 0.960 0.946 0.964

BCI-2 AVL 0.490 0.369 0.634 0.466 0.121 0.097 0.499 0.369 0.643 0.478 0.124 0.100
CP 0.932 0.944 0.938 0.948 0.940 0.946 0.938 0.952 0.930 0.954 0.934 0.954

6. ILLUSTRATION WITH REAL DATA

In this section, we used a real data to illustrate the proposed estimation methods dis-
cussed in the previous Sections. The data set is extracted from ‘survival’ package in R

software which is available by the name of ‘transplant’. This data represents the sur-
vival experience of patients who were registered for liver transplant waiting list at Mayo
Clinic Rochester between 1990 and 1999. In this data frame the observations of 815
patients are included, 636(78%) received transplant, 66(8%) died while waiting, 37(5%)
withdraw from the list, and 76(9%)were still waiting as of February 2002. A detail study
of this data set using competing risks analysis is available in Kim et al. (2006).

Patients who have registered for a transplant may experience the transplant, death,
and withdrawal; otherwise, they would have to wait until their next appointment. There-
fore, competing risks model become more reasonable for analysing the competing vari-
ables, to compare the risk of death across the various risk factor (such as age, blood
groups and sex) associated to each patients. In this illustration, we consider the trans-
plant as an event of interest and death as competing event, the patients who withdrawal
from the list are combined with censored observations. Three covariates are associated
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with each patient, which are age, sex and blood groups. In the present study, we con-
sidered blood group as a covariate. Blood groups included types O, A, B, and AB. We
divided the covariate blood group in two groups as group 1 (A, B and AB) and group 2
(O) and coded as 0 and 1 respectively.

Lifetimes of patients are given in days that have been rescaled in years by dividing
it 365. To check the goodness of fit of Gompertz distribution for complete data set, we
use K-S distance and graphical fitting. The K-S distance and plots of density, cdf, q-q
and p-p are obtained at MLEs which were computed through ‘fitdistrplus’ package in R

software. The K-S distance between the empirical distribution function and the fitted
Gompertz distribution function is 0.0294 and the corresponding p-value is 0.4725. Since
the p-value is quite high, therefore, it can be seen that Gompertz distribution can be used
for this data set. Figure 1 also indicates that it is appropriate to select the Gompertz
distribution.
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Figure 1 – Graphical fitting of the Gompertz distribution.
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Next, we created an artificial data set by middle censoring, whose left end point
as the observed time itself and the right end point is calculated by the sum of left end
point and the width of interval which is generated from an exponential distribution with
mean 10. Then, all the censored individuals are considered as the middle censored obser-
vations and the outcome variable for middle censored observation, randomly assigned
from death and transplant.

We apply the proposed estimation methods on artificial data set for estimating the
unknown parameters and CIFs. The Bayes estimates are obtained under SELF and LLF
loss functions for non-informative prior. The point and interval estimates ofβ0,β1,λ1,
and λ2 are presented in Table 3.

It is observed that the effect of covariate blood group is statistically significant in
the sense that interval estimates (ACI and BCI) of regression coefficient of blood group
does not contain zero. Although, we test the significance of blood group effect using
likelihood ratio test procedure. For this we set the hypothesis of interest as H0 :β1 = 0
against H1 :β1 ̸= 0. The calculated test statistic is 23.589 with p−val ue much less than
0.001. This indicate that the covariate effect is highly significant.

However, the estimates of CIFs of transplant and death are computed for blood
group 0 and 1 which are presented in Figure 2. The estimates of CIFs based on all
methods behave equally. Figure 2 shows that CIF for transplant have higher value as
compared to death. Also, those patients have blood group O have more risk of dying
in waiting list compared to blood group A, B and AB. Note, that cumulative probabil-
ity of receiving the transplant rapidly increases up to 1.5 years, thereafter CIF tends to
plateau. This indicates that at the beginning of the trial, the success of transplant leads
to increase in its applications, while number of available donors are remain stationary
or decrease as time goes.

TABLE 3
Point and interval estimates of model parameters.

Estimator β0 β1 λ1 λ2

MLE 0.825 -0.373 0.987 0.645
MPA 0.503 -0.399 0.61 0.301

NIP self 0.824 -0.374 0.987 0.646
llf-1 0.822 -0.378 0.985 0.642
llf-2 0.827 -0.369 0.989 0.650

ACI LL 0.712 -0.524 0.883 0.506
UU 0.939 -0.221 1.090 0.784

BCI LL 0.711 -0.524 0.887 0.516
UU 0.938 -0.225 1.093 0.792
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Figure 2 – Estimated CIFs of transplant (LTX) and death (D) for both the blood groups
(BG).
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7. CONCLUSION

In this article, we considered an improper Gompertz model for analysing competing
risks data in the presence of middle censoring. The improper Gompertz distribution is
used to model the CIF for event of interest as well as competing event subject to addi-
tivity constraint for both the events. In classical set up the MLE and MPA methods are
used for obtaining the point estimates of unknown parameters and CIFs. Also, interval
estimates are derived based on asymptotic property of MLE. The Bayes estimates have
also been considered based on informative and non-informative priors under SELF and
LLF. In simulation study it is observe that Bayes estimates based on informative priors
work well among other estimates. Simulation study showed that the proposed method
is efficient. In real data analysis, the impropriety of the Gompertz model well captured
by CIFs for transplant and death because of the additivity constraint. Hence, ignoring
the additivity constraint may lead to over estimates of cumulative probability due to all
competing causes.

However, various censoring schemes such as current status censoring and double
censoring have substantial statistical literature. Therefore, competing risks modelling
in these censoring schemes via direct parameterization of CIF seem to be an interesting
attempt. Quantile inferences are very common in survival analysis, and quantile infer-
ences of competing risks with the middle censoring scheme may be developed elsewhere
in the future.
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SUMMARY

In this paper we deal with the modelling of cumulative incidence function using improper Gom-
pertz distribution based on middle censored competing risks survival data. Together with the
unknown parameters, cumulative incidence function also estimated. In classical set up, we derive
the point estimates using maximum likelihood estimator and midpoint approximation methods.
The asymptotic confidence interval are obtained based on asymptotic normality properties of
maximum likelihood estimator. We also derive the Bayes estimates with associated credible in-
tervals based on informative and non-informative types of priors under two loss functions such
as squared error and LINEX loss functions. A simulation study is conducted for comprehensive
comparison between various estimators proposed in this paper. A real life data set is also used for
illustration.

Keywords: Cumulative incidence function; Improper Gompertz distribution; Middle censoring;
Maximum likelihood estimator; Bayes estimators; MCMC method.
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