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1. INTRODUCTION

Consider an R×R square contingency table with ordered categories. Let pi j denote the
probability that an observation will fall in the (i , j )th cell of the table. The symmetry
(S) model (Bowker, 1948) is defined by

log

�

pi j

p j i

�

= 0 (i < j ).

In the S model, the log odds, log(pi j/p j i ) for all i < j , are zero. The conditional sym-
metry (CS) model (McCullagh, 1978) is defined by

log

�

pi j

p j i

�

= δ (i < j ),

where the parameter δ is unspecified. The CS model with δ = 0 is equivalent to the S
model. Thus, the CS model is more parsimonious than the S model. In the CS model,
the log odds, log(pi j/p j i ) for all i < j , are constant (i.e., δ).

The diagonals-parameter symmetry (DPS) model (Goodman, 1979) is defined by

log

�

pi j

p j i

�

= δ j−i (i < j ),

where the parameters {δ j−i} are unspecified.
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The DPS models with δ1 = δ2 = · · · = δR−1 = 0 and δ1 = δ2 = · · · = δR−1 = δ
are equivalent to the S and CS models, respectively. Moreover, the DPS model with
δ j−i = ( j − i)δ, for all i < j , is equivalent to the linear diagonals-parameter symmetry
(LDPS) model (Agresti, 1983). Thus, the CS and LDPS models are more parsimonious
than the DPS model. In the DPS and LDPS models, the log odds, log(pi j/p j i ) for all
i < j , depend on the difference between j and i , although they are zero under the S
model, and constant under the CS model.

As a generalized model including these models, Tomizawa (1990b) proposed the
polynomial diagonals-parameter symmetry (PDPS) model, defined by

log

�

pi j

p j i

�

=
R−1
∑

k=1

( j − i)k−1∆k (i < j ),

where the parameters {∆k} are unspecified. In the PDPS model, the log odds,
log(pi j/p j i ) for all i < j , are a polynomial of degree of R− 2 with respect to the dif-
ference between j and i . The PDPS model can represent more parsimonious models
than the DPS model by setting some parameters {∆k} to zero. For example, the PDPS
models that are set ∆1 = ∆2 = · · · = ∆R−1 = 0, ∆2 = ∆3 = · · · = ∆R−1 = 0 and
∆1 =∆3 = · · ·=∆R−1 = 0 are equivalent to the S, CS, and LDPS models, respectively.
It must be noted that the PDPS model with∆k ̸= 0, for all k = 1,2, . . . , R−1, is equiva-
lent to the DPS model (see, e.g., Tomizawa, 1990b, 1991; Tahata and Tomizawa, 2014).

In previous studies, many decomposition theorems of model were given, and Tahata
and Tomizawa (2014) summarized over 30 the decomposition theorems. The decompo-
sition theorem is useful for explaining why the model does not hold, it is one of the
important disciplines of the research on square contingency tables. In order to provide
the decomposition theorem of the PDPS model using the DPS model, Tomizawa (1991)
introduced the polynomial diagonals-marginal symmetry (PDMS) model, defined by

log

�

p+d
p−d

�

=
R−1
∑

k=1

d k−1∆k (d = 1,2, . . . , R− 1),

where

p+d =
R−d
∑

l=1

pl ,l+d and p−d =
R−d
∑

l=1

pl+d ,l .

It must be noted that the parameters {∆k} of the PDMS model are unspecified. The
PDMS model can represent various models by setting some parameters {∆k} to
zero as well as the PDPS model. For example, the PDMS models that
are set ∆2 = ∆3 = · · · = ∆R−1 = 0 and ∆1 = ∆3 = · · · = ∆R−1 = 0 are equivalent
to the conditional diagonals-marginal symmetry (CDMS) (Tomizawa, 1987) and linear
diagonals-marginal symmetry (LDMS) (Tomizawa, 1990a) models, respectively.

Tomizawa (1991) showed that (i) it is necessary to hold the PDMS model, in addition
to the DPS model, to satisfy the PDPS model, and (ii) the value of likelihood ratio chi-
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square statistic for testing the PDPS model is equal to the sum of that for testing the
DPS and PDMS models.

Let fi j denote the observed frequency in the (i , j )th cell of the table. We consider the
data set in Table 1 obtained from Hashimoto (2018, pp. 122–123), which presents the
cross-classification of occupational status categories for father and son dyads in Japan
examined in 2015. Table 2 shows the values of fi j/ f j i for all i < j in Table 1. From
Table 2, it is likely that the values of fi j/ f j i for all i < j will depend on only the value
of column category j (rather than the difference between j and i ).

TABLE 1
Cross-classification of occupational status categories for father and son dyads in Japan, obtained from

Hashimoto (2018, pp. 122–123).

Son status

Father status (1) (2) (3) (4) Total

Highest (1) 33 31 10 7 81
(2) 6 151 81 25 263
(3) 9 131 207 25 372

Lowest (4) 24 97 95 62 278

Total 72 410 393 119 994

TABLE 2
The values of fi j/ f j i for all i < j in Table 1.

fi j/ f j i j

i 1 2 3 4

1 − 5.167 1.111 0.292
2 − − 0.618 0.258
3 − − − 0.263
4 − − − −

This study proposes a model that the log odds, log(pi j/p j i ) for all i < j , are a poly-
nomial with respect to the column category j . Moreover, this study (i) provides the
decomposition theorem of the proposed model, and (ii) shows the value of likelihood
ratio chi-square statistic for testing the proposed model is equal to the sum of that for
testing the decomposed two models.

The remainder of this paper is organized as follows. Section 2 proposes a polynomial
columns-parameter symmetry model. Section 3 provides a decomposition theorem of
the proposed model. Section 4 shows the value of likelihood ratio chi-square statistic for
testing the proposed model is equal to the sum of that for testing the decomposed two
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models. Section 5 demonstrates the utility of the proposed model using real-world data
in Table 1. Section 6 closes with concluding remarks.

2. PROPOSED MODEL

Tomizawa (1985) proposed the columns-parameter symmetry (CPS) model, defined by

log

�

pi j

p j i

�

= δ j−1 (i < j ),

where the parameters {δ j−1} are unspecified. The CPS models with δ1 = δ2 = · · · =
δR−1 = 0 and δ1 = δ2 = · · ·= δR−1 = δ are equivalent to the S and CS models, respec-
tively. Moreover, the CPS model with δ j−1 = ( j −1)δ, for all i < j , is equivalent to the
linear columns-parameter symmetry (LCPS) model (Tomizawa et al., 2006). In the CPS
and LCPS models, the log odds, log(pi j/p j i ) for all i < j , depend on only the value of
column category j . It must be noted that Tomizawa (1985) referred to the CPS model
as the odds-symmetry model.

As a generalized model including the CPS and LCPS models, we propose the poly-
nomial columns-parameter symmetry (PCPS) model, defined by

log

�

pi j

p j i

�

=
R−1
∑

k=1

( j − 1)k−1∆k (i < j ),

where the parameters {∆k} are unspecified. In the PCPS model, the log odds,
log(pi j/p j i ) for all i < j , are a polynomial of degree of R − 2 with respect to the
column category j . The PCPS model can represent more parsimonious models than
the CPS model by setting some parameters {∆k} to zero. For example, the PCPS
models that are set ∆1 = ∆2 = · · · = ∆R−1 = 0, ∆2 = ∆3 = · · · = ∆R−1 = 0 and
∆1 =∆3 = · · ·=∆R−1 = 0 are equivalent to the S, CS, and LCPS models, respectively.

The connection between δ = (δ1,δ2, . . . ,δR−1)
t in the CPS model and

∆= (∆1,∆2, . . . ,∆R−1)
t in the PCPS model is given as

δ =V∆,

where

V =











1 1 12 · · · 1R−2

1 2 22 · · · 2R−2

...
...

...
. . .

...
1 R− 1 (R− 1)2 · · · (R− 1)R−2











.

Since V is the Vandermonde matrix of order (R−1)× (R−1), the transformation from
the δ in the CPS model to the∆ in the PCPS model is one-to-one. Therefore, the PCPS
model with∆k ̸= 0, for all k = 1,2, . . . , R− 1, is equivalent to the CPS model.
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3. DECOMPOSITION OF PROPOSED MODEL

In this Section, we focus on the relationship between the CPS and PCPS models. Under
some parameters {∆k} in the PCPS model is set to zero, the CPS model constantly holds
when the PCPS model holds. However, the converse is not necessarily true. We want
to detect a model that it is necessary to satisfy, in addition to the CPS model, to satisfy
the PCPS model. In other words, we want to provide the decomposition theorem of the
PCPS model using the CPS model.

In order to provide the decomposition theorem of the PCPS model using the CPS
model, we propose the polynomial columns-marginal symmetry (PCMS) model, de-
fined by

log
�

p+c
p−c

�

=
R−1
∑

k=1

c k−1∆k (c = 1,2, . . . , R− 1),

where

p+c =
c−1
∑

l=1

pl c and p−c =
c−1
∑

l=1

pc l .

It must be noted that the parameters {∆k} of the PCMS model are unspecified. The
PCMS model can represent various models by setting some parameters {∆k} to
zero as well as the PCPS model. For example, the PCMS models that are
set ∆1 = ∆2 = · · · = ∆R−1 = 0 and ∆2 = ∆3 = · · · = ∆R−1 = 0 are equivalent to
the columns-marginal symmetry (CMS) and conditional columns-marginal symmetry
(CCMS) models (Tomizawa, 1984).

Let U (M ) imply that model M holds. We provide the following decomposition
theorem of the PCPS model using the CPS and PCMS models.

THEOREM 1. Under some parameters {∆k} in the PCPS and PCMS models are set to
zero, the following necessary and sufficient condition holds:

U (PC P S)⇔U (C P S)∧U (PC M S).

PROOF. It is clear that the necessary condition U (PC P S)⇒U (C P S)∧U (PC M S)
holds. It is necessary to show that the sufficient condition U (PC P S) ⇐
U (C P S)∧U (PC M S) holds. Since the both CPS and PCMS models hold, the following
equality holds:

δc =
R−1
∑

k=1

c k−1∆k (c = 1,2, . . . , R− 1).

Therefore, we obtain the following equality:

log

�

pi j

p j i

�

=
R−1
∑

k=1

( j − 1)k−1∆k (i < j ).

The proof is completed. 2
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When all ∆k (or all ∆k except ∆1) in the PCPS and PCMS models are set to zero,
Theorem 1 is equivalent to the decomposition theorem of the S (or CS) model proposed
by Ando and Aoba (2018).

4. GOODNESS-OF-FIT TEST FOR PROPOSED MODEL AND MODEL SELECTION

4.1. Goodness-of-fit test

Assume that a multinomial distribution applies to the R×R table. The maximum like-
lihood estimates (MLEs) of the expected frequencies under the model can be obtained
using, for example, the Newton-Raphson method in the log-likelihood equation.

In order to obtain the MLEs of the expected frequencies under the PCPS model, we
must maximize the following Lagrangian

R
∑

i=1

R
∑

j=1

fi j log pi j −φ

 

R
∑

i=1

R
∑

j=1

pi j − 1

!

−
∑

i< j

ψi j

�

pi j

p j i
− exp

�

R−1
∑

k=1

( j − 1)k−1∆k

��

,

with respect to {pi j },φ,{ψi j }, and {∆k}. Similarly, the MLEs of the expected frequen-
cies under the PCMS are obtained by maximizing the following Lagrangian

R
∑

i=1

R
∑

j=1

fi j log pi j −φ

 

R
∑

i=1

R
∑

j=1

pi j − 1

!

−
R−1
∑

c=1

ψc

�

p+c
p−c
− exp

�

R−1
∑

k=1

c k−1∆k

��

,

with respect to {pi j },φ,{ψc}, and {∆k}.
Each model can be tested for the goodness-of-fit by, for example, the likelihood ratio

chi-square statistic (denoted by G2) with the corresponding degrees of freedom. The test
statistic G2 of model M is given by

G2(M ) = 2
R
∑

i=1

R
∑

j=1

fi j log

�

fi j

êi j

�

,

where êi j is the MLE of the expected frequency ei j under model M . Let γ be the number
of ∆k set to zero in the PCPS and PCMS models. The number of degrees of freedom
for the CPS, PCPS, PCMS models are (R− 1)(R− 2)/2, (R− 1)(R− 2)/2+ γ , and γ ,
respectively. It must be noted that the number of degrees of freedom for the CPS model
is equal to the sum of that for the PCPS and PCMS models. We provide the following
theorem.

THEOREM 2. Under some parameters {∆k} in the PCPS and PCMS models are set to
zero, the following equality holds:

G2(PC P S) =G2(C P S)+G2(PC M S).
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PROOF. We can obtain êi j by setting the partial derivatives of Lagrangian equal to
zero. Although details are omitted, êi j in the PCPS, CPS, and PCMS models are pro-
vided as (1), (2), and (3), respectively.

êi j =



































( fi j + f j i )
exp

�

∑R−1
k=1
( j − 1)k−1∆̂k

�

1+ exp
�

∑R−1
k=1
( j − 1)k−1∆̂k

� (i < j ),

( fi j + f j i )
1

1+ exp
�

∑R−1
k=1
( j − 1)k−1∆̂k

� (i > j ),

fi j (i = j ),

(1)

êi j =































( fi j + f j i )
f +j

f +j + f −j
(i < j ),

( fi j + f j i )
f −i

f +i + f −i
(i > j ),

fi j (i = j ),

(2)

êi j =



































fi j

f +j + f −j
f +j

exp
�

∑R−1
k=1
( j − 1)k−1∆̂k

�

1+ exp
�

∑R−1
k=1
( j − 1)k−1∆̂k

� (i < j ),

fi j

f +i + f −i
f −i

1

1+ exp
�

∑R−1
k=1
( j − 1)k−1∆̂k

� (i > j ),

fi j (i = j ),

(3)

where

f +i =
i−1
∑

l=1

fl i and f −i =
i−1
∑

l=1

fi l .

In the both PCPS and PCMS models, the ∆̂s , corresponding∆s which is not set to zero,
are the solution of following equation

R−1
∑

c=1

c s−1
�

f +c − f −c exp
�
∑R−1

k=1
c k−1∆k

��

1+ exp
�
∑R−1

k=1
c k−1∆k

� = 0.

The fi j/êi j in the PCPS model is equal to the product of that in the CPS and PCMS
models. Therefore, the value of test statistic G2 of the PCPS model is equal to the sum
of that for the CPS and PCMS models. The proof is completed. 2
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4.2. Model selection

We consider comparing the goodness-of-fit between two nested models for the data. As-
sume that the model M2 constantly holds when the model M1 holds; that is the models
M1 and M2 is nested. For example, the model M1 is the PCPS model and M2 is the CPS
model.

Let ν1 and ν2 denote the numbers of degrees of freedom for the models M1 and M2,
respectively. Note that ν1 > ν2 and G2(M1) > G2(M2). For testing that model M1
holds assuming that model M2 holds true, we can use the likelihood ratio statistic
G2(M1|M2) =G2(M1)−G2(M2). When the model M1 holds, G2(M1|M2) has an asymp-
totic chi-squared distribution with ν1− ν2 degrees of freedom.

We consider the PCPS models that are set ∆2 = ∆3 = · · · = ∆R−1 = 0 and
∆1 =∆3 = · · ·=∆R−1 = 0; that is the CS and LCPS models. The relationship between
the CS and LCPS models is non-nested. When we compare the goodness-of-fit of all
PCPS models for the data, it is necessary to use an index corresponding to compare the
non-nested models.

A quick method for choosing the best-fitting model among applied models which
include non-nested models is to use the Akaike information criterion (AIC), which is
defined as

AIC=−2(maximum log likelihood)+ 2(number of parameters),

for each model (see, e.g., Akaike, 1974). This criterion provides the best-fitting model
as the one with minimum AIC. Because only the difference between AICs is required
when two models are compared, it is possible to ignore a common constant of AIC, and
we may use a modified AIC defined as

AIC+ =G2− 2(number of degrees of freedom).

Thus, the model with the minimum AIC+ (i.e., the minimum AIC) is the best-fitting
model among the applied models. We obtain the following corollary from Theorem 2.

COROLLARY 3. Under some parameters {∆k} in the PCPS and PCMS models are set
to zero, the value of AIC+ for the PCPS model is equal to the sum of that for the CPS and
PCMS models.

It must be noted that Corollary 3 does not hold for the original AlC.

5. APPLICATION TO REAL-WORLD DATA

Consider the data set in Table 1. This data set presents the cross-classification of occu-
pational status categories for father and son dyads in Japan examined in 2015. From
Table 2, it is likely that the values of fi j/ f j i for all i < j will depend on only the value of
column category j (rather than the difference in j and i ). Therefore, we forecast that the
CPS model fits well for the data set in Table 1. In addition, we are interested in applying
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the PCPS model which is more parsimonious model than the CPS model to this data
set.

Table 3 gives the values of G2 and AIC+ for each model. As shown in Table 3, the
CPS and PCPS with∆3 = 0 models fit well but the other models fit poorly. We compare
the goodness-of-fit of the CPS and PCPS with∆3 = 0 models using the likelihood ratio
statistics shown in Section 4.2. The CPS model is preferable to the PCPS with ∆3 = 0
model, this is because G2(PC P S |C P S) = 5.20. Moreover, the CPS model is the best-
fitting model among the models applied to the data set of Table 1, since the CPS model
has the minimum AIC+.

TABLE 3
The values of the likelihood ratio chi-square statistic G2 and the modified Akaike’s information

criterion (AIC+), for the PCPS model applied to the data set of Table 1.

Parameters {∆k} set to zero Degree of freedom G2 AIC+

∆1 =∆2 =∆3 = 0 (S model) 6 129.23∗ 117.23
∆2 =∆3 = 0 (CS model) 5 66.09∗ 56.09
∆1 =∆3 = 0 (LCPS model) 5 37.60∗ 27.60
∆1 =∆2 = 0 5 24.84∗ 14.84
∆3 = 0 4 6.75 −1.25
∆2 = 0 4 12.63∗ 4.63
∆1 = 0 4 17.08∗ 9.08
None (CPS model) 3 1.55 −4.45

∗means significant at the 0.05 level.

Table 4 shows the MLEs of the expected frequencies under the CPS and PCPS with
∆3 = 0 models.

Under the CPS model, the MLEs of exp(δ1), exp(δ2), and exp(δ3) are
exp(δ̂1) = 5.167, exp(δ̂2) = 0.650, and exp(δ̂3) = 0.264. In the CPS model, (i) the
odds that an observation will fall in row category i (< 2) and column category 2 instead
of row category 2 and column category i are 5.167, (ii) the odds that an observation
will fall in row category i (< 3) and column category 3 instead of row category 3 and
column category i are 0.650, and (iii) the odds that an observation will fall in row cat-
egory i (< 4) and column category 4 instead of row category 4 and column category i
are 0.264.

Next, using Theorems 1 and 2, for example, we consider the reason the PCPS with
∆1 = 0 model does not hold. From Theorem 2, the value of G2 for the PCMS with
∆1 = 0 model is 15.53 (= 17.08− 1.55). We can consider that the PCPS with ∆1 = 0
does not hold because the PCMS with∆1 = 0 model does not hold rather than the CPS
model.
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TABLE 4
The maximum likelihood estimates of expected frequencies under the columns-parameter symmetry

(CPS) and polynomial columns-parameter symmetry (PCPS) with∆3 = 0 models applied to the data
set in Table 1 are shown in parentheses in the second and third lines, respectively.

Son status

Father status (1) (2) (3) (4) Total

Highest (1) 33 31 10 7 81
(33) (31) (7.48) (6.47)
(33) (26.36) (8.25) (5.95)

(2) 6 151 81 25 263
(6) (151) (83.52) (25.47)

(10.64) (151) (92.02) (23.40)
(3) 9 131 207 25 372

(11.52) (128.48) (207) (25.05)
(10.75) (119.98) (207) (23.02)

Lowest (4) 24 97 95 62 278
(24.53) (96.53) (94.95) (62)
(25.05) (98.60) (96.98) (62)

Total 72 410 393 119 994

6. CONCLUDING REMARKS

This study proposed the PCPS model. In the PCPS model, the odds for all i < j that an
observation will fall in row category i and column category j instead of row category
j and column category i depend on only the value of column category j . This study
showed that (i) it is necessary to hold the PCMS model, in addition to the CPS model, to
satisfy the PCPS model (see, Theorem 1), and (ii) the value of likelihood ratio chi-square
statistic for testing the PCPS model is equal to the sum of that for testing the DPS and
PCPS models (see, Theorem 2).

We observe that the CPS model is saturated on the (1,2)th and (2,1)th cells as well as
the main diagonal of the R×R table, however, the PCPS with∆3 = 0 model is saturated
only on the main diagonal (see the MLEs of the expected frequencies for the CPS and
PCPS with ∆3 = 0 models in Table 4). For the data set in Table 1, the CPS model fits
better than that of the PCPS with ∆3 = 0 model. However, the PCPS with ∆3 = 0
model may be preferred over the CPS model when the use of all observations on off-
diagonal cells is required.

We suppose that model M1 holds if and only if both models M2 and M3 hold. Thus,
the following necessary and sufficient condition holds:

U (M1)⇔U (M2)∧U (M3),

where the number of degrees of freedom for model M1 is equal to the sum of that for
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models M2 and M3. Darroch and Silvey (1963) described that (i) when the following
asymptotic equivalence holds:

G2(M1)≃G2(M2)+G2(M3), (4)

if both models M2 and M3 are accepted (at the α significance level) with high probability,
then model M1 would be accepted; however, (ii) when (4) does not hold, it is quite pos-
sible for an incompatible situation to arise where both models M2 and M3 are accepted
with high probability but model M1 is rejected with high probability (in fact, Darroch
and Silvey (1963) and Tahata et al. (2011) showed such an interesting example). It must
be noted that Theorem 1 would not arise such an incompatible situation.
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SUMMARY

This study proposes a polynomial columns-parameter symmetry model for square contingency
tables with the same row and column ordinal classifications. In the proposed model, the odds
for all i < j that an observation will fall in row category i and column category j instead of
row category j and column category i depend on only the value of column category j . The pro-
posed model is original because many asymmetry models in square contingency tables depend
on the both values of row and column category. The proposed model constantly holds when
the columns-parameter symmetry model holds; but the converse does not necessarily hold. This
study shows that it is necessary to satisfy the polynomial columns-marginal symmetry model,
in addition to the columns-parameter symmetry model, to satisfy the proposed model. This de-
composition theorem is useful for explaining why the proposed model does not hold. Moreover,
this study shows the value of likelihood ratio chi-square statistic for testing the proposed model
is equal to the sum of that for testing the decomposed two models.

Keywords: Asymmetry; Marginal symmetry; Odds; Ordered category; Test statistic.
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