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1. INTRODUCTION

The classical probability distributions plays a significant role in the various fields of ap-
plied sciences like reliability, economics, medical sciences, and other related areas. The
gamma and exponential distributions are widely used probability distributions for ana-
lyzing lifetime data. Various generalizations of the gamma and exponential distributions
and their mixture have been proposed and studied in literature, which are successfully
employed for modeling and explaining the various lifetime phenomena (see Johnson
et al., 1995; Sarhan and Kundu, 2009; Sen et al., 2016). The classical distributions have
limitations in dealing with a wide class of real data and provides motivation for con-
struction of new families of flexible distributions.

In recent years, several techniques for constructing bivariate distributions using clas-
sical univariate distributions have been proposed. For the analysis of bivariate lifetime
data, several distributions have been discussed which generalizes numerous popular uni-
variate distributions such as exponential , Weibull, Pareto, gamma, and log-normal dis-
tribution (see, for example, Gumbel, 1960; Marshall and Olkin, 1967; Sankaran and
Nair, 1993; Kundu and Gupta, 2009; Sarhan et al., 2011). Construction of bivariate dis-
tributions based on conditional and marginals is an important technique and has been
extensively studied in recent years. Recently, various noble methods for constructing
bivariate distributions via order statistics have also been proposed and studied, which

1 Corresponding Author. E-mail: arvindmzu@gmail.com



16 A. Mohammed et al.

have absolutely continuous components as well as singular components and may be
useful in situations where ties arise in the data. For some recent references, one can re-
fer to Dolati et al. (2014), Mirhosseini et al. (2015), Kundu et al. (2017) and Pathak and
Vellaisamy (2020). Besides existing techniques, copula models have recently been em-
ployed for modeling the dependence between random variables. A copula is a function
which connects the marginals to the joint distribution and has been extensively used for
modeling dependence among random variables with applications in finance, biology,
engineering, hydrology, and geophysics. A copula is a multivariate distribution func-
tion whose one dimensional margins are uniform on unit interval [0,1]. In this paper,
we restrict our study on a bivariate copula. A formal definition of the bivariate copula
is as follows:

DEFINITION 1. A function C : [0,1] × [0,1] −→ [0,1] is a bivariate copula if it
satisfies the following properties:

(i) For every u, v ∈ [0,1]
C (u, 0) = 0=C (0, v) (1)

and
C (u, 1) = 1 and C (1, v) = v. (2)

(ii) For every u1, u2, v1, v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤ v2

C (u2, v2)−C (u2, v1)−C (u1, v2)+C (u1, v1)≥ 0. (3)

Let X1 and X2 be random variables with joint distribution function F , and marginals
F1 and F2, respectively, then Sklar (1959) says that there exists a copula function C which
connects marginals to the joint distribution via the relation
F (x1, x2) = P (X1 ≤ x1,X2 ≤ x2) = C (F1(x1), F2(x2)). If X1 and X2 are continuous, then
the copula C is unique; otherwise it is uniquely determined on Range(F1)×Range(F2).
The associated joint density is f (x1, x2) = c(F1(x1), F2(x2)) f1(x1) f2(x2), where c is cop-
ula density. The copula approach provides a powerful tool for constructing a large class
of multivariate distributions based on marginals from different families. Any joint dis-
tribution function may be represented through copula in which dependence structure
and marginals are separately specified. For a good source on copulas, one may refer to
Nelsen (2006) and Joe (2014). Copula methods could be a flexible approach for con-
structing a large class of bivariate lifetime distributions with the ability to cope with
different kinds of data and perceive the two lifetimes for the same patient. For example,
it may be of interest in the study of human organs associated with kidney or eyes, and
times between the first and second hospitalization for a particular disease (see Rinne,
2008; Bhattacharjee and Misra, 2016).

In the statistical literature, many authors used copula structure to construct a num-
ber of bivariate distributions to analyze lifetime data. Dos Santos and Achcar (2010) con-
structed bivariate Weibull distributions using different copula functions and discussed
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Bayesian analysis with application in censored data. Kundu and Gupta (2011) proposed
an absolute continuous bivariate generalized exponential distribution via simple trans-
formation from exchangeable distribution. The proposed distribution can be easily
derived from the Clayton copula with generalized exponential distribution marginals.
Several statistical properties of the proposed distribution are discussed using copula
techniques. A bivariate generalized exponential distribution based on Farlie-Gumbel-
Morgenstern (FGM) copula has been proposed and studied by Achcar et al. (2015). Re-
cently, Kundu and Gupta (2017) proposed the bivariate Birnbaum-Saunders distribution
from Gaussian copula and investigated its several reliability and dependence properties.
Abd Elaal and Jarwan (2017) considered bivariate generalized exponential distributions
derived from FGM and Plackett copula functions and demonstrated their applications
using real data sets. A bivariate modified Weibull distribution embedded by Peres et al.
(2018) via FGM copula. Popović et al. (2018) discussed statistical properties of a bivariate
Dagum distribution through copula. Nair et al. (2018) proposed a bivariate model for
lifetime data analysis based on copula functions. Samanthi and Sepanski (2019) proposed
a new bivariate extension of the beta-generated distributions using Archimedean copulas
and discussed its applications in financial risk management. Shih et al. (2019) introduced
a bivariate FGM copula model for bivariate meta-analysis and develop a maximum like-
lihood estimator for the common mean. de Oliveira Peres et al. (2020) proposed bivari-
ate standard Weibull lifetime distributions using different copula functions and utilized
them in real applications. Ota and Kimura (2021) discussed an effective algorithm for
estimating the parameters of the multivariate FGM copula by using inference functions
for the margins method. Several other bivariate distributions using copula have been
proposed and studied in the literature. Some important references includes Saraiva et al.
(2018), Taheri et al. (2018), Najarzadegan et al. (2019) and Almetwally et al. (2020).

The aim of this paper is to introduce a new bivariate XGamma (BXG) distribution
and explore its various statistical properties with an application in real data. This paper
is organized as follows. In Section 2, we review some basics of the univariate XGamma
distribution. With the help of the univariate XGamma distribution, we define a new
family of bivariate XGamma (BXG) distribution using the FGM copula. In Section 3,
we derive the expressions for conditional density, conditional distribution, product mo-
ments, and regression function for the proposed BXG distribution. In Section 4, we
present some concepts of reliability and obtain some measures of the local dependence
and their important properties for the BXG distribution. We also established intercon-
nection between various measures of dependence. In Section 5, we estimate parameters
of the BXG distribution using maximum likelihood estimation and two-stage estimation
procedures. Section 6, demonstrate data generation and several numerical experiments.
Finally, an application to real data is demonstrated in Section 7.
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2. BIVARIATE XGAMMA DISTRIBUTION

A continuous random variable X is said to follow an XGamma distribution with param-
eter θ, denoted by XG(θ), if its probability density function (pdf) is (Sen et al., 2016)

f (x) =
θ2

1+θ

�

1+
θ

2
x2
�

e−θx , (4)

for θ > 0 and x > 0.
The Xgamma distribution is a finite mixture of exponential and gamma distributions

and may be an alternative of exponential distribution with wide applications in lifetime
data. The associated cumulative distribution function (cdf) of X is given by

F (x) = 1−

�

1+θ+θx + θ2 x2

2

�

e−θx

(1+θ)
, (5)

for θ > 0 and x > 0.
If X ∼XG(θ), then the hazard rate function is given by

h(x) =
f (x)
S(x)

=
θ2
�

1+ θ
2 x2

�

�

1+θ+θx + θ2 x2

2

� , (6)

where S(x) = 1− F (x) is the survival function of the random variable X . The hazard
rate function includes the two polynomials, hence is more flexible over the exponential
distribution in analysis of lifetime data. One can easily show that h(0) is constant. For
x >

p

2/θ, the hazard rate function h(x) is Increasing Failure Rate (IFR), and for x <
p

2/θ, the h(x) is Decreasing Failure Rate (DFR) (see Sen et al., 2018).
For the different values of the parameter θ, plots of the hazard rate function are

shown in Figure 1. From the Figure, one can easily see that the XGamma distribution
possesses the non-monotonic hazard rate function and may be useful in areas of medical
sciences. The hazard rate of XGamma is more flexible than exponential distribution as
its clear from Figure 1 and the hazard formula.

FGM copula is one of the most popular parametric families of copulas and has been
widely used in literature due to its simple structure. Morgenstern (1956) proposed the
FGM family, which was later studied by Gumbel (1958, 1960) using normal and expo-
nential marginals. Farlie (1960) extended this family, derived its correlation structure
and hence termed as the FGM family of distributions. The bivariate FGM copula is
given by

C (u, v) = uv[1+δ(1− u)(1− v)], δ ∈ [−1,1]. (7)

In order to achieve the wider applications of the FGM copula in real applications, a
large number of the generalized FGM copulas have been proposed and studied in litera-
ture. Some of the recent references includes Amblard and Girard (2009) and Pathak and
Vellaisamy (2016a,b).
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Figure 1 – Hazard rate function for XG(θ) for different values of the parameter θ.

The bivariate distribution determined by FGM copula is

F (x1, x2) = F1(x1)F2(x2) [1+δ (1− F1(x1)) (1− F2(x2))] , δ ∈ [−1,1]. (8)

A new family of bivarite XGamma distribution via FGM copula is given by

F1 (x1, x2) =

 

1−

�

1+θ1+θ1 x1+
θ2

1 x2
1

2

�

e−θ1 x1

(1+θ1)

! 

1−

�

1+θ2+θ2 x2+
θ2

2 x2
2

2

�

e−θ2 x2

(1+θ2)

!



1+δ

 
�

1+θ1+θ1 x1+
θ2

1 x2
1

2

�

e−θ1 x1

(1+θ1)

! 
�

1+θ2+θ2 x2+
θ2

2 x2
2

2

�

e−θ2 x2

(1+θ2)

!



 . (9)

A random vector (X1,X2) is said to have a bivarite XGamma distribution with pa-
rameters θ1, θ2 and δ if its distribution function is given by Eq. (9). It is denoted by
BXG(θ1,θ2,δ). This family includes a mixture of exponential and gamma distributions
and may be useful in a wide class of real data.

The joint density of the bivariate XGamma distribution f (x1, x2) defined in Eq. (9)
is

f (x1, x2) =
θ2

1θ
2
2

(1+θ1)(1+θ2)

�

1+
θ1

2
x2

1

��

1+
θ2

2
x2

2

�

e−(θ1 x1+θ2 x2)
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(1+θ1)
− 1
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1+θ2+θ2x1+
θ2
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2

�

e−θ2 x2

(1+θ2)
− 1












.

(10)

Figure 2 – CDF BXG distribution. Figure 3 – PDF BXG distribution.

Figure 4 – Survival BXG distribution. Figure 5 – Hazard BXG distribution.

Figures 2, 3, 4 and 5 demonstrate three dimension graphs for the cdf, pdf, survival
function and hazard function of the BXG distribution given in Eq. (9) for different
values of the parameter θ and δ. In graphs, we have taken θ1 = 0.1 (pink), 0.2 (red),
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0.3 (blue), 0.4 (green), θ2 = 0.5 (pink), 0.2 (red), 0.4 (blue), 0.3 (green) and for copula
parameter δ = 0.1 (pink), 0.7 (red), -0.1 (blue), -0.7 (green).

3. VARIOUS PROPERTIES OF THE XBG DISTRIBUTION

In this Section, we derive the expressions for some important properties of the BXG dis-
tribution. We obtain the expression for marginals, conditional distribution, regression
function, product moments, and coefficient of correlation for the BXG distribution.
The following result can be easily derived.

THEOREM 2. Let (X1,X2)∼ BXG(θ1,θ2,δ). Then

(i) the X1 ∼XG(θ1) and X2 ∼XG(θ2),

(ii) the conditional density of X1 given X2 = x2 is

f (x1|x2) =
θ2

1

1+θ1

�

1+
θ1

2
x2

1

�

e−θ1 x1

×



1+δ





2

�

1+θ1+θ1 x1+
θ2

1 x2
1

2

�

e−θ1 x1

(1+θ1)
− 1









2

�

1+θ2+θ2 x1+
θ2

2 x2
2

2

�

e−θ2 x2

(1+θ2)
− 1







 , (11)

(iii) the conditional distribution of X1 given X2 = x2 is

F (x1|x2) =






1−

�

1+θ2+θ2 x2+
θ2

2 x2
2

2

�

e−θ2 x2

(1+θ2)







×






1+δ



1−
(1+θ2+θ2 x2+

θ2
2 x2

2
2 )e

−θ2 x2
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2
�

1+θ1+θ1 x1+
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1 x2
1

2

�

e−θ1 x1

(1+θ1)
− 1












, (12)

(iv) the conditional survival function of X1 given X2 = x2 is

S(x1|x2) =

�

1+θ2+θ2 x2+
θ2

2 x2
2

2

�

e−θ2 x2

(1+θ2)
+δ
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1+θ2+θ2 x2+
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2 x2
2

2

�

e−θ2 x2
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. (13)
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In the next results, we obtain the expression of regression function and product mo-
ments for the BXG distribution.

THEOREM 3. If (X1,X2) ∼ BXG(θ1,θ2,δ), then the regression function of X1 on
X2 = x2 is given by

E(X1|X2 = x2) =
e−θ2 x2

16θ1 (1+θ1)
2 (1+θ2)

h

16
�

3+ 4θ1+θ
2
1

�

(1+θ2) e
θ2 x2+

+
�

15+ 36θ1+ 8θ2
1

�

δ
�

− 2+ eθ2 x2 −θ2
2 x2

2 +θ2

�

eθ2 x2 − 2(1+ x2)
�

�i

.

(14)

PROOF. The proof is given in Appendix. 2

THEOREM 4. If (X1,X2)∼ BXG(θ1,θ2,δ), then the product moment of (r, s)-th order
is

2−12−r−sΓ (1+ r )Γ (1+ s)
(1+θ1)

2 (1+θ2)
2θr

1θ
s
2

h

Aδ +
�

− 64(−1+ 2r )θ2
1 +(1+ r )(2+ r )

�

− 32(−1+ 2r )

+ r (11+ r )
�

+ 16θ1

�

8+ 5r + r 2− 21+r (4+ r (3+ r ))
��

+

+ 25+r (1+θ2)B
�

25+r (1+θ1)(1+δ)
�

2θ1+(1+ r )(2+ r )
�

+

−δ
�

64θ2
1 + 16θ1(8+ r (5+ r ))+ (1+ r )(2+ r ) (32+ r (11+ r ))

��

i

, (15)

where A =
�

64θ2
2 + 16θ2

�

8 + s(5 + s)
�

+ (1 + s)(2 + s)
�

32 + s(11 + s)
�

�

and

B =
�

2θ2+(1+ s)(2+ s)
�

.

PROOF. The proof is given in Appendix. 2

REMARK 5. The following observations can be made.

(i) For r = s = 1, Eq. (15) reduces to

E(X1X2) =
(4θ1(2θ1+ 9)+ 15)(4θ2(2θ2+ 9)+ 15)δ + 256(θ1+ 1)(θ1+ 3)(θ2+ 1)(θ2+ 3)

256θ1(θ1+ 1)2θ2(θ2+ 1)2
.

(16)

(ii) Consider X1 ∼ XG(θ1), then its r -th moment about the origin is given by (see Sen
et al., 2016)

E (X r
1 ) =

r !(θ1+ r + br )
θr

1 (1+θ1)
, (17)

where br = br−1 + r , with r = 1,2, · · · and initial values b0 = 0 and b1 = 2. A
similar expression for X2 can also be derived.
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(iii) For r = s = 1 with the help of Eq. (15) and Eq. (17) trough simple algebra, the
coefficient of correlation for the BXG distribution is given by

ρ=
(4θ1(2θ1+ 9)+ 15)(4θ2(2θ2+ 9)+ 15)δ

256θ1(θ1+ 1)2θ2(θ2+ 1)2
�

(θ1(θ1+ 8)+ 3)(θ2(θ2+ 8)+ 3)
θ2

1(θ1+ 1)2θ2
2(θ2+ 1)2

�1/2
. (18)

The graphs for the correlation coefficient are illustrated in Figure 6 for the following
values of θ1 and θ2: (i) θ1 = 0.5 and θ2 = 0.9, (ii) θ1 = 1.2 and θ2 = 3.8 (iii) θ1 = 2.5 and
θ2 = 4.5 (iv) θ1 = 7.5 and θ2 = 9.5.
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Figure 6 – The correlation cofficient ρ of θ1 and θ2 as a function of δ.

4. RELIABILITY AND DEPENDENCE

Let (X1,X2) be a bivariate random vector with joint density f (x1, x2) and survival func-
tion S(x1, x2) = P (X1 > x1,X2 > x2). Then the bivariate hazard rate function is defined
as (see Basu, 1971)

h(x1, x2) =
f (x1, x2)
S(x1, x2)

. (19)
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If (X1,X2)∼ BXG(θ1,θ2,δ), then we have h(x1, x2)

h(x1, x2) =
θ2

1

�

θ1x1
2+ 2

�

θ2
2

�

θ2x2
2 + 2

�

[δ(θ1− 2A+ 1)(θ2− 2B+ 1)+ (θ1+ 1)(θ2+ 1)]

4AB eθ1 x1+θ2 x2 [δ(θ1−A+ 1)(θ2−B+ 1)+ (θ1+ 1)(θ2+ 1)]
,

(20)

where A= e−θ1 x1

�

θ2
1 x2

1
2 +θ1x1+θ1+ 1

�

and B= e−θ2 x2

�

θ2
2 x2

2
2 +θ2x2+θ2+ 1

�

.

4.1. Hazard gradient functions

Consider a bivariate random vector (X1,X2) with joint density f (x1, x2) and survival
function S(x1, x2), then the hazard components are defined as (see Johnson and Kotz,
1975)

η1(x1, x2) =−
∂

∂ x1
ln S(x1, x2) (21)

and

η2(x1, x2) =−
∂

∂ x2
ln S(x1, x2). (22)

The vector (η1(x1, x2),η2(x1, x2)) is termed hazard gradient of a bivariate random
vector (X1,X2). Hence, for the BXG distribution the hazard gradient is

η1(x1, x2) =−
∂

∂ x1
ln S(x1, x2) (23)

and

η1(x1, x2) =
2θ2

1(θ1 x2
1+2)

(θ1(x1(θ1 x1+2)+2)+2) ×
[2(θ1+1)(θ2+1)eθ1 x1+θ2 x2+δ(−θ1(x1(θ1 x1+2)−eθ1 x1+2)+eθ1 x1−2)A]
4(θ1+1)(θ2+1)eθ1 x1+θ2 x2+[δ(−θ2

1 x2
1−2θ1 x1+2(θ1+1)eθ1 x1−2θ1−2)A] ,

(24)

where A=
�

−θ2
2 x2

2 − 2θ2x2+ 2(θ2+ 1)eθ2 x2 − 2θ2− 2
�

.
Moreover, we have

η2(x2, x1) =
2θ2

2(θ2 x2
2+2)

(θ2(x2(θ2 x2+2)+2)+2) ×
[2(θ1+1)(θ2+1)eθ1 x1+θ2 x2+δ(−θ2(x2(θ2 x2+2)−eθ2 x2+2)+eθ2 x2−2)A]
4(θ1+1)(θ2+1)eθ1 x1+θ2 x2+[δ(−θ2

2 x2
2−2θ2 x2+2(θ2+1)eθ2 x2−2θ2−2)A] ,

(25)

where A=
�

−θ2
1 x2

1 − 2θ1x1+ 2(θ1+ 1)eθ1 x1 − 2θ1− 2
�

.

In next Sections, we discuss some measures of the local dependences for the BXG
distribution and discuss its important properties.
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4.2. A local dependence function γ (x1, x2)

In order to study the dependence between random variables X1 and X2, Holland and
Wang (1987) proposed a local dependence function γ (x1, x2) and is defined as

γ (x1, x2) =
∂ 2

∂ x1∂ x2
ln f (x1, x2). (26)

This dependence function provides a powerful tool to study the totally positive of order
2 (TP2) property of a bivariate distribution. A detailed properties of the γ (x1, x2) has
been studied in Holland and Wang (1987) and Balakrishnan and Lai (2009).

PROPOSITION 6. Let (X1,X2)∼ BXG(θ1,θ2,δ). Then

γ (x1, x2) =
θ2

1(θ1+ 1)θ2
2(θ2+ 1)δ

�

θ1x2
1 + 2

� �

θ2x2
2 + 2

�

eθ1 x1+θ2 x2

�

δ
�

θ1

�

B− eθ1 x1 + 2
�

− eθ1 x1 + 2
� �

θ2

�

C− eθ2 x2 + 2
�

− eθ2 x2 + 2
�

+A
�2 ,

(27)
where A= (1+θ1)(1+θ2)e

θ1 x1+θ2 x2 , B= x1(θ1x1+ 2) and C= x2(θ2x2+ 2).

It may be noticed that, when δ = 0, then γ (x1, x2) = 0, which leads to the inde-
pendence of X1 and X2. Holland and Wang (1987) established that a bivariate density
f (x1, x2) will possesses the TP2 property if and only if γ (x1, x2)≥ 0.

Then, we have the following result:

PROPOSITION 7. Let (X1,X2)∼ BXG(θ1,θ2,δ). Then forδ ≥ 0 the density f (x1, x2)
given in Eq. (10) is TP2.

It is important to note that TP2 is a stronger concept of dependence. It has been
already studied that TP2 implies the stochastically increasing (SI), right-tail increasing
(RTI), association, positive quadrant dependence (PQD) (see Nelsen, 2006; Balakrishnan
and Lai, 2009). Hence, for 0≤ δ ≤ 1, the BXG distribution have all these properties of
dependence.

4.3. Clayton-Oakes association measure

Clayton (1978) and Oakes (1989) discussed a local dependence function via survival func-
tion which is defined as:

l (x1, x2) =
f (x1, x2)S(x1, x2)

S1(x1, x2)S2(x1, x2)
, (28)

where S1(x1, x2) =
∂

∂ x1
S(x1, x2) and S1(x1, x2) =

∂

∂ x2
S(x1, x2).



26 A. Mohammed et al.

PROPOSITION 8. Let (X1,X2)∼ BXG(θ1,θ2,δ). Then

l1(x1, x2) =
(4(θ1+1)(θ2+1)eθ1 x1+θ2 x2+ABδ)((θ1+1)(θ2+1)eθ1 x1+θ2 x2+δC D)
(2(θ1+1)(θ2+1)eθ1 x1+θ2 x2+AδD)(2(θ1+1)(θ2+1)eθ1 x1+θ2 x2+BδC) , (29)

where
A=−θ2

1 x2
1 − 2θ1x1+ 2(θ1+ 1)eθ1 x1 − 2θ1− 2,

B =−θ2
2 x2

2 − 2θ2x2+ 2(θ2+ 1)eθ2 x2 − 2θ2− 2,
C =−θ1

�

x1(θ1x1+ 2)− eθ1 x1 + 2
�

+ eθ1 x1 − 2 and
D =−θ2

�

x2(θ2x2+ 2)− eθ2 x2 + 2
�

+ eθ2 x2 − 2.

It can be easily verified that for l1(x1, x2) = 1, the random variables X1 and X2 are
independent. From Eq. (29), the random variables X1 and X2 are independent forδ = 0.

4.4. Conditional probability measure ψ

Anderson et al. (1992) defined a measure of association using conditional probability as
follows:

ψ(x1, x2) =
P (X1 > x1|X2 > x2)

P (X1 > x1)
=

S(x1, x2)
S(x1, 0)S(0, x2)

. (30)

We say that the random variable X1 and X2 are independent if and only if
ψ(x1, x2) = 1 and PQD if ψ(x1, x2) > 1 for all (x1, x2). For the BXG distribution, we
have the following result.

PROPOSITION 9.

ψ1(x1, x2) =
e−(θ1 x1+θ2 x2)

�

δAB + 4(θ1+ 1)(θ2+ 1)eθ1 x1+θ2 x2
�

4(θ1+ 1)(θ2+ 1)
, (31)

where
A=−θ2

1 x2
1 − 2θ1x1+ 2(θ1+ 1)eθ1 x1 − 2θ1− 2 and

B =−θ2
2 x2

2 − 2θ2x2+ 2(θ2+ 1)eθ2 x2 − 2θ2− 2

REMARK 10. From Eq. (31), we see that when δ = 0, we get ψ(x1, x2) = 1. Hence, X1
and X2 are independent. Similarly, for δ > 0, X1 and X2 are PQD.

5. PARAMETER ESTIMATION OF THE BXG DISTRIBUTION

In this Section, we obtain the estimates of the unknown parameters θ1, θ1, and δ for
the BXG(θ1,θ2,δ). We adopt the two-stage estimation (inference function of mar-
gins(IFM)) procedure proposed by Joe and Xu (1996) to estimate the parameters of the
BXG distribution. In order to obtain the maximum likelihood estimates (MLE) for
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the BXG distribution, the likelihood function involves three unknown parameters and
is complicated in nature. The two-stage estimation procedure simplifies the computa-
tional difficulties and also is convenient in dealing with different copula models. In the
first step, we obtain the estimate of the parameters θ1 and θ2 of the univariate marginal
from the marginal log-likelihood, and in the second step we plug-in the estimates of
the marginals into the copula log-likelihood and obtain the estimate of the dependence
parameter δ. The log-likelihood function of the BXG model can be written as

lnL(θ1,θ2,δ) =
n
∑

i=1

ln f1(x1,θ1)+
n
∑

i=1

ln f2(x2,θ2)+
n
∑

i=1

ln c(F1(x1;θ1), F2(x2;θ2),δ).

(32)
In the first step, we obtain the estimates of θ1 and θ2 by differentiating Eq. (32)

partially with respect to θ1 and θ2 and equating it to zero as follows:

L(θ j ) = Πn
i=1

θ2
j

1+θ j

�

1+
θ j

2
xi j 2

�

e−θ j xi j

=
θ2n

j

(1+θ j )n

n
∑

i=1

�

1+
θ j

2
x2

i j

�

e−θ j
∑n

i=1 xi j with j = 1,2; (33)

ln L(θ j ) = 2n ln(θ j )− n ln(1+θ j )+
n
∑

i=1

ln

�

1+
θ j

2
x2

i j

�

−θ j

n
∑

i=1

xi j ; (34)

∂ ln L(θ j )

∂ θ j
=

2n
θ j
− n
(1+θ j )

+
n
∑

i=1

x2
i j

(2+ x2
i jθ j )

−
n
∑

i=1

xi j = 0 with j = 1,2. (35)

The MLE (bθ1, bθ2) can be obtained by solving simultaneously the likelihood equations,
the estimate of bθ1, bθ2 are handled numerically through statistical software using iterative
method.

θ̂ j =
2n

n
(1+θ j )

+
∑n

i=1
x2

i j

(2+x2
i jθ j )
+
∑n

i=1 xi j

with j = 1,2. (36)

In the second step, the copula parameter is estimated by using the bθ1 and bθ2 from
the first step. For the FGM copula

L1 =
n
∑

i=1

ln c(F1(x1; bθ1), F2(x2; bθ2),δ) =
n
∑

i=1

ln

�

1+δ





2(1+ bθ1+ bθ1x1+
bθ2

1 x2
1

2 )e
−bθ1 x1

1+ bθ1

− 1





×





2(1+ bθ2+ bθ2x2+
bθ2

2 x2
2

2 )e
−bθ2 x2

1+ bθ2

− 1





�

(37)
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∂ L1

∂ δ
=

n
∑

i=1

�

e−θ1 x1(θ2
1 x2

1+2θ1 x1+2θ1+2)
1+θ1

− 1
��

e−θ2 x2(θ2
2 x2

2+2θ2 x2+2θ2+2)
1+θ2

− 1
�

1+δ
�

e−θ1 x1(θ2
1 x2

1+2θ1 x1+2θ1+2)
1+θ1

− 1
��

e−θ2 x2(θ2
2 x2

2+2θ2 x2+2θ2+2)
1+θ2

− 1
� = 0. (38)

Since there is no closed expression in Eq. (38), the estimate of the parameter δ is ob-
tained numerically using a non-linear optimization algorithm. By considering the full
log-likelihood function in Eq. (32), we obtain the MLEs of the parameters θ1, θ2 and δ
via usual numerical optimization techniques.

6. SIMULATION STUDY

In this Section, we report simulation study for the BXG distribution derived using FGM
copula. First, we describe the random sample generation from BXG distribution. We
employed the conditional procedure for random sample generation which has been re-
ported in Nelsen (2006). Let X1,X2 be a random sample having BXG distribution de-
termined by FGM copula C . The copula C is a joint distribution of a bivariate vector
(U ,V ) with marginals as uniform U (0,1). The conditional distribution of the vector
(U ,V ) is given as P (V ≤ v |U = u) = ∂

∂ u C1(u, v) = v[1+δ(1− v)(1− 2u)]. Using
the conditional distribution approach, random numbers (x1, x2) from the BXG can be
generated using the following algorithm:

1. From uniform U (0,1) generate two independent sample u and t .

2. Set t = ∂
∂ u C (u, v) and solved for v.

3. Find x1 = F −1(u;θ1) and x2 = F −1(v;θ2); where F −1 is the inverse of XGamma.

4. Finally, the desired random sample is (x1, x2).

For parameters estimation we used two-stage estimation and maximum likelihood meth-
ods. For two-stage estimation, we considered the Inference Functions for Margins (IFM)
technique as discussed by Joe and Xu (1996) in which, we first estimate marginals param-
eter and in the second step, plug these estimators into the log-likelihood and obtain the
maximum likelihood estimate of the copula parameter. A simulation study was carried
out based on the following data generated from BXG distribution. The value of the pa-
rameters θ1 and θ2 is chosen with different value of the copula parameterδ and different
sizes of sample (n = 15, 30, 50, 100), as shown for the following cases for the random
variables generating from BXG distribution:

Case 1: θ1 = 0.5,θ2 = 0.5,δ =−0.3,

Case 2: θ1 = 1,θ2 = 1.5,δ = 0.3,
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Case 3: θ1 = 2.5,θ2 = 2,δ = 0.7,

Case 4: θ1 = 3,θ2 = 2.5,δ =−0.7.

The simulations in this study were repeated 10,000 times. The estimate of parame-
ters by the two-stage (IFM) and MLE methods along with the mean squared error (MSE)
and confidence interval (CI) are summarized in Table 1 to 8. From the reported Ta-
bles, we concluded the following. In the simulation study, if the sample size increases,
the value of mean square error and length of the confidence interval decreases in both
the considered methods i.e. IFM and MLE. In the simulations Tables, when the ini-
tial value of parameters increases, the corresponding mean square error increases for the
small sample, and after that it decreases gradually by increasing the sample size as ob-
served from the corresponding MSE for different values of the parameters. In general,
the effect of marginal parameters has a little effect on estimating the copula parameters
as shown in the Table. There is no substantive difference between the two methods IFM
and MLE, based on the MSE criterion. The simulation study was carried out using the
R software (R 3.5.3).

TABLE 1
Simulation study of the parameters of BXG distribution (Case 1 - IFM).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(0.5) 0.5179 0.0082 0.3724 0.7146
θ2(0.5) 0.5151 0.0083 0.3740 0.7195
δ(−0.3) -0.4669 0.1048 -0.9655 -0.0240

30 θ1(0.5) 0.5073 0.0037 0.4034 0.6449
θ2(0.5) 0.5091 0.0037 0.4064 0.6427
δ(−0.3) -0.4549 0.0963 -0.9540 -0.0268

50 θ1(0.5) 0.5037 0.0021 0.4227 0.6045
θ2(0.5) 0.5053 0.0021 0.4229 0.6059
δ(−0.3) -0.4241 0.0816 -0.9364 -0.0221

100 θ1(0.5) 0.5023 0.0010 0.4420 0.5686
θ2(0.5) 0.5022 0.0010 0.4438 0.5724
δ(−0.3) -0.3766 0.0573 -0.8720 -0.0224

7. APPLICATION TO REAL DATA

To demonstrate a real application of the considered BXG distribution, we consider the
UEFA Champion’s League data set reported in Meintanis (2007). The considered data
represents the time (in minutes) of the first kick goal scored by any team (X1), and the
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TABLE 2
Simulation study of the parameters of BXG distribution (Case 2 - IFM).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(1) 1.0403 0.0398 0.7414 1.4912
θ2(1.5) 1.5754 0.1098 1.0832 2.3483
δ(0.3) 0.4698 0.1056 0.0278 0.9620

30 θ1(1) 1.0199 0.0176 0.7947 1.3157
θ2(1.5) 1.5338 0.0453 1.1796 2.0140
δ(0.3) 0.4544 0.0974 0.0264 0.9497

50 θ1(1) 1.0117 0.0104 0.8351 1.2284
θ2(1.5) 1.5215 0.0256 1.2478 1.8630
δ(0.3) 0.4211 0.0791 0.0248 0.9308

100 θ1(1) 1.0046 0.0048 0.8825 1.1521
θ2(1.5) 1.5052 0.0119 1.3086 1.7418
δ(0.3) 0.3838 0.0571 0.0274 0.8568

TABLE 3
Simulation study of the parameters of BXG distribution (Case 3 - IFM).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(2.5) 2.6452 0.3360 1.7854 3.9522
θ2(2) 2.0989 0.2085 1.4325 3.1452
δ(0.7) 0.5229 0.1087 0.0279 0.9781

30 θ1(2.5) 2.5672 0.1532 1.9347 3.4446
θ2(2) 2.0599 0.0892 1.5752 2.7164
δ(0.7) 0.5494 0.0951 0.0457 0.9764

50 θ1(2.5) 2.5395 0.0826 2.0628 3.1734
θ2(2) 2.0276 0.0474 1.6482 2.4718
δ(0.7) 0.5838 0.0779 0.0687 0.9745

100 θ1(2.5) 2.5169 0.0394 2.1656 2.9358
θ2(2) 2.0099 0.0226 1.7300 2.3191
δ(0.7) 0.6358 0.0521 0.1556 0.9753
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TABLE 4
Simulation study of the parameters of BXG distribution (Case 4 - IFM).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(3) 3.1746 0.5268 2.1264 4.8756
θ2(2.5) 2.6320 0.3517 1.7722 3.9734
δ(−0.7) -0.5258 0.1064 -0.9762 -0.0375

30 θ1(3) 3.0822 0.2237 2.3159 4.1160
θ2(2.5) 2.5659 0.1492 1.9563 3.4312
δ(−0.7) -0.5605 0.0900 -0.9746 -0.0429

50 θ1(3) 3.0468 0.1258 2.4577 3.8250
θ2(2.5) 2.5423 0.0850 2.0454 3.1893
δ(−0.7) -0.5856 0.0786 -0.9766 -0.0618

100 θ1(3) 3.0212 0.0617 2.5743 3.5477
θ2(2.5) 2.5195 0.0400 2.1662 2.9513
δ(−0.7) -0.6319 0.0532 -0.9724 -0.1562

TABLE 5
Simulation study of the parameters of BXG distribution (Case 1 - MLE).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(0.5) 0.5169 0.0084 0.3717 0.7212
θ2(0.5) 0.5146 0.0082 0.3722 0.7110
δ(−0.3) -0.4658 0.1034 -0.9641 -0.0246

30 θ1(0.5) 0.5080 0.0036 0.4047 0.6409
θ2(0.5) 0.5064 0.0037 0.4030 0.6398
δ(−0.3) -0.4548 0.0980 -0.9547 -0.0235

50 θ1(0.5) 0.5040 0.0022 0.4219 0.6090
θ2(0.5) 0.5044 0.0021 0.4234 0.6060
δ(−0.3) -0.4261 0.0842 -0.9411 -0.0231

100 θ1(0.5) 0.5021 0.0010 0.4441 0.5704
θ2(0.5) 0.5033 0.0010 0.4431 0.5714
δ(−0.3) -0.3826 0.0577 -0.8541 -0.0231
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TABLE 6
Simulation study of the parameters of BXG distribution (Case 2 - MLE).

n Parameter Estimate MSE Lower CI Upper CI
15 θ1(1) 1.0426 0.0422 0.7347 1.5168

θ2(1.5) 1.5762 0.1070 1.0953 2.3218
δ(0.3) 0.4705 0.1069 0.0226 0.9669

30 θ1(1) 1.0198 0.0176 0.7997 1.3099
θ2(1.5) 1.5319 0.0430 1.1812 1.9848
δ(0.3) 0.4522 0.0964 0.0233 0.9515

50 θ1(1) 1.0097 0.0104 0.8336 1.2304
θ2(1.5) 1.5209 0.0256 1.2520 1.8618
δ(0.3) 0.4222 0.0810 0.0227 0.9284

100 θ1(1) 1.0079 0.0048 0.8801 1.1501
θ2(1.5) 1.5083 0.0118 1.3117 1.7402
δ(0.3) 0.3795 0.0575 0.0269 0.8583

TABLE 7
Simulation study of the parameters of BXG distribution (Case 3 - MLE).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(2.5) 2.6537 0.3496 1.7802 4.0218
θ2(2) 2.1142 0.2146 1.4524 3.1685
δ(0.7) 0.5141 0.1112 0.0327 0.9721

30 θ1(2.5) 2.5645 0.1507 1.9399 3.4182
θ2(2) 2.0537 0.0879 1.5704 2.7214
δ(0.7) 0.5523 0.0939 0.0425 0.9746

50 θ1(2.5) 2.5398 0.0815 2.0685 3.1789
θ2(2) 2.0337 0.0498 1.6549 2.5122
δ(0.7) 0.5873 0.0779 0.0664 0.9738

100 θ1(2.5) 2.5214 0.0383 2.1699 2.9366
θ2(2) 2.0139 0.0231 1.7388 2.3366
δ(0.7) 0.6391 0.0523 0.1517 0.9706
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TABLE 8
Simulation study of the parameters of BXG distribution (Case 4 - MLE).

n Parameter Estimate MSE Lower CI Upper CI

15 θ1(3) 3.1579 0.5210 2.1039 4.8434
θ2(2.5) 2.6337 0.3558 1.7834 4.0169
δ(−0.7) -0.5213 0.1102 -0.9751 -0.0346

30 θ1(3) 3.0849 0.2312 2.3059 4.1513
θ2(2.5) 2.5573 0.1406 1.9373 3.3920
δ(−0.7) -0.5576 0.0922 -0.9760 -0.0422

50 θ1(3) 3.0428 0.1243 2.4487 3.8022
θ2(2.5) 2.5447 0.0840 2.0531 3.2010
δ(−0.7) -0.5834 0.0792 -0.9785 -0.0679

100 θ1(3) 3.0226 0.0612 2.5787 3.5520
θ2(2.5) 2.5201 0.0401 2.1716 2.9438
δ(−0.7) -0.6307 0.0532 -0.9713 -0.1500

time of first goal of any type scored by the home team (X2), respectively. In order to il-
lustrate the marginal distribution behavior for the considered data set, we first fit X1 and
X2 using XG distribution separately. We calculate Kolmogorov-Smirnov (K-S) goodness
of fit test statistic which are presented in Table 9. Figure 7 and 8 and Table 9 suggest that
XG distribution is suitable for the marginal data sets. In order to demonstrate the na-
ture of the UEFA Champion’s League data set, a total time test (TTT) plots is presented
in Figure 9, separately for X1 and X2. The TTT plots of considered data sets indicates
that hazard rate function is increasing except in a small portion of data. So, based on
features of the XGamma distribution, we use it for modeling the UEFA Champion’s
League data set.

TABLE 9
Kolmogrove-Smirnov goodness of fit test statistic with p-value and maximized log-likelihood (LL) for

the marginal of XG distribution.

Model X1 X2

K-S p-value LL K-S p-value LL

BXG 0.1081 0.9821 -164.1034 0.1622 0.7154 -164.9335

Next, we fit the BXG distribution for the considered bivariate data using IMF and
MLE methods. One of the most common criteria for model selection and differentiate
between models is Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) values. The AIC and BIC are defined as AIC = −2LL+ 2 p and BIC =
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Figure 7 – K-S plot for data set X1. Figure 8 – K-S plot for data set X2.

−2LL+ p log(n), where p is the number of parameters in the model and n is the num-
ber of observations. For a detailed discussion on AIC and BIC, one may refer to a recent
article by Pathak and Vellaisamy (2020) and references therein. The model with mini-
mum AIC and BIC is better than other models fitted for the considered data set. The
estimated values, standard error (S.E.) (in parentheses), AIC, and BIC values are given
in Table 10. From Table 10, it is clear that there is no substantial difference between the
two estimation procedures.

TABLE 10
MLE and IFM estimate for BXG disribution.

Method θ̂1 (S.E.) bθ2 (S.E.) δ̂ (S.E.) LL AIC BIC

MLE 0.0689 0.0861 δ̂ = 0.9998 -326.2689 658.5378 663.3706
(0.0064) (0.0084) (0.3648)

IFM 0.0703 0.0853 δ̂ =0.9885 -326.3074 658.6148 664.6128
(0.0067) (0.0083) (0.3693)

We also compare our results based on the BXG with Marshall-Olkin (MO) bivariate
exponential model and bivariate generalized exponential (BGE) model studied by Mein-
tanis (2007) and Mirhosseini et al. (2015), respectively. We also used their estimates for
compression purpose. The estimated results, AIC, BIC, and the standard error (S.E.) of
the estimated values are reported in Table 11. By comparing the values of AIC and BIC
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Figure 9 – TTT-plot of UEFA Champion’s League data.

TABLE 11
The MLEs of the parameters, copula parameter estimate, the log-likelihood values, AIC and BIC

values.

Model MLE LL AIC BIC

BXG θ̂1= 0.0689, θ̂2= 0.0861, δ̂= 0.9998 -326.2689 658.5378 664.6128

BGE â1= 0.0244, â2= 0.0304, θ̂= 0.9999 -340.5234 687.0468 691.8795

MO λ̂1= 0.012, λ̂2= 0.014, λ̂3= 0.022 -339.006 684.012 688.8448

in Table 11, we conclude that the BXG distribution provides a better fit over MO and
BGE models for the considered data set in this paper.

8. CONCLUSIONS

In this paper, we have introduced a new bivariate XGamma (BXG) distribution derived
from FGM copula whose univariate marginals follows Xgamma distribution. We derive
the expressions for conditional distribution, regression function, product moments, and
some concepts related to reliability for the BXG distribution. Some local dependence
measures are derived and the concept of the TP2 is also studied. For the copula parame-
ter δ, it has been seen that for 0≤ δ ≤ 1, the BXG distribution exhibits TP2 property,
which is a powerful property of dependence. Parameters were estimated using two dif-
ferent methods namely MLE and IFM. Several numerical experiments are also reported
in this study. Finally, an application to a real data shows that the BXG distribution work
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well and we anticipate that the BXG distribution may be useful in various piratical ap-
plications.

APPENDIX

A. PROOFS

PROOF. of Theorem 3

We have

E(X1|X2 = x2) =
∫ ∞

0
x1 f (x1|x2)d x1 =

1
f2(x2)

∫ ∞

0
x1 f (x1, x2)d x1. (39)

Using Eq. (10) in Eq. (39), we get

E(X1|X2 = x2) =
∫ ∞

0
x1

θ2
1

1+θ1

�

1+
θ1

2
x2

1

�

e−θ1 x1

×
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2 )e
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�

d x1. (40)

After a simple integration of Eq. (40), we get Theorem 3. 2

PROOF. of Theorem 4

By definition, we have

E(X r
1 X s

2 ) =
∫ ∞

0

∫ ∞

0
x r

1 x s
2 f (x1, x2)d x1d x2. (41)

Using Eq. (10) in Eq. (41), we get

E(X r
1 X s

2 ) =
∫ ∞

0
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0
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1 x s

2θ
2
1θ

2
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2
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1
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θ2

2
x2
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2(1+θ2+θ2x1+
θ2

2 x2
2
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−θ2 x2
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− 1





�

d x1d x2. (42)

Evaluation of double integral in Eq. (42) completes the proof of Theorem 4. 2
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SUMMARY

In this paper, a new bivariate XGamma (BXG) distribution is presented using Farlie-Gumbel-
Morgenstern (FGM) copula. We derive the expressions for conditional distribution, regression
function and product moments for the BXG distribution. Concept of reliability and various
measures of local dependence are also studied for the proposed model. Furthermore, estimation
of the parameters of the BXG distribution is obtained through maximum likelihood estimation
and inference function of margin estimation procedures. Finally, an application of the same is
also demonstrated to a real data set.

Keywords: Bivariate XGamma distribution; Copulas; FGM copula; Maximum likelihood esti-
mate; Inference function of margin.
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