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FROM MICROARRAY DATA WITH p LARGER THAN #
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1. INTRODUCTION

High-throughput experimental technologies developed within the field of mo-
lecular biology allow one to observe in real time the activity of thousands of bio-
molecules in the cell under tens of different experimental conditions. These tech-
nologies, known as microarray technologies, are able to put together in a solid
substrate (a chip) of a few squared centimeters a bidimensional matrix (an array)
formed by tens of thousands of probes. Each probe is specific to a nucleic acid
sequence that recognizes (hybridises) marked samples (biomolecules) of comple-
mentary RNA (coming from the experimental conditions under study), quantify-
ing the abundance of each recognized biomolecule. An open question within mo-
lecular biology research is to be able to describe the set of interactions, or bio-
molecular network, between the different functional elements in the genome that
mediate the production of the biomolecules we observe through these high-
throughput platforms. These data, the so-called microarray data, can be seen as a
random sample of a multivatiate distribution defined by a set of random variables
associated to the genome functional elements under study (e.g., genes). Each re-
cord corresponds to a vector of values describing the abundance of a particular
kind of biomolecule (e.g., messenger RNA) produced by each genome functional
element under a specific experimental condition (e.g. a specific tissue or cell line).
Thus, a way to describe the interactions among the genome functional elements is
by using conditional independencies and, more concretely, graphical models (see
Pearl, 1988; Whittaker, 1990; Lauritzen, 1996) which have emerged as a powerful
tool for the learning, description and manipulation of conditional independencies.
However, in a typical microarray data set the number of observations # (on the
order of tens) is substantially smaller than the number of variables p (on the order
of hundreds or even thousands) and this prevents us from applying directly most
of the existing multivariate methods for structure learning of graphical models
due to the difficulties in obtaining estimates of the joint probability distribution.

In this paper, we focus in Gaussian graphical models and propose a novel ¢-
partial-correlations based procedure, gp-procedure hereafter, for structure learn-
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ing based on a quantity that we call the non-rejection rate. The results of this pa-
per can be applied also outside the biological context because they can be more
generally useful whenever structure learning of a Gaussian graphical model is car-
ried out in the special context in which (i) p is large compared to #, (ii) the under-
lying structure of the graphical model is sparse. The paper is organized as follows.
Section 2 gives the background on graph theory, Gaussian graphical models and
g-partial graphs. Section 3 describes the application of Gaussian graphical models
to biomolecular networks. The gp-procedure is introduced in Section 4 where in-
stances of its application to both simulated and real data are given and, finally,
Section 5 contains a brief discussion.

2. BACKGROUND

2.1. Graph theory

We present here the graph theory required for this paper; we refer to Cowell e
al. (1999) for a full account of graph theory usually applied in graphical models.

An undirected graph is a pair G = (I/,E), where I = {1, .., p} is a finite set of
vertices and E, called the edge set, is a subset of the set of unordered distinct pair
of vertices. If two vertices 4, / € 17 form an edge then we say that 7 and ; are adja-
cent and write (4 /) € Ej; recall that edges are unordered pairs, so that (7, 7)) = (4, 4).
For two graphs with common vertex set, G = (I/,E) and G' = (I/,'), we say that
G'is latger than G, and write G € G, if E < E'; when the inclusion is strict, i.e.
E c E,wewtite G < G'. A subset C < 17 with all vertices being mutually ad-
jacent is called complete, and when 1”is complete then we say that G is complete.
A subset C < 17 is called a clique if it is maximally complete, i.e., C is complete,
and if C < D, then D is not complete. An undirected graph can be identified by

the set C of its cliques. The set E is the set of missing edges of G; that is, for a

pair, ;€ 17, (5, )) € E ifand onlyif/ # jand (7)) ¢ E. A path of length 1 > 0
from u to #1 is a sequence w, 1, ..., »1 of distinct vertices such that (v-1, 7) € E
forall £ =1, .., /. The subset U < 17is said to separate ] — |7 from ] < I7if

for every / € Iand j € J all paths from 7 to j have at least one vertex in U.

2.2. Gaussian graphical model

In this section we review the Gaussian graphical model theory required for this
paper. For a full account of graphical model theory we refer to Cox and Wermuth
(1996), Lauritzen (1996) and Whittaker (1990) whereas, for the theory relating to
structure learning of graphical models we refer to Cowell ez a/. (1999), Edwards
(2000), Jones et al. (2005) and Whittaker (1990). Let X = X be a random vector
indexed by I = {1, ..., p} with probability distribution Py- and let G = (I/,E) be
an undirected graph. For a subset A < 1/, we denote by X4 the subvector of X
indexed by A, and by P the associated marginal distribution. For a triplet I, ],
U c IV we write X;1 Xj| Xy to denote that X is conditionally independent of
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X given Xu; we allow U to be the empty set to denote the marginal independ-
ence of Xrand Xj. We say that Py is (undirected) Markov with respect to G if it
holds that X;1 Xj| Xy whenever U separates [ and | in G; in particular this im-
plies thatif (7, j) € E then Xi L Xj| X1

We say that Py~ is faithful to G if all the conditional independence relationships
in Py can be read off the graph G through the Markov property. Consider a
graph G' = (I,E) larger than G, G < G'. It is straightforward to check that if Py
is Markov with respect to G then it is also Markov with respect to G'. However, if
Py is faithful to G then it is faithful to G'if and only if G = G

Throughout this paper X} is assumed to have a multivariate normal distribu-
tion with mean vector uv and positive definite covariance matrix 2, =2. Fur-
thermore, we assume that P1-is both Markov and faithful with respect to an undi-
rected graph G = (1/,E). Hence, for a subset 0 < 1 with 7 j ¢ Q it holds that
Xil Xj| Xy if and only if the partial correlation coefficient

e

Y
sz = —_—
e

is equal to zero, where A = O U {4, j} and K4 = {/é;l} is the concentration ma-

trix of X4, K4 = (EMfl (Lauritzen, 1996, p. 130). Of special interest is the case

A = 1" because the concentration matrix Kir = K = {4k;} is the inverse of X and
the structure of G = (I/,E) can be derived from the zero pattern of K. More spe-
cifically, it holds that (Lauritzen, 1996, Proposition 5.2)

kj=0 < pinp =0 < () €E, 1)

{7}
and for this reason G is called the concentration graph of Xy. For |Q| = ¢, the
parameter p; , is called a g-order partial correlation of X; and Xj, and if ¢ = p—2,
Le. O = I"\{4 j}, we say that p, , is the full-order partial correlation of X; and

A Gaussian graphical model (Dempster, 1972) is the family of p-variate normal
distributions that are Markov with respect to a given undirected graph G =
(VLE). Let X0 =(X', ..., X?) be a random sample from Pp. For a Gaussian
graphical model with graph G the sufficient statistics are given by the sample
mean vector and by the sample covariance matrices S¢c for C € C where Cis the
set of cliques of G (Lauritzen, 1996, p. 132). It follows that, when G is complete
the sufficient statistics are the sample mean and the sample covariance matrix S.
Here, we consider problems in which the sample size is small, and it is thus im-

portant to recall that, for 4 < 1/, the sample covariance matrix S.14 from X (/',1)

has full rank, with probability one, if and only if #» > |.A4| (Dykstra, 1970) and
that a necessary condition for the computation of several statistical quantities
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such as the maximum likelihood estimates of K and of the partial correlations in
(1) is that Scc has full rank for all C e C.

Structure learning aims at identifying the structure G = (I/,E) with the fewest
number of edges on the basis of the available data such that the underlying dis-
tribution Py is undirected Markov over G. In a frequentist approach to infer-
ence, a basic operation to be performed in structure learning procedures is a sta-

tistical test for the hypothesis that a given partial correlation is zero, Pio=0,

since for O = 17\ {4, /} this is equivalent to the hypothesis that (7, j)) € E . If, for
A=0 U {i/}, X4has an (untestricted) normal distribution then the generalized

likelihood ratio test for the hypothesis that Pi.o =0 has form L=—#log(1— p;Q )

where p; , = —él//{ / Jxéf /éHA and K= ($44)71 is the maximum likelihood es-
timate of K4 (Whittaker, 1990, p. 175). Under the null hypothesis, the asymptotic

distribution of Lis x7, even though for a small sample size the exact distribution

of the statistical test may be preferred; see Schifer and Strimmer (2005a). An al-
ternative way to verify the above hypothesis is provided by the connection be-
tween partial correlations and regression coefficients. More specifically, in the re-
gression of X; on Xy the regression coefficient associated with X; is zero if
and only if p; , = 0 (see Cox and Wermuth, 1996, p. 69). In the structure learn-

ing procedure proposed in this paper, to verify the absence of an edge from the
unrestricted model we will apply the usual # test for zero regression coefficients
because it is optimal, in the sense that it is Uniformly Most Powerful Unbiased
(UMPU) (see Lehmann, 1986, p. 397).

2.3. g-partial graphs

The use of limited-order partial correlations in structure learning is appealing
when either p > 7 or the available data are too scarce to produce reliable estimates
of the concentration matrix. Structural learning procedures based on g-order par-
tial correlations aim at identifying the g-partial graph of X, that is a graph in
which missing edges correspond to zero g-order partial correlations. Here, we
give the definition of g-partial graph and refer to Castelo and Roverato (20006) for
the theory of g-partial graphs definition 1. For a random vector X and an integer

0 < g < (p—2) we define the g-partial graph of Xy, denoted by G’ = (I/,E "), as

the undirected graph where (7, /) € E”if and only if there exists a set U < 1/
with |U| = ¢gandi,/ € U such that X; 1 X;| Xy holds in Py~
3. GAUSSIAN GRAPHICAL MODELS FOR BIOMELOCULAR NETWORKS

Microarray data quantify the abundance of biomolecules, commonly known as
expression level, by probing functional elements along the genome which, with-
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out loss of generality, we shall hereafter refer to as genes. A set of p genes being
probed define a vector of random variables Xj, 7 = 1, ..., p, that take normalized
values of the expression levels of the corresponding genes. For every variable X
there is vector of # values coming from 7 different experimental conditions form-
ing the so-called expression profile. The microarray data consist of the expression
profiles of a set of genes and form a snapshot of the interactions between the
genes in terms of statistical (in)dependencies which, in principle, could be in-
ferred through structure learning of Gaussian graphical models and thus leading
to a description of the underlying biomolecular network in these terms. Hence,
the prime object of interest is the inverse of the covariance matrix, also known as
concentration matrix, whose zero pattern defines the structure of the graphical
model, known then as concentration graph. However, in contrast with the usual
data sets found in the literature, on which structure learning of Gaussian graphi-
cal models is applied, microarray data constitute a challenging problem because
microarray experiments tipically measure the expression level of a large number
of genes across a small number of experimental conditions. As a consequence of
the scarcity of the data, the maximum likelihood of the inverse covariance matrix
does not exist because the sample covariance matrix has full rank, with probabil-
ity one, if and only if # > p (Dykstra, 1970). This paper tackles this specific cir-
cumstance under which we perform structure learning of Gaussian graphical
models with small 7 and large p. An important observation in this context is that a
growing body of biological evidence suggests that biomolecular networks have a
sparse structure. This feature, usually regarded as an advantage, has been ex-
ploited in a number of ways to enable learning of Gaussian graphical models
from microarray data (see, among others, Wong e al., 2003; Dobra ef al., 2004;
Wille e# al., 2004; Wille and Bithlmann, 2006; Shafer and Strimmer, 2005a, 2005b,
2005¢) among which some methods work by obtaining shrinkage estimators of
the covariance matrix (Wong ¢f al., 2003; Shifer and Strimmer, 2005¢) while some
other have made an attempt to learn an approximate version of the biomolecular
network by using marginal distributions of dimension smaller than 7.

More recently, a number of different families of graphical models have been
used to describe biomolecular networks (see Friedman, 2004) and among these,
an important role is played by Gaussian graphical models. In these models an
edge between two genes represents a direct association and, more generally, a
path connecting two genes represents an undirect association mediated by other
genes in the path (see Jones and West, 2005). The reason why concentration
graphs seem to be adequate to describe gene networks is that, even though two
genes may present a non-zero correlation because they belong to a common bio-
logical pathway, they should not be joined by an edge when they influence each
other only indirectly through other observed genes that act as confounders.

Partial correlation is a measure of association between two genes that keeps
into account all the remaining observed genes; consequently, partial correlations
cannot be computed by only looking at bivariate marginal distributions but re-
quire the full joint distribution of genes, and this is problematic when n is small.
More formally, the network structure is derived from the zero pattern of the con-
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centration matrix K= £~ whose maximum likelihood estimate is K =" which
requires that S has full rank and this holds, with probability one, if and only if
n > p (Dykstra, 1970). Furthermore, the statistical properties of procedures for
fitting and testing partial correlations depend on #—p and, as pointed out for in-
stance by Yang and Berger (1994) and Dempster (1969), the estimators based on
scalar multiples of § tend to distort the eigenstructure of the true covariance ma-
trix, unless 7 > p. Several solutions have been proposed in the literature to carry
out structure learning of biomolecular networks by means of concentration
graphs; see Jones ef al. (2005) and Shifer and Strimmer (2005¢) for a review. A
popular approach is based on limited-order partial correlations, that is g-order
partial correlations with ¢ < (#—2). Procedures based on limited-order partial cor-
relations have been applied, among others, by de la Fuente ¢ a/. (2004), Magwene
and Kim (2004), Wille ez a/. (2004), Wille and Buhlmann (2006) and are also im-
plemented in the statistical software MIM (Edwards, 2000). The key point here is
that if a set of ¢ + 2 genes such that (¢ + 2) < 7 is considered, then a test for the
hypothesis of a zero g-order partial correlation can be carried out with standard
techniques such as those described in section 2.2.

In the next section we propose a novel procedure to learn g-partial graphs
from data. Our standpoint is that the real object of interest is the concentration
graph and that the g-partial graph is useful as an intermediate step of the analysis.

In fact, if the dimension of the largest clique of G is smaller than the sample
size, then the corresponding graphical model, as well as all its submodels, can be
fitted and, consequently, it is possible to apply traditional search procedures to
learn the concentration graph by using the fitted ¢-partial graph as a starting
point. Since the selected graph is the starting point for further investigation, our
procedure is designed to be conservative, that is, it aims at keeping the number of
wrongly removed edges small and, consequently, the probability of breaking the
Markov condition of Py-low. It follows that the selected graph may still contain
edges that should be removed. However, if the underlying concentration graph is
sparse the procedure will remove a large number of edges leading to a great sim-
plification of the learning problem. Furthermore, as shown by examples carried
out on both simulated and real data, the resulting graph is manageable with stan-
dard techniques. We remark that our procedure neither imposes any constraints
to induce a dimensionality reduction nor makes any assumption of sparseness of
the graph. However, the usefulness of the proposed procedure does depend on
the sparseness of G. It provides an indication whether the underlying concentra-
tion graph is sparse and, in this case, it will lead to a great simplification of the
structure learning problem.

4. THE gp-PROCEDURE
In this section we introduce the gp-procedure which is based on limited-order

partial correlations and, more specifically, on a quantity that we call the non-
rejection rate. The latter is a probability associated with every pair of variables X;
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and Xj, and turns out to be useful in discriminating between present and missing
edges in G The gp-procedure firstly estimates the value of all the p X (p — 1)/2

non-rejection rates and then a graph G is constructed by removing from the
complete graph all the edges corresponding to the pairs of variables whose fitted
value of the non-rejection rate is above a given threshold. In section 4.1 we for-
mally introduce the non-rejection rate. In section 4.2 we describe the procedure
in more detail by means of two examples and, finally, in section 4.3 we provide
istances of the application of the procedure on both simulated and real data.

4.1. The non-rejection rate
For a pait of vertices 7,/ € 17, with 7 # /, and an integer ¢ < (p — 2) let O be
the set made up of all the subsets Q of 17\ {;, /} such that |Q| = ¢; thus the car-
—2
dinality of Q;is m = (P g ) . Furthermore, let T/ be the random variable result-

ing of the two stage experiment in which firstly an element Q is sampled from Qj

according to a (discrete) uniform distribution and then the data X are used to
test the null hypothesis Ho: p; , = 0 against the alternative hypothesis FL1: p; , # 0.

The random variable T/ takes value 0 if the above null hypothesis is rejected and

1 otherwise. It follows that Tf has a Bernoulli distribution and the non- rejection
rate is defined as follows.

Definition 1 For a random sample X ™) from X the non-rejection rate for the
variables X; and X with 4,/ € I, i #, is given by

E[T;] = Pr(T; =1

In order for the non-rejection rate to be unambiguously defined, we have to
specify the statistical test we use. In the following, we always take ¢ < (# — 2) and
apply the 7 test for zero regression coefficient as described at the end of section

2.2.If Pr(T} =1]0Q) denotes the probability that Hy is not rejected for a given
set O €0y, then

(1-a) if Qseparatesiand jin G;
Pr(T =1]Q) = { @

B; o otherwise;
where o and f , are the probability of the first and the second type error of the

test respectively.
The value of a can be arbitrarily specified and we take it constant over all
pairs of vertices and all elements of {j;. The value of f; , is usually unknown be-

cause it depends on the true value of the parameters. Nevertheless, the effective-
ness of the gp-procedure depends on the statistical properties of the power func-
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tion of the test, and for this reason we use a UMPU test; in particular, recall that
Bio=(l-a).

The non-rejection rate for X; and Xj can thus be computed by using the law of
total probability as follows

Pr(T{ =1)= ) Pr(T{ =1 IOQ)Pr(,Q)=lPr(T; =110) ©)
e, ”

An element Q of 0 can either separate 7 and jin G or not separate them. We
denote by 1;(Q) the indicator function that is 1 if O € () separates 7and jin G
and 0 otherwise. Furthermore, we denote by 7, the proportion of elements of

Qj which separate 7and jin G so that

z, _1 > 1,(Q) and (1—7@.):l > {1-1,(0)}

7 e, 7 geg,

The second type error is defined only for the sets O € Q; such that 1;(0) = 0
and we define the average value of the second type error for the pair 7 and ;j over

Qjas
=3 B, 1-1,(0)} @

m(l=7;) )

with £, = 0if 7, = 1.

We can now turn to the computation of the non-rejection rate in (3). By (2) it
holds that

PHT! =1y =— 3 18, {1~ 1,(Q)} +(1-a)1,(Q)]
7 geg,

and, by (4),
1
Pr(T; =)= ;{ﬂl]m(l —m)+(1- a)lﬁﬂ'i/-}

so that we obtain the final form
Pr(T; =1)= ,By»(l - 7@) +(1- a);ry . 5)

Equation (5) can be used to clarify the usefulness of the non-rejection rate in

the statistical learning of G,
Consider first the situation in which the vertices 7 and ; are joined by an edge in

GP=(,EY), ie. () € E?. In this case no element of Qj separates i and / in
G = (V,E) so that z;= 0 and Pr(T] =1)= B; where B, is the mean value of
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B; o for O € Qy. Since for every O € Qi, p;, belongs to the interval
(0,1 —a) thenalso 0 = B;= (1 —a) but, more interestingly, /3, is close to the
boundaty (1—a ) only if the distribution of the g, , for O € U is highly asym-

metric on the interval (0, 1— a ) with most of the values very close to the bound-
ary (1—a); in other words, if the second type error f; , is uniformly very high

over Q. It follows that a value of Pr(T; =1) “close” to 1 —a means cither that

() € E @ or that (G,)) € E'” but that such an edge is very difficult to identify
on the basis of g-order partial correlations and of the available data. The gp-
procedure aims at identifying some of, but not necessarily all the, missing edges

of G'7 by keeping the number of wrongly removed edges low and thus trying to
avoid breaking the Markov condition of the underlying probability distribution.

In this perspective, it makes sense to remove the edges with Pr(T; =1) above a

given threshold . By keeping the value g very close to the boundary (1— )

the procedure will wrongly remove a present edge only when data strongly sup-
portt its removal.

We now turn to the situation in which (7, ) € E . In this case Pr(T =1)

belongs to the interval (;, 1—a ) and, although it can take any value in such in-

terval, it is important to notice that it will be closer to the boundary (1 — « ) for
larger values of 7;. A missing edge is identified by the gp-procedure if its non-

. . . * . .
rejection rate is above £ ; however, the procedure does not aim at removing all
missing edges and it is only important that the value of the non-rejection rate is

above ,b’* for a large number of missing edges. A sufficient condition for this to

happen is that (i) G'” has a large number of missing edges and (i) for a large
number of such missing edges, the value of 7; is high. Condition (i) can obvi-
ously be satisfied only if G is sparse but also the value of g plays a fundamental
role because a larger value of ¢ increases the sparseness of the g-partial graph and,

consequently, the values of the 7;’s. On the other hand, a present edge is cor-

rectly identified by the procedure if the value of f; is below B and, in turn, this
depends on the second type etrors B, , for O € ;. The statistical properties of

inferential procedures involving g-order partial correlations depend on 7 — ¢. In
the context we are considering, the sample size 7 cannot be easily increased but a
way to make # — ¢ larger is to decrease the value of g. We can conclude that a lar-
ger value of ¢ allows us to identify a larger number of missing edges but also de-
creases the power of the statistical tests, making present edges more difficult to
identify; see section 4.3.
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4.2. Description of the procedure
The gp-procedure is made up of five steps:

Specify a value ¢ < (n — 2);
2. estimate the non-rejection rate E[ T}/ ] for every pair of variables;

on the basis of the estimated non-rejection rates, decide whether to go
3.1 on to step 4
3.2 back to step 1 and modify the value of ¢ (if possible);

4. specify a threshold °;

5. return a graph G obtained by removing from the complete graph all the

. . . . *
edges whose estimated non-rejection rate is greater than £ .

We now describe every step in detail by means of an example. Figure 1 gives
the image of a partial correlation matrix for 164 variables. It is made up of 20 di-
agonal blocks of size 12 X 12 and there is a 4 X 4 submatrix overlap between
every two adjacent blocks. The associated concentration graph, that we denote by
G, has 1206 edges corresponding to 9% of all possible edges. We used this matrix
as a concentration matrix to generate n = 40 independent observations from a
multivariate normal distribution with zero mean.

23 45 69 a2 115 138
| 1 1 | 1 |

23

48

69

42
1

Figure 1 — Image of a partial correlation matrix for 164 variables. Every entry of the matrix is repre-
sented as a gray-scaled point between zero (white points) and £1 (black points).

It is straightforward to check, by using the results of section 2.3, that G =G

whereas G is the complete graph and in this example we compare the gp-
procedure for both ¢ = 3 and ¢ = 20.
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We have thus set the value of q, and the second step of the procedure requires
the estimation of the non-rejection rates. In principle, an unbiased estimate of the
non-rejection rate for a pair of variables X; and X can be easily obtained by first
testing the hypothesis p; , = 0 for all O € Oy, on the basis of the available data

X" and then by computing the proportion of such tests in which the null hy-
pothesis is not rejected. In practice, however, this requires the computation of

(Pq—z) statistical tests for evety one of the p X (p—1)/2 pairs of variables and

may be computationally unfeasible. In order to overcome this difficulty we use
a Monte Catlo method in which, for every pair X; and X, the required statisti-
cal tests are computed for a large number of sets randomly sampled from Qj
according to a uniform distribution. In the example we are considering, the
non-rejection rate is estimated by sampling 500 elements from (@ for all of
the 13 366 pairs of variables. For the case ¢ = 20, figure 2 gives the boxplots of

the estimates of the non-rejection rate for the present and missing edges of G

This picture provides a clear example of the different behavior of the non-
rejection rate for present and missing edges and it is also worth recalling that that
there is a large difference in the number of present and missing edges: 1206 ver-
sus 12 160.

[=]
2 4 —_ -
1 | I
L |
|
o -
=1
o
2 oo
= (=1
b=
B
o T
B
i o :
c (=] |
[=]
c 1
1
1
I
o | |
[=1] 1
i
1 -
! z]
2 —
=]
T T
present edges mizsing edges

Figure 2 — Boxplots of the estimated values of the non-rejection rate for the 1206 present edges and
for the 12160 edges of G= G*”

The third step involves a decision on the adequateness of the chosen value of
q and possibly on the effectiveness of the non-rejection rate for the considered
problem. The main tools used here are two plots that we call the gp-hist plot and
the gp-clique plot respectively. The first is the histogram of estimated values of
the p X (p—1)/2 non-rejection rates, see figure 3.
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The latter is more complex, see figure 4, and provides information on the
graphs potentially selected by specifying different values of the threshold A .

More specifically, every circle in the plot corresponds to a graph and has three
values associated with it: the threshold value used to construct the graph (hori-
zontal axis); the number of vertices of the largest clique of the graph (vertical
axis); the percentage of present edges in the graph (number inside the plot, beside
the circle). Furthermore, adjacent circles are joined by a line and the dotted hori-
zontal line corresponds to the sample size 7. To understand the usefulness of this
plot one has to recall that in Gaussian graphical models the real dimension of the
problem is given by the size of the largest clique of the concentration graph. The
gp-clique plot gives the dimension of the largest cliques of the graphs associated
with different values of the threshold thus providing a way to assess the effec-
tiveness of the non-rejection rate as a tool for dimensionality reduction. In par-
ticular, every circle below the dotted horizontal line corresponds to a model
whose dimension is smaller than the sample size, and therefore that can be dealt
with standard techniques.

We now analyze these two types of plots for the example considered. Both his-
tograms in figure 3 are asymmetric but the first histogram, for ¢=3, is less asym-
metric with a heavier left tail, and this is a first indication that for the case ¢=3 the
non-rejection rate may be of limited usefulness because we will not be able to
remove many edges that are really missing without removing many others that
should not be removed.

q=3 q=20

o o

© o

w (ce )

- =

o o

T T 1 T T 1
0.0 0.4 0.8 0.0 0.4 0.8
non-rejection rate non-rejection rate

Figure 3 — Histograms of the estimated values of the non-rejection rates.

However, a more clear difference between the two cases can be derived from
figure 4. The dimension of models grows almost linearly for g=3 whereas, for the
case ¢=20, it grows exponentially, increasing drastically only for threshold values
larger than 0.975. For instance, for =20, a threshold equal to 0.9 would lead to
the removal of 77% of edges, returning a graph with 23% of edges left. The same
threshold for 4=3 would only lead to the removal of 43% of edges, returning a
graph with 57% of edges left. Furthermore, the largest threshold that produces a
graph for which the dimension of the largest clique is smaller than the sample size
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is 0.5 for g=3 and 0.975 for ¢=20. The gp-clique plot provides an indication of
the sparseness of the g-marginal graph as well as of the usefulness of the non-
rejection rate in statistical learning. As explained in section 4.1, in the gp-
procedure the threshold £ has to be a value very close to one, and in the exam-
ple for 4=3 any value close to one would lead to an insufficient dimensionality
reduction. In this case, one should go back to the first step and, if possible, to in-
crease the value of ¢. If the value of ¢ cannot be increased, then one can conclude
that the use of g-partial graphs is not appropriate for the problem under analysis.
For the case =20 we can set 8 =0.975 selecting in this way a graph G with
9751 out of 13 366 possible edges and whose largest clique has size 32. Figure 5
gives the adjacency matrix of G and shows that, although this is cleatly an
overparameterized model, a substantial dimensionality reduction has been
achieved while preserving the block diagonal structure of G . Indeed, only 34

of the 1206 present edges are wrongly removed corresponding to an error of
2.8%.

4.3. Experimental results

In this section we use simulated data to describe the behavior of the non-
rejection rate for different values of ¢, # and different degrees of sparsity of the
concentration graph. Furthermore, we present the application of the procedure to
a real data set. For the simulations, we set p=150 and constructed two graphs,

G, = (I, E,)) and G, =(I", E,) which have been randomly generated by imposing

that every vertex has at most 5 and 20 adjacencies respectively.

7=3 7=20

150
|

ue Size

100
1

96%

maximum cligue size

maximum cli

threshold threshold

Figure 4 — Plots giving the largest clique sizes of the graphs selected with different threshold values.
For every graph the percentage edges is given and the dotted horizontal line is the sample size 7.
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23

45

69

Fignre 5 — Adjacency matrix of the graph selected by the gp-procedure with =20 and g~ = 0.975.

Black points are present edges (value 1 in the adjacency matrix) and white points missing edges
(value 0 in the adjacency matrix).

In this way, it follows from the results of section 2.3 that for all ¢ = 5 it holds
that G\ =G, whereas for all ¢ > 20 it holds that G\’ =G, . The graph G, has

375 edges whereas G, has 1499 edges that correspond to 3.36% and 13.4% of
the 11 175 possible edges respectively. Successively, an inverse covariance matrix
with the zero pattern induced by G; has been randomly constructed (see

Roverato, 2002) and then two samples, of size 20 and 150 respectively, have been
randomly generated from a normal distribution with zero mean and the given co-
variance matrix. The same procedure was used to generate two random samples
of size 20 and 50 for G,. We first consider G, and » = 20 and independently
apply the gp-procedure with six different values of ¢, ranging from 1 to 17; recall
that the latter is the maximum possible value of ¢ when #=20. Figure 6 shows the
six gp-hist plots, which are displayed for increasing values of (#—¢), i.e. for de-
creasing values of ¢, because the power of the statistical test we use increases with
(n—gq). For ¢g=17 the tests have very low power and this results in a gp-hist plot
where the non-rejection rate is very high for all pairs of variables. As the value of
(n—q) increases the gp-hist plots show heavier left tails while maintaining a strong
negative asymmetric form. As figure 7 clarifies, this happens because the distribu-
tions of the non-rejection rate for present and missing edges become more and
more separated as (#—¢) increases. We remark that the present and missing edges

in figure 7 are relative to G, and not to G!”. A numerical description of the re-

sults of these simulations is given in tables 1 and 2. The first part of these tables
gives the quantities used in the construction of the gp-clique plots: some thresh-
old values (thr.) and, for every threshold, the size of the largest clique (l.c.) and
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Figure 6 — gp-hist plots for G1 = (I/,Ey) with #=20.

the percentage of present edges (% pre.) of the corresponding graph. The remain-
ing columns provide measures of goodness of the graph associated with each
threshold. More specifically, “err.” gives the number of wrongly removed edges,
“% err.” is the percentage of wrongly removed edges with respect to all the re-
moved edges and, finally, “% imp.” is the rate of improvement with respect to
the random removal of edges: a learning procedure based on the random removal
of edges would lead to a relative error whose expected value is the proportion of

edges in the graph, that is 3.36% for G, and the improvement rate of a graph is

the relative difference between “% err.”” and the proportion of present edges in
the concentration graph. We remark that the last three columns of these tables
are not available in real applications where the concentration graph is unknown.
Figures 6 and 7 seem to indicate that the value of ¢ should be chosen as low as
possible; nevertheless, as described in Section 4.1 the value of ¢ should not be

chosen too small in order to guarantee an adequate sparseness of G, If in ta-
bles 1 and 2 one takes, for the different values of g and » = 20, the largest thresh-
old corresponding to a graph whose largest clique size is smaller than #, then the
best solution is provided by ¢ = 10 with a graph in which 6601 edges are missing,
the largest clique has size 13 and the absolute error is 97 with a 56.21% im-
provement rate. However, also the case ¢ = 5 provides a good solution with a
graph in which 7194 edges are missing, the largest clique has size 19 and the ab-
solute error is 103 with a 57.33% improvement rate. A value of ¢ equal either to
5 or to 10 represents the most natural choice in the trade-off between (#7—¢) and
(p—¢), however we notice that, apart from g=17 where the relative improvement
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Figure 7 — Distribution of the non-rejection rate for present and missing edges of G1 = (I,E1), to be
associated with the corresponding histograms in figure 6.

is only 38.32%, all the other considered values of ¢ provide satisfying solutions.
This seems to suggest that the gp-procedure is not very sensitive to the choice of
g. We can conclude that the gp-procedure is very effective despite the fact that we
are considering an extremely challenging problem where the sample size is very
small, =20, compared to the number of variables, p=150. In order to show the
behavior of the non-rejection rate as the sample size increases, in figure 8 and ta-
ble 2 we provide an example in which the sample size is larger, #=150, but still
too low to permit the computation of sample full-order partial correlations. The
boxplots in figure 8 highlights the great effectiveness of the non-rejection rate in
this case. Table 2 shows that one can either select the largest graph manageable
with standard techniques, choosing in this way a graph with only 12 wrongly re-
moved edges, or select a sparser graph; for instance, the threshold 0.60 gives a
graph with 9365 out of 11 175 missing edges, absolute error 85 and a 72.94% im-
provement rate. It is also interesting to compare figure 8 with the case ¢=17 in
figures 6 and 7.

We now apply the gp-procedure for the case with concentration graph Go,
7#=20, 50 and ¢=5, 10; see figure 9 and table 3. The graph G is not sparse and
both Gf) and Ggw) are even more dense, and this affects the shape of the gp-
hist plots in figure 9. Indeed, all the three histograms are clearly less asymmetric
than the corresponding histograms in figure 6; note also that this is less evident
in the case #=20 and 4=10 because the quantity (#—¢g) is smaller than in the
other two cases. We deem that this kind of behavior of the gp-hist plot should
be read as an indication that the considered g-partial graphs do not provide satis-
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TABLE 1

Graph Gy = (V,E1). Numerical description of the ontput of the qp-procedure applied for
n=20and q =1, 3, 5. The first part of the table gives the quantities nsed in the construction of the qp-cligune
plots: some threshold values (thr.) and, for every threshold, the size of the largest clique (l.c.) and the percentage of
present edges (%o pre.) of the corresponding graph. The last three columns give the number of wrongly removed edges
(err.), the percentage of wrongly removed edges with respect to all the removed edges (%o err.) and the rate of
improvement with respect to the random removal of edges (Yo imp.)

n Q thr. Lc. % pre. ett. % err. % imp.
20 1
0.30 10 10.4 187 1.87 44.37
0.60 13 14.2 177 1.85 45.00
0.80 14 17.1 169 1.82 45.63
0.85 14 18.5 166 1.82 45.68
0.90 15 21.3 155 1.76 47.50
0.95 17 27.2 136 1.67 50.18
0.97 19 324 123 1.63 51.51
0.98 19 36.9 111 1.58 53.05
0.99 22 46.9 88 1.48 55.81
20 3
0.30 7 4.7 228 2.14 36.18
0.60 9 10.1 191 1.90 43.35
0.80 12 16.7 170 1.83 45.59
0.85 14 19.8 156 1.74 48.15
0.90 14 24.5 143 1.69 49.50
0.95 17 34.2 120 1.63 51.36
0.97 20 427 96 1.50 55.36
0.98 22 50.4 79 1.43 57.49
0.99 27 63.8 53 1.31 60.99
20 5
0.30 6 29 235 2.16 35.49
0.60 8 6.9 195 1.87 44.13
0.80 1 13.8 163 1.69 49.57
0.85 12 17.3 152 1.65 50.98
0.90 13 22.9 138 1.60 52.27
0.95 19 35.6 103 1.43 57.33
0.97 23 471 83 1.40 58.15
0.98 28 57.0 65 1.35 59.70
0.99 36 74.2 38 1.32 60.80

fying approximations of the required concentration graphs. Hence, if the value of
g cannot be increased then we suggest that the application of any learning proce-
dure based on limited-order partial correlations should be avoided for the prob-
lem under analysis. We close this section applying the qp-procedure to a subset of
the gene expression data from the study by West ¢z 2/ (2001). This subset was ex-
tracted and analysed originally by Jones e @/ (2005) and contains the expression
profiles for p=150 genes associated with the estrogen receptor pathway coming
from #=49 breast tumor samples. We have applied the gp-procedure with ¢g=20
and the gp-hist and gp-clique plots, given in figure 10, provide a strong indication
that G is sparse. Hence, we set ,B* =0.975 and, in this way, we identify a graph
with 7240 out of 11 175 possible edges and whose largest clique has size 24
which can be taken as an estimate of the maximum size of the highly intercon-
nected sets of interacting genes. Such sets are a class of the so-called network mo-
tifs (Milo ez af., 2002) which are characteristic network patterns whose identifica-
tion can be used to draw hypotheses on basic cellular mechanisms (Yeger-Lotem
et al., 2005). Note that the theory of ¢-partial graphs developed in this paper, and
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implemented through the gp-procedure, allows us to obtain this estimate, and
eventually explore other ones, in relationship to the amount of true interactions
we are willing to remove and the dimension of the data. Such a feature may be a
critical piece of information when dealing with real data for which we lack back-
ground knowledge on its underlying structure of interactions.

TABLE 2

Graph Gy = (V,E;). Numerical description of the output of the qp-procedure applied with different values
of n and q. See Table 1 for a description of columns

" q thr. Lc. % pre. ert. % err. Y% imp.
20 10
0.30 4 0.7 313 2.82 15.94
0.60 5 25 244 2.24 33.26
0.80 7 7.6 199 1.93 42.59
0.85 8 11.4 174 1.76 47.66
0.90 9 19.0 149 1.65 50.93
0.95 13 40.9 97 1.47 56.21
0.97 25 67.2 58 1.58 52.83
0.98 45 85.6 26 1.62 51.82
0.99 99 98.1 6 2.82 16.06
20 15
0.30 2 0.1 371 3.32 1.03
0.60 3 0.3 347 3.11 7.20
0.80 5 1.0 303 274 18.36
0.85 6 1.9 278 2.54 24.45
0.90 6 5.5 233 221 34.28
0.95 11 455 104 1.71 49.08
0.97 50 94.2 10 1.53 54.29
0.98 124 99.6 0 0.00 100.00
0.99 150 100.0 0 0.00 100.00
20 17
0.30 1 0.0 375 3.36 0.00
0.60 1 0.0 375 3.36 0.00
0.80 1 0.0 375 3.36 0.00
0.85 2 0.1 366 3.28 231
0.90 3 0.4 339 3.05 9.23
0.95 1 53.3 108 2.07 38.32
0.97 89 98.7 2 1.38 58.90
0.98 149 99.9 0 0.00 100.00
0.99 150 100.0 0 0.00 100.00
20 17
0.30 6 7.0 118 1.14 66.17
0.60 9 16.2 85 0.91 72.94
0.80 13 29.4 60 0.76 77.32
0.85 15 35.6 53 0.74 78.07
0.90 17 44.3 44 0.71 78.93
0.95 23 60.4 34 0.77 77.10
0.97 34 70.7 30 0.92 72.72
0.98 44 77.5 21 0.84 75.09
0.99 62 86.3 12 0.78 76.61

4.4. The gp-package

The gp-procedure, jointly with other functions showing the gp-hist and gp-
clique plots, has been implemented in a package, named ¢p, for the statistical
software R (http://www.t-project.org). This package can be downloaded from
The Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/
stc/contrib/PACKAGES.html. The gp-procedure is implemented in this pack-
age through the R and C programming languages requiring 10 minutes in a laptop
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Figure § — gp-hist plot and associated distributions of the non-rejection rate for present and missing
edges of Gy = (I/,E1), resulting from the application of the gp-procedure where =150 and ¢ =17.
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Figure 9 — gp-hist plots and associated distributions of the non-rejection rate for present and missing
edges of Gy = (I/,Ey), tesulting from the application of the gp-procedure for different values of #
and ¢.

1.33GHz PowerPC G4 with 1.25 Gbyte RAM running Mac OS X, as well as in a
desktop Intel 1.60GHz P4 with 1 Gbyte RAM running Linux, to perform the cal-
culations of one of the simulations involving p=150 variables, »=50 observations,
and ¢=15 sampling 500 conditioning subsets to estimate the non-rejection rate
for each of the 11 175 adjacencies. Note also that the p X (p—1)/2 non-rejection
rates could be estimated in parallel and thus such an implementation would
greatly improve the performance.

5. DISCUSSION

The gp-procedure is designed to learn g-partial graphs. Its main advantage is
that it is robust with respect to the assumption of faithfulness because the estima-
tion of the non-rejection rate is based on a large number of statistical tests involv-
ing different marginal distributions and, therefore, a zero g-order partial correla-
tion deriving from the lack of faithfulness has a very weak impact on the re-
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TABLE 3

Graph Gz = (V,E3). Numerical description of the output of the qp-procedure applied for different values
of n and q. See table 1 for a description of columns

” q thr. Lc. % pre. err. % err. % imp.
20 5
0.30 5 3.6 1342 12.45 6.78
0.60 10 15.7 1099 11.66 12.72
0.80 21 40.8 735 11.11 16.82
0.85 29 54.2 580 11.33 15.16
0.90 55 72.9 328 10.84 18.89
0.95 103 91.6 90 9.59 28.18
0.97 123 96.5 31 7.81 41.55
0.98 134 98.3 23 12.30 7.94
0.99 144 99.5 6 10.00 25.15
20 10
0.30 3 0.5 1451 13.05 2.36
0.60 5 2.8 1333 12.27 8.13
0.80 7 11.9 1094 11.12 16.77
0.85 9 19.5 971 10.80 19.19
0.90 12 34.3 758 10.32 22.72
0.95 43 73.1 292 9.69 27.44
0.97 88 92.4 76 8.91 33.31
0.98 116 97.8 20 8.16 38.90
0.99 141 99.7 2 6.90 48.38
50 10
0.30 6 6.0 17 11.14 16.59
0.60 9 21.4 869 9.89 25.96
0.80 17 49.2 518 9.13 31.69
0.85 27 64.3 351 8.79 34.20
0.90 62 82.8 152 791 40.81
0.95 120 96.9 27 7.87 41.08
0.97 134 99.4 7 9.59 28.23
0.98 143 99.8 3 12.50 6.44
0.99 148 100.0 0 0.00 100.00

maximum clique size
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Figure 10 — Estrogen receptor data of West ¢ al. (2001): gp-hist and gp-clique plots for g =20.

sulting estimate. Apart from faithfulness, the gp-procedure does not require any
additional assumptions with respect to traditional structure learning procedures
and, in particular, the sparseness of the concentration graph, despite being crucial
for the effectiveness of the procedure, is not assumed but exploited when pre-
sent. In the case the gp-hist and gp-clique plots provide and indication that the
concentration graph is not sparse, then this should be read as a warning on the
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real usefulness of limited-order partial correlations in the problem under analysis.
The fact that the gp-procedure is designed to select an overparameterized model
might be regarded as a limitation, but in fact we deem that this is a useful feature
that adds additional flexibility in its use. Indeed, the gp-procedure can be used as
an explorative tool to assess the sparseness of the concentration graph and, there-
fore, the usefulness of g-partial correlations in structure learning. Furthermore,
the result of the procedure may be applied to obtain a shrinkage estimate of the
covariance matrix useful both in the case 7 is larger, but close, to p and in the case
n is smaller than p. Finally, the set of all the submodels of the selected model may
identify a restricted search space where a traditional structure learning procedure,
either in a Bayesian or in a frequentist approach to inference, can be applied. In
Gaussian graphical models it is assumed that X1 follows a multivariate normal
distribution, and the normality of microarray data is a disputed question.

We refer toWit and McClure (2004; section 6.2.2) for a discussion of this point,
but we remark that the non-rejection rate is a quantity that can be obtained from
any test for conditional independence computed on marginal distributions, and
therefore it constitutes a general tool that can be used also outside the multivari-
ate normal case.
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RIASSUNTO

Apprendinento strutturale di modelli grafici gaussiani sulla base di dati di microarray con p maggiore di n

L’apprendimento di reti di interazioni tra variabili sulla base di dati rilevati su microar-
ray ¢ un tema di grande interesse in bioinformatica. Un approccio che ha riscosso elevata
attenzione si basa sull’assunzione che i dati a disposizione rappresentino un campione ca-
suale da una distribuzione normale multivariata che appartiene ad un modello grafico
gaussiano. In questo caso il principale oggetto di inferenza ¢ costituito dai coefficienti di cor-
relazione parziale di ordine completo, ossia dai coefficienti di correlazione parziale tra due va-
riabili al netto di tutte le variabili rimanenti. Per i dati da microarray, solitamente il numero
di variabili rilevate eccede la dimensione campionatia e questo preclude I'applicazione del-
le procedure tradizionali per 'apprendimento di modelli perche non ¢ possibile calcolare i
coefficienti di correlazione campionaria. In questo articolo si propone una procedura di
apprendimento strutturale, denominata procedura qp, che utilizza 1 coeffiienti di correlazione
parziale di ordine limitato. 1a procedura ¢ implementata in un pacchetto di pubblico dominio
per il software statistico R.

SUMMARY

Structural learning of Gaunssian graphical models from microarray data with p larger than n

Learning of large-scale networks of interactions from microarray data is an important
and challenging problem in bioinformatics. A widely used approach is to assume that the
available data constitute a random sample from a multivariate distribution belonging to a
Gaussian graphical model. As a consequence, the prime objects of inference are full-order
partial correlations which are partial correlations between two vatiables given the remain-
ing ones. In the context of microarray data the number of variables exceeds the sample
size and this precludes the application of traditional structure learning procedures because
a sampling version of full-order partial correlations does not exist. In this paper we intro-
duce a structure learning procedure, that we call the qp-procedure, based on limited-order
partial correlations. The procedure is implemented in a freely available package for the
statistical software R.
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DISCUSSION

Nanny Wermunt, Elena Stangbellini

First, we want to congratulate Professor Roverato on his new position at the
most beautiful and arguably oldest European University of Bologna, for having
obtained jointly with Robert Castelo some remarkable theoretical results and for
an excellent presentation in today's lecture. Our comments ate obsetvations
about some of the assumptions, and to properties of partial correlations and their
multiples, the linear least-squares regression coefficients; we have some further
specific questions.

The assumption of a joint Gaussian distribution is extremely strong and most
likely to be unrealistic for most sets of observable variables. In microarray appli-
cations, even the marginal distributions of individual genes will rarely be symmet-
ric. Thus, there is a strong need to investigate whether there is evidence of sub-
stantial nonlinear or interactive effects in any set of data (see e.g. Cox and Wer-
muth, 1994) or to investigate whether relations will be at least quasi-linear, see
Wermuth and Cox (1998a), so that nonlinear relation have a strong linear com-

ponent and the vanishing of a partial correlation coefficient, p  _, say, coincides

with the conditional expectation of Y on X given Z not depending on X.

In general, if the assumption of a joint Gaussian distribution does not apply, it
may not only happen that there is strong nonlinear dependence of Y on given Z
if p pex = 0, but more surprisingly, Y may also be conditionally independent of X
given Zif p . . takes on a high value (see Wermuth and Cox, 1998b for an ex-
ample).

Suppose however that a joint Gaussian distribution is given, then the assump-
tion of a faithful concentration graph needs attention. In this case, almost no
constraints are imposed on corresponding data if a linear stepwise data generating
process is assumed, for which missing edges in a directed acyclic graph mean zero
partial correlations and edges present correspond to a nonvanishing dependence.
However, it becomes difficult to judge from a concentration graph whether all
independencies present in the joint density are reflected in it.

Let the linear system in a mean-centred vector variable Y be given by

AY =&, with cov(e)=A diagonal,

where A is a unit-upper-triangular matrix in which all nonzero off-diagonal 7-
elements are proportional to partial correlation coefficients and it is nonzero if
and only if there is an j-arrow present in the directed acyclic graph in which node
i corresponds to variable Y, for /=1,....,d, say. Then, for a missing j-arrow, the
corresponding concentration graph has an additional edge j-edge if and only if
Y, and Y/. have a common response Y, , with (b</<j). And, an additional asso-
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ciation is induced with the partial correlation p; .~ for C the set of all other 4-2
variables, i.e. a nonzero concentration. Thus, more dependencies will often show
in the concentration matrix Z = 4"A7' A4 than those needed to generate the

joint density; more precisely, whenever the generating graph has a 3-node-2-
arrow subgraph such that i =5« ;.

It may also happen that some concentrations vanish due to special parametric
constellations.

A simple example is with the following vector of residual covariances, contain-
ing the diagonal elements of A:

(511,522,533,544,> = (1/2,2/3,3/4,1)

and the matrices A and Z ! being

1 -1/2 -1/2 0 2 -1 -1 0

0 1 -1/3 2/3 -1 2 0 1
L /3 23| g

0 0 1 -1/2 -1 0 2 -1

0 0 0 1 o 1 -1 2

Here, py1==1/3, py4=1/3 and py;4 = pp3 =0 so that for pair Y,, Y}

negative dependence, positive dependence or independence holds, depending on
the conditioning set. The concentration graph is here not faithful. But, the ques-
tion is how could one check in models for large graphs this assumption that is
essential for the theoretical results obtained by the authors?

Related to this issue is the fact that the partial correlation graph G? defined by
the authors can be regarded as a graph with latent variables, where the set of la-
tent variables may change with ¢. This contrasts with classical latent variable
problems in which the set of latent variables remains unchanged. Thus for the
partial correlation graphs, there is additional knowledge that may allow to check
whether two models are consistent with one another.

Therefore, a question is whether and how this additional knowledge can be or
is incorporated in the structure learning procedure using the partial correlation
graph.

Another question is, how the authors see the relation to the variable selection
method for Gaussian concentration graph models which has been proposed and
studied recently (Meinshausen and Bithlmann, 2006) for the same type of situation
in which the number of variables is much larger than the number of observation.

For all such methods, one main issue is reproducibility of the conclusions. In
general, the direction and strength of observed associations vary the more the
smaller the number of observations. For instance in a recent study, Drton and
Richardson (2003) study a sample of eight observation from a joint Gaussian dis-
tribution. Though they sample, for instance, for three variables Y,, X, and X,
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which satisfy independence of Y, from X, given X,, the observed partial cor-
relation coefficient between Y, and X, given X, takes on the value 0.9007.

Such strong deviations from population values are quite common if, as in their
case, seven parameters are to be estimated from eight observations.

And, more generally, it may be possible to find an association structure in ob-
served data, but this structure can be quite unrelated to the structure in the popu-
lation whenever the sample size is small compared to the number of parameters
that are to be estimated.

Mathematical Statistics, NANNY VERMUNT
Gateborgs Universitet, Sweden

Dipartimento di Economia, Finanza e Statistica ELENA STANGHELLINI
Universita di Perugia
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Henry P. Wynn

The use of projection operators for Gaussian graphical models is useful. One
way to derive these is via conditional expectations. Thus if EX = E(-|X) is the
conditional expectation operator on a random variable X so that E(Y| X) is con-
sidered as a random variable, there are several equivalent ways to express condi-
tional independence. Thus with three random variables (X, Y, Z), X and Y condi-
tionally independent given Z is equivalent to any of the following:

1. Exz + Eyz — Ez = I, where [ is the identity operator for span(X, Y, Z)
2. (EX,Z - Ez)(EY,Z - Ez) =0
3. EX,Y EY,Z — EY,ZEX,Z

Condition (2) is the statement that the “innovations” are independent, which is
familiar, for example, from time series analysis. Condition (3) is an important
commutativity condition which lies at the heart of the Gaussian theory. It derives
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this importance from to operator theory. Suppose projections P, and P, are the
projections onto the linear subspaces 1] and 1,. Then P and P, commute if and

only if P} P, is the projection onto I/} N 1/,. If all the relevant operators in the

subspace lattice commute, which is sometimes called a Boolean lattice, then we can
link the lattice to certain kinds of transitive directed graphs in the DAG case
(TDAG). This is the theory of Lattice Conditional Independence (LCI) of Anderr-
son and Perlman (1993) (Annals of Statistics, 21, 1318-1358) and later papers.

It would be useful to make use of this algebra in the case when we are handling
sample covariances, and indeed Anderrson and Perlman and others address this
issue. Should one, for example, impose the projection conditions (or equivalent)
on the sample covariances in the null testing case? In fact by imposing a special
zero structure on the influence matrix (inverse covariance) as in the paper the au-
thors may be doing exactly that. In other words one may have a projection or
subspaces lattice of the true model which is shadowed by that for the “sample
model”, in the null case. Also, the conditions imply certain groups structures so
that multivariate invariant tests are a natural framework, in a classical testing envi-
ronment. It would be interesting to link the “partial covariances” and the partial
graphs of the present paper to these lattice and group structures. As the various
tests give rejection or acceptance the subspace structure will change and one may
be able to track this with an appropriate graphic alongside the DAG graphic. The
undirected graph case will be similar.

The sparseness discussion in the present paper are very interesting, both theo-
retically and computationally.

The recent book by Rue and Held (2005) (Gaussian Markov Random Fields,
Chapman and Hall/CRC), makes impressive use of sparse matrix methods and may
have some useful ideas. To link the lattice structure, the graph structure and the
sparseness theoretically, computationally and graphically seems like an exciting re-
search programme and this important paper travels some distance along the road.

London School of Economics HENRY P. WYNN

Angela Grassi, Ernst Wit

We congratulate Alberto Roverato and Robert Castelo for this paper, which
has done a valuable service in formalizing the theory of g-partial graphs and in
providing the so called gp-procedure to learn the structure of g-partial graphs.

In our comment we concentrate on the #non rejection rate, a quantity at the base
of the proposed gp-procedure. Castelo and Roverato exhaustively discuss the in-
fluence of the order of partial correlation, ¢, on the estimates of the non rejection
rate and discuss its role as a tuning parameter of the learning procedure.

We have been wondering about the dependence of the non rejection rate esti-
mates from a, the probability of first type error.
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Studying this dependence has been possible thanks to the easily manageable
package, gp, for the statistical software R, provided by the authors.

We use the gp-package applied to the same simulated data of Roverato and
Castelo (available in the gp-package itself), in particular to G, , the graph with p =
150 and 357 edges. Fixing ¢ = 10, and # = 20, we independently apply the gp-
procedure with three different value of a, 0.01, 0.05, and 0.1.

In figure 1 we represent the histograms with the corresponding distribution of
the non-rejection rate estimates. As the value of the significance level a increases,
the gp-hist plot shows heavier left tails while maintaining a strong negative asym-
metric form.

In figure 2 we represent the boxplots associated with the corresponding histo-
grams. The distribution of present and missing edges becomes more and more
separated as the significance level & increases.

As we can see in figure 3, in correspondence to a significance level 0.01 it is
very difficult to discriminate between present and missing edges even if we de-
crease the order of partial correlation to g = 1.
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Figure 1 — gp-hist plots for G, with » = 20, ¢ = 10.
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Figure 2 — Boxplots with the distribution of the non-rejection rate for present and missing edges of
G, to be associated to the corresponding histograms in Figure 1.
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Fignre 3 — gp-hist plot and associated boxplots for G; with » =20, 4 =1, a = 0.01.

What one can cleatly see from these plots is that o is an additional tuning pa-
rameter which potentially has a large impact on the functioning of the algorithm
and so one should carefully think of how to select it.

We would be grateful to the authors if they could give some insight on the fig-
ures we presented above and explain us if they have already thought of the possi-
bility of introducing a way to optimally choose a.

Istituto di Ingegneria Biomedica ANGELA GRASSI
CNR - Padova

Department of Mathematics and Statistics ERNST WIT
University of Lancaster

Reply by the Authors

First, we would like to thank all the discussants for their interesting comments
and suggestions which have given us the opportunity to consider the material in
our paper from new angles. Below we give brief replies to the issues that are
raised although many would deserve longer and elaborate answers.

We are grateful to Professor Wynn for highlighting the connection of the theory
of g-partial graphs with conditional expectation operators, projections, Lattice
Conditional Independence models and sparse matrix methods. These are all rele-
vant issues whose importance becomes crucial within the swall n and large p paradigm.
In particular, sparseness is a very general concept that can be specified into differ-
ent graphical structures. For instance, a network may be sparse because the number
of independent paths between every pair of vertices is small, because every vertex
has a small number of adjacencies, because it has small cliques and so forth.
Sparseness due to a small number of independent paths imply small separators and
is therefore useful when conditional independencies relationships have to be identi-
fied. On the other hand, a graph with small cliques may have large separators but it
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has the advantage that the corresponding model can be fitted also when the sample
size is small. We agree with Professor Wynn that it would be interesting to identify
model subspaces that induce an appropriate dimensionality reduction so that both
hypothesis testing and model fitting can be carried out efficiently also when sam-
pling size is small compared to the number of variables.

The analysis conducted by Professors Grassi and Wit shows the role of the sig-
nificance level a. The value of «a is constant throughout the paper and set equal to
0.05 but, in fact, there is a trade-of between the value of « and the average second
type error f. A smaller value of & leads to a larger value of the non-rejection rate
for missing edges, but also to a larger value of the average second type etror f for
present edges. The identification of an optimal value of & may lead to reduction in
the selection error and this is always desirable. However, it is also possible to carry
out the gp-procedure for different values of @ and combine the resulting networks.
This would lead to an improvement of the robustness properties of our procedure
but at the cost of an increased computational complexity.

Professors Wermuth and Stanghellini raise a number of relevant points. Faith-
fulness is a strong assumption and they illustrate an example of multivariate not-
mal distribution which is not faithful to its undirected independence graph. Al-
though we assume that the underlining distribution is faithful, we try to construct
a search algorithm that is robust with respect to such assumption. Specifically, the
non-rejection rate for a pair of variables is estimated by considering a large num-
ber of different test procedures based on different sets of conditioning variables;
as a consequence, such estimate is not affected by an occasional failure of the
faithfulness assumption. A second point concerns the precision of partial correla-
tion estimates when the sample size is small compared to the number of variables
involved in the analysis. The gp-procedure aims at identifying missing edges and
the power of statistical tests is improved by considering a small value of ¢, that is
by testing for zero partial correlations in matginal distributions of small dimen-
sion. This makes sense only when independence graph is very sparse and, more
precisely, when network sparseness is such that marginal distributions of small
dimension allow to identify the graph structure. This turns the problem into the
investigation of the connection structure of biomolecular networks, which is an
open problem of prime interest detailed in our answer to Professor Wynn.

The suggested connection between g-partial graphs and latent variable models
is intriguing. In fact, every step of the gp-procedure only makes use of a marginal
distributions of size ¢g+2 and the remaining variables may be regarded as “unob-
served”. However, in the following steps the observed values of the previously
“unobserved” variables are used and, in this way, the additional knowledge is in-
deed incorporated in the structural learning procedure.

We close by underlining that a proper comparison of our procedure with exist-
ing procedure designed to deal with the small n and large p paradigm is difficult be-
cause the gp-procedure is not a traditional structural learning algorithm, but rather
a device to restrict the searching procedure to a subset of models of manageable
dimension.



