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SUMMARY

Ranked set sampling (RSS) is an efficient technique for estimating parameters and is applicable
whenever ranking on a set of sampling units can be done easily by a judgment method or based
on an auxiliary variable. In this paper, we assume (X ,Y ) to have a Cambanis-type bivariate ex-
ponential (CTBE) distribution, where a study variable Y is difficult and/or expensive to measure
and is correlated with an auxiliary variable X that is readily measurable. The auxiliary variable
is used to rank the sampling units. This paper addresses the problem of estimation of the scale
parameter associated with the Y -variable based on the RSS scheme and some of the other modi-
fied RSS schemes. Comparison between estimators is done through relative efficiency to find the
best RSS scheme. The efficiency performance of the estimators under various RSS schemes is pre-
sented numerically and graphically through 2-D and 3-D plots. To study the performance of the
proposed estimators through a simulation study we develop a Matlab function to simulate data
from the CTBE distribution. The results are applied to a real data set on mercury concentration
in large mouth bass from Florida.

Keywords: Ranked set sampling; Concomitants of order statistics; Cambanis-type bivariate ex-
ponential distribution; Best linear unbiased estimator.

1. INTRODUCTION

The ranked set sampling (RSS) technique is widely used for improving the precision of
the sample mean, an estimator of the population mean. RSS was introduced by McIntyre
(1952) as a cost-effective alternative to simple random sampling (SRS), and was applied to
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the problem of estimating the mean pasture yield. This method is applicable whenever
a variable of interest is difficult and/or expensive to measure but a ranking on a small
set of measurements is easily available. McIntyre (1952) uses the judgement method for
ranking a set of sample units. As an alternative to McIntyre’s method of RSS, Stokes
(1977) uses an auxiliary variable to rank sampling units, which is assumed to be readily
measurable. The procedure of RSS using an auxiliary variable described by Stokes (1977)
is as follows.

Choose n2 independent units, arrange them randomly into n sets, each with n units,
and observe the value of the X -variate on each of these units. In the first set, the unit
for which the measurement on X is the smallest is chosen. In the second set, the unit
for which the measurement on X is the second smallest is chosen. The procedure is
repeated until in the last set, the unit for which the measurement on X is the largest is
chosen. Now make measurements on Y for the selected units. Let X(r )r be the mea-
surement on the r th unit for the auxiliary variable X from the r th set, and Y[r ]r be the
measurement made on the study variable Y for the same unit for r = 1,2, . . . , n. Thus
(Y[1]1,Y[2]2, . . . ,Y[n]n) forms a ranked set sample. Here clearly Y[r ]r is the concomitant
of r th order statistic arising from the r th sample as coined by David and Nagaraja (2004).

The procedure of RSS described by Stokes (1977) has found many diverse applica-
tions in environmental, agricultural, and ecological studies. We discuss some of the
examples in the literature where the RSS schemes are used. Bain (1978) and Chacko
and Thomas (2008) considered the problem of oil pollution of sea water. They consid-
ered the oil pollution of sea water as study variable Y and the tar deposit in the nearby
sea shore as an auxiliary variable X . These two variables are highly positively corre-
lated, and here Y is really difficult and expensive to measure whereas X is easy to rank.
Chacko and Ghosh (2016) discussed an example related to Confir trees. In this exam-
ple, X represents the diameter (in cm) of the Confir tree at breast height which can be
measured easily, and Y represents the height (in feet) of the tree which is somewhat dif-
ficult to measure. Mohsin et al. (2014) and Chacko (2017) considered the data set used by
Lange et al. (1993) to study the influence of water chemistry on mercury concentration
in largemouth bass from different Florida lakes. Here X represents the amount of alka-
linity (m g/l ) in water sample and Y is the minimum mercury concentration (µg/g ) in
sampled fish.

The bivariate set up encourages the researcher to assume a suitable distribution
for (X ,Y ). For the bivariate normal distribution, Stokes (1977) have proposed a ranked
set sample mean as an estimator for the mean of the study variate Y , when an auxiliary
variable X is used for ranking the sample units, whereas Barnett and Moore (1997) ob-
tained the BLUE of the mean of Y based on a ranked set sample. Various modifications
of RSS schemes have been proposed in the literature. Stokes (1980) introduced a mod-
ified RSS procedure in which only the smallest or the largest judgment ranked unit is
chosen for quantification from each set which is later on known as Lower RSS (LRSS) or
Upper RSS (URSS) scheme. Samawi et al. (1996) investigated the use of a variety of ex-
treme RSS (ERSS) schemes for estimating the population mean. Some other variations



Application of RSS in Parameter Estimation of CTBE Distribution 147

in RSS schemes are Median RSS (MRSS) and Moving extreme RSS (MERSS). For details
about these schemes refer to Muttlak (1998) and Al-Saleh and Al-Ananbeh (2007).

Specifically, the exponential distribution is found to be the most important one to
model lifetimes of components in reliability systems. The bivariate exponential distri-
bution can be used as a model to study the lifetimes of engineering system when com-
ponent lifetimes depend on some of the other correlated variables. Several versions of
bivariate exponential distributions are found in the literature with many real-life applica-
tions such as life testing, reliability theory, survival analysis, stress-strength models etc.
Lam et al. (1994) used the RSS scheme to estimate the parameters of a two-parameter ex-
ponential distribution. Chacko and Thomas (2008) obtained the BLUE of a parameter
associated with the study variable for a Morgenstern type bivariate exponential (MTBE)
distribution by RSS and a censored RSS scheme. Al-Saleh and Diab (2009) obtained the
estimators of parameters of Downton’s bivariate exponential distribution using the RSS
scheme. Tahmasebi and Jafari (2014) considered the Morgenstern type bivariate general-
ized exponential distribution and obtained an estimator for the population mean using
several RSS schemes. Chacko (2016) investigates a new RSS scheme called ordered ex-
treme RSS scheme and obtains an estimator of the parameter for MTBE distribution.
Chacko (2017) obtains a Bayes estimator for the mean of the study variate for the MTBE
distribution. Estimation of parameters of various distributions has been carried out us-
ing RSS. Some other recent work in this direction is by Shaibu and Muttlak (2004),
Chacko and Thomas (2007), Singh and Mehta (2013), Koshti and Kamalja (2017), Ka-
malja and Koshti (2019), Samuh et al. (2020), and Koshti and Kamalja (2021a).

Many researchers have studied bivariate distributions from the Morgenstern family
as well as from extensions of the Morgenstern family and dealt with the problem of esti-
mation of parameter under RSS schemes. The Cambanis (1977) family is one of the gen-
eralizations of the Morgenstern family in which additional parameters are introduced.
Nair et al. (2016) discussed distributional characteristics, nature of dependence, reliabil-
ity properties, and applications of Cambanis family in modelling bivariate lifetime data.
Koshti and Kamalja (2021b) obtained an estimator of scale parameter associated with a
study variable based on different RSS schemes for the Cambanis-type bivariate uniform
distribution.

In this paper we consider the problem of the estimation of the parameters of the
Cambanis-type bivariate exponential (CTBE) distribution using various RSS schemes.
We estimate the scale parameter associated with the study variable Y, when an auxiliary
variable X is used for ranking the sampling units and (X ,Y ) have a CTBE distribution.
This paper is organized as follows.

In Section 2, we explore some aspects of the CTBE distribution and concomitants
of order statistics (COS) obtained by Thomas (2018). Section 3 presents a brief discus-
sion on RSS schemes and estimation of the scale parameter under these RSS schemes for
CTBE distribution. Section 4 covers estimation of all the parameters of the CTBE distri-
bution by method of moments, some of which are to be used as substitutes of population
parameters. In Section 5, we perform an efficiency comparison of the proposed RSS es-
timators numerically and present trends in efficiency with respect to parameters and
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sample size. In Section 6 we develop an algorithm to simulate data from the CTBE dis-
tribution and present some simulation results. Demonstrations about the performance
of the proposed estimators for simulated and real-life data are presented in Section 7.
Concluding remarks are given in Section 8.

2. DISTRIBUTIONAL PROPERTIES AND COS FOR THE CTBE DISTRIBUTION

In this Section, we explore some aspects of distribution theory of the CTBE distribution
and present a brief overview on COS.

2.1. Distributional properties

Morgenstern (1956) has provided a flexible family that can be used to construct bivari-
ate distributions with specified marginal distributions. This family is also known in
the literature as the Farlie-Gumbel-Morgenstern (FGM) family. One important limita-
tion of the Morgenstern family is that its correlation coefficient is restricted to a narrow
range (−1/3,1/3). Cambanis (1977) has introduced a modification to the classical Mor-
genstern family of distributions by introducing additional parameters which are helpful
to enhance the range of correlation.

The distribution function HX ,Y (x, y) of the Cambanis-type bivariate distribution
with parameters α1,α2,α3, denoted by CTB(α1,α2,α3), corresponding to the pair of
random variables (X ,Y ) as given by Cambanis (1977) is

HX ,Y (x, y) = FX (x)FY (y)[1+α1(1− FX (x))+α2(1− FY (y))+
α3(1− FX (x))(1− FY (y))], (1)

where the parametersα1,α2 andα3 are real constants satisfying the following conditions:

1+α1+α2+α3 > 0, 1+α1−α2−α3 > 0,

1−α1+α2−α3 > 0, 1−α1−α2+α3 > 0.

The marginal distributions of X and Y are given by

HX (x) = FX (x)
�

1+α1

�

1− FX (x)
�

�

, (2)

HY (y) = FY (y)
�

1+α2

�

1− FY (y)
�

�

. (3)

The Morgenstern family of bivariate distributions is a special case of the Cambanis
family when both α1 and α2 are zero. Further the two variables are independent when
αi = 0, for i = 1,2,3.
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We consider a Cambanis-type bivariate exponential distribution with parameters
α1,α2,α3,θ1,θ2 and denote it as CTBE(α1,α2,α3,θ1,θ2). The probability density func-
tion (pdf) of the CTBE(α1,α2,α3,θ1,θ2) distribution is

h(x, y) =
e−(

x
θ1
+ y
θ2
)

θ1θ2

h

1+α1(2e
−x
θ1 − 1)+α2(2e

−y
θ2 − 1)+α3(2e

−x
θ1 − 1)(2e

−y
θ2 − 1)

i

, (4)

where x, y,θ1,θ2 > 0, and

1+α1+α2+α3 > 0,1+α1−α2−α3 > 0,
1−α1+α2−α3 > 0,1−α1−α2+α3 > 0.

The marginal distributions of X and Y are as follows:

hX (x) = (1−α1)
e
−x
θ1

θ1
+α1

2e
−2x
θ1

θ1
, x > 0 and θ1 > 0, (5)

hY (y) = (1−α2)
e
−y
θ2

θ2
+α2

2e
−2y
θ2

θ2
, y > 0 and θ2 > 0. (6)

Note that the marginal distributions are not exponential, but they are mixture of two
exponential random variables. The marginal of X (Y ) is a mixture of exponential distri-
butions with mean θ1(θ2) and θ1/2(θ2/2). The mean and variance of Y are

E(Y ) = θ2

�

1−
α2

2

�

, Var(Y ) = θ2
2

�

1−
α2

2
−
α2

2

4

�

. (7)

Further the bivariate (r, s)t h product moment of the distribution in Eq. (1) is given by

E(X r Y s ) = Γ ((r + 1)(s + 1))θr
1θ

s
2

�

1+α1

�

1
2r
− 1

�

+α2

�

1
2s
− 1

�

+

+ α3

�

1
2r
− 1

��

1
2s
− 1

��

, r, s = 1,2,3, . . . . (8)

The Hoeffding’s formula for Cov(X ,Y ) is,

Cov(X ,Y ) =
∫ ∫

[HX ,Y (x, y)−HX (x)HY (y)]dxdy. (9)

We obtain Cov(X ,Y ) for (X ,Y ) ∼ CTBE(α1,α2,α3,θ1,θ2) distribution using this for-
mula as

Cov(X ,Y ) =
�α3−α1α2

4

�

θ1θ2. (10)
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Consequently, the correlation between X and Y simplifies to

ρ(X ,Y ) =
(α3−α1α2)

Æ

(α2
1+ 2α1− 4)(α2

2+ 2α2− 4)
. (11)

The variation in correlation with respect to α1,α2,α3 for CTBE(α1,α2,α3,θ1,θ2)
distribution is shown in Figure 1 and Figure 2. The trends in these Figures help to
choose the feasible values of the association parameters α2,α3 for fixed α1 and give an
idea about the amount of correlation.

Figure 1 – Correlation w.r.t. α2,α3 for CTBE(0.1,α2,α3,θ1,θ2) distribution.
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Figure 2 – Correlation w.r.t. α2,α3 for CTBE(−0.2,α2,α3,θ1,θ2) distribution.

Nadarajah and Kotz (2006) discussed the calculation of P (X < Y ) for the class of
bivariate exponential distributions. This probability is used to obtain component relia-
bility. For the CTBE(α1,α2,α3,θ1,θ2) distribution we obtain it as

P (X < Y ) =
θ2

θ1+θ2
+α1

�

2θ2

θ1+ 2θ2
−

θ2

θ1+θ2

�

+α2

�

2θ2

2θ1+θ2
−

θ2

θ1+θ2

�

+ α3

�

3θ2

θ1+θ2
−

2θ2

θ1+ 2θ2
−

2θ2

2θ1+θ2

�

. (12)

2.2. Review on concomitants of order statistics

Scaria and Nair (1999) and Thomas (2018) investigated the distribution theory on COS
from the Morgenstern family and the Cambanis family, respectively. Thomas (2018)
obtains the COS for the general CTB(α1,α2,α3) distribution and for the
CTBE(α1,α2,α3,θ1,θ2) distribution when α1 = 0. We present a brief summary on COS
of the CTBE(0,α2,α3,θ1,θ2) distribution, which is denoted as CTBE(α2,α3,θ1,θ2) in
the rest of the paper. Let (xi , yi ), i = 1,2, . . . , n be a random sample of size n from the
CTBE(α2,α3,θ1,θ2) distribution with pdf
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h(x, y) =
e−(

x
θ1
+ y
θ2
)

θ1θ2

h

1+α2

�

2e
−y
θ2 − 1

�

+α3

�

2e
−x
θ1 − 1

��

2e
−y
θ2 − 1

�i

, (13)

where x, y > 0, θ1,θ2 > 0, |α2+α3| ≤ 1, |α2−α3| ≤ 1.
The pdf hY[r ]r

(y) of the concomitant of the r t h order statistic from the sample of size n
for the CTBE(α2,α3,θ1,θ2) distribution for 1≤ r ≤ n is

hY[r ]r
(y) =

e
−y
θ2

θ2

�

1+
�

α2+α3
n− 2r + 1

n+ 1

�
�

2e
−y
θ2 − 1

�
�

, y > 0, θ2 > 0. (14)

For 1≤ r ≤ n, the k t h moment of Y[r ]r is given by

µ(k)[r ]r = E(Y k
[r ]r ) = Γ (k + 1)θk

2

�

1+
�

α2+α3
n− 2r + 1

n+ 1

�

(2−k − 1)
�

. (15)

Specifically, the mean and variance of Y[r ]r are

E(Y[r ]r ) = θ2ξr , Var(Y[r ]r ) = θ
2
2δr , (16)

where

ξr = 1− 1
2

�

α2+α3
n− 2r + 1

n+ 1

�

,

δr = 1− 1
2

�

α2+α3
n− 2r + 1

n+ 1

�

− 1
4

�

α2+α3
n− 2r + 1

n+ 1

�2
. (17)

The covariance between Y[r ]r and Y[s]s as given by Thomas (2018) is

Cov(Y[r ]r ,Y[s]s ) =
r (n− s + 1)
(n+ 1)2(n+ 2)

α2
3θ

2
2, 1≤ r < s ≤ n. (18)

The above results for concomitants of the r th order statistic Y[r ]r would be used for
estimating the scale parameter θ2 under various RSS schemes.

3. ESTIMATION OF THE SCALE PARAMETER θ2 BASED ON DIFFERENT RSS
SCHEMES

In this Section, we consider estimation of the scale parameter θ2 of the
CTBE(α2,α3,θ1,θ2) distribution based on RSS, LRSS, URSS, and ERSS schemes under
the assumption that α2 and α3 are known. We discuss some of the modified RSS schemes
in brief and then use these schemes for estimation.
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3.1. Sample selection under various RSS schemes

Stokes (1980) introduces a modified RSS procedure in which only the smallest or the
largest judgment ranked unit is chosen for quantification from each set. The procedure
of the LRSS and URSS scheme begins with randomly choosing n sets each of n units
from the population as in case of RSS. In the LRSS (URSS) scheme the measurement on
Y is made on units for which the measurement on X is smallest (largest) in each of the n
sets. The collection of the sample observations Y[1]1,Y[1]2, . . . ,Y[1]n(Y[n]1,Y[n]2, . . . ,Y[n]n)
is referred as sample under the LRSS (URSS) scheme.

Koshti and Kamalja (2021b) used a variety of ERSS schemes. The samples under the
ERSS scheme can be chosen in different ways, which are based on even or odd sample
size. The ERSS scheme involves randomly choosing n sets with n units each from the
population. For even sample size, from odd numbered samples (i.e. r = 1,3, . . . , n −
1), select the smallest X , and from the even numbered samples (i.e. r = 2,4, . . . , n),
select the largest X . Now measure the Y -variate associated with the X -variate selected
as X(1)1,X(n)2,X(1)3,X(n)4, . . . ,X(1)n−1,X(n)n . Thus Y[1]1,Y[n]2, . . . ,Y[1]n−1,Y[n]n forms a
sample under the ERSS scheme and is denoted by ERSS1.

For odd sample size, from odd numbered samples (i.e. r = 1,3, . . . , n−2), select the
smallest X and from the even numbered samples (i.e.r = 2,4, . . . , n−1), select the largest
X . Now measure the Y -variate associated with the X -variate selected
as X(1)1,X(n)2,X(1)3,X(n)4, . . . ,X(1)n−2,X(n)n−1. This completes the procedure of selection
of n−1 units of the sample. Now the n t h unit of the sample can be chosen from the nth

set by one of the following four ways.

i) The nth unit is the average of the Y variates associated with the smallest and the
largest X in the nth set, i.e., (Y[1]n +Y[n]n)/2.

ii) Choose Y associated with the median X((n+1)/2)n of nth set, i.e., Y[(n+1)/2]n .

iii) Choose the Y variate associated with the smallest X variate in the n t h set, i.e.,
Y[1]n

iv) Choose Y associated with the largest X variate in the nth set, i.e., Y[n]n

The odd sized samples under the ERSS scheme under four different ways are denoted
by ERSSi , i = 2,3,4,5, respectively, and can be represented as follows:

ERSSi =











































Y[1]1,Y[n]2,Y[1]3 . . . ,Y[n]n−1,
Y[1]n+Y[n]n

2 , i = 2

Y[1]1,Y[n]2,Y[1]3 . . . ,Y[n]n−1,Y[(n+1)/2]n , i = 3

Y[1]1,Y[n]2,Y[1]3 . . . ,Y[n]n−1,Y[1]n , i = 4

Y[1]1,Y[n]2,Y[1]3 . . . ,Y[n]n−1,Y[n]n , i = 5.
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3.2. Estimation of scale parameter θ2 based on RSS schemes

Using the samples under different RSS schemes, we wish to recommend the most ef-
ficient estimator of θ2. To obtain unbiased estimators and their variances under these
schemes we use mean, variance, and covariance of COS arising from the CTBE distri-
bution as in Eq. (16) and (18). We obtain the BLUE of θ2 when α2 and α3 are known
using the generalized Gauss-Markov set up due to David and Nagaraja (2004) for the RSS
samples under consideration except the ERSS2 scheme (as the sample units under ERSS2
scheme are not all independent). We discuss in brief the steps required to obtain the
BLUE of θ2 under the RSS schemes.

The mean vector and the dispersion matrix of Y[n], the vector of sample of size n, is
given by

E(Y[n]) = θ2ξ , Cov(Y[n]) = θ
2
2G, (19)

where ξ = [ξ1,ξ2, . . . ,ξn]
′ and G = diag(δ1,δ2, . . . ,δn). The BLUE θ̂2,Scheme of θ2 and

its variance under respective RSS scheme is given by

θ̂2,Scheme = (ξ
′G−1ξ )−1ξ ′G−1Y[n], Var(θ̂2,Scheme) = (ξ

′G−1ξ )−1θ2
2. (20)

In Table 1 we summarize the estimators of θ2 and their variances for the
CTBE(α2,α3,θ1,θ2) distribution under the schemes considered. The estimator of θ2
under SRS is also included and is obtained using the marginal distribution of Y.

Note: We also obtained an estimator of the scale parameter under MRSS, we varied
the set MERSS scheme and found that the usual RSS estimator overperforms with re-
spect to the estimators under these schemes. Hence, we do not report the details of the
MRSS and MERSS scheme here.

To compare all the estimation schemes let ESRS
RSS and ERSS

BLUE be the relative efficiency

of θ̂2,RSS relative to θ̂2,SRS and θ̂2,BLUE relative to θ̂2,RSS respectively. Further let EScheme

be the efficiency of θ̂2,Scheme relative to θ̂2,BLUE (see Table 2) and is given by

EScheme =
Var(θ̂2,BLUE)

Var(θ̂2,Scheme)
. (21)

The numerical evaluations and graphical presentation of these efficiencies with respect
to different sample sizes and association parameters are shown in Section 5.
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TABLE 2
Efficiency comparison of estimators under RSS schemes.

Efficiency Remark

ESRS
RSS =

n
�

1− α2
2 −

α2
2
4

�
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r=1δr

Always > 1

ERSS
BLUE =
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r
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2 )
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r /δr
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EURSS =
nξ 2

n /δn
∑n

r=1 ξ
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4. ESTIMATION OF THE PARAMETERS OF THE CTBE DISTRIBUTION BY
THE METHOD OF MOMENTS

While estimating the scale parameter θ2 under various RSS schemes, we assumed that
the association parameters α2, α3 are known. Accordingly, to obtain the RSS estimates
of θ2 and its variance under a specific scheme, we will need the true values of α2 and
α3. But in fact, as they would be unknown, we need to replace them by appropriate
estimates. The simplest method of estimation is the method of moments. In this Section
we discuss estimation of all the parameters of the CTBE(α1,α2,α3,θ1,θ2) distribution
by the method of moments.

Let (xi , yi ), i = 1,2, . . . , n be a simple random sample from CTBE(α1,α2,α3,θ1,θ2)
distribution. Let m′1 and m′2 be the first and second sample moments, respectively, based
on the y - observations, and let ρ̂ be the sample correlation. The moment estimators of
α1, α2, α3, θ1, θ2 can be obtained through the following steps.
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i) Consider the moment equation corresponding to the ratio of sample moments
based on the y- observations m′2 and m

′2
1 as follows.

2− 3
2α2

1−α2+
α2

2
4

=
m′2
m ′2

1

. (22)

This leads to the following quadratic moment equation in α2.

m′2α
2
2+ 4

�

3
2

m′1
2−m′2

�

α2+ 4
�

m′2− 2m′1
2
�

= 0. (23)

Among two solutions of Eq. (23), let α̂2 be the feasible one. Using similar moment
equations based on moments of the x - observations, the moment estimator α̂1 of
α1 can be obtained.

ii) To obtain the moment estimator of α3, we use the moment equation based on
the correlation between (X ,Y ) and replace α1 and α2 by their respective moment
estimators α̂1 and α̂2.

ρ̂= (α3− α̂1α̂2)[(α
2
1+ 2α1− 4)(α2

2+ 2α2− 4)]−1/2. (24)

The moment estimator α̂3 of α3 along with feasibility condition is given by

α̂3 =























max(−1− α̂1− α̂2,−1+ α̂1+ α̂2) if ρ̂ < a,

ρ̂
Æ

�

α̂2
1+ 2α̂1− 4

� �

α̂2
2+ 2α̂2− 4

�

+ α̂1α̂2 if a ≤ ρ̂≤ b ,

min(1+ α̂1− α̂2, 1− α̂1+ α̂2) if ρ̂ > b ,

where

a =
max(−1− α̂1− α̂2,−1+ α̂1+ α̂2)− α̂1α̂2

Æ

�

α̂2
1+ 2α̂1− 4

� �

α̂2
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�

, (25)

and

b =
min(1+ α̂1− α̂2, 1− α̂1+ α̂2)− α̂1α̂2
Æ

�

α̂2
1+ 2α̂1− 4

� �

α̂2
2+ 2α̂2− 4

�

. (26)

Note that for α1 = 0 and α2 = 0 (i.e. (X ,Y ) ∼MTBE(α3,θ1,θ2)) the above mo-
ment estimator of α3 reduces to the estimator of α3 given by Chacko and Thomas
(2008).
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iii) The moment estimators θ̂1 and θ̂2 of θ1 and θ2, respectively, are obtained as

θ̂1 =
x̄

1− α̂1
2

, θ̂2 =
ȳ

1− α̂2
2

. (27)

The feasibility of all the moment estimators of α1,α2,α3,θ1,θ2 has been checked
through a simulation study in Section 6 and it has been found that they are fairly rea-
sonable to use. These moment estimates can also be used as the initial guess values of
the parameters while obtaining maximum likelihood estimators. Specifically we use
moment estimators of α2 and α3 as substitutes of the real parameters α2 and α3 in the
RSS estimator of θ2 and their variances.

5. NUMERICAL STUDY

This Section presents the comparison of the efficiencies of the estimator of θ2 under the
respective RSS schemes by numerically evaluating them, and it investigates the perfor-
mance of these estimators graphically. We are interested in the study of performance of
estimators with respect to sample size and association parameters. The comparisons are
presented through numerical work and graphical trends in efficiency.

5.1. Efficiency with respect to sample size and α3 when α2 is fixed

We evaluate the efficiencies of the estimators of θ2 numerically based on the RSS, BLUE,
LRSS, URSS, and ERSS schemes for different sample sizes when α2 = −0.25,0.20 and
α3 ∈ (−(1 − α2), (1 − α2)). The efficiencies for α2 = −0.25 are presented in Table 3,
whereas Table 4 shows these efficiencies for α2 = 0.20. The RSS, BLUE, URSS, LRSS,
and ERSS1 schemes are to be compared for even sample sizes, whereas for odd sample
sizes all except the ERSS1 scheme are to be compared.
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TABLE 3
The efficiencies for α2 =−0.25.

n α3 ESRS
RSS ERSS

BLUE ELRSS EURSS EERSS1
EERSS2

EERSS3
EERSS4

EERSS5

3 -0.75 1.0216 1.0011 1.2153 0.8069 − 1.2099 1.0000 1.0792 0.9430
-0.50 1.0095 1.0005 1.1420 0.8679 − 1.2043 1.0000 1.0506 0.9593
-0.25 1.0024 1.0001 1.0700 0.9325 − 1.2011 1.0000 1.0242 0.9783
0.25 1.0024 1.0001 0.9325 1.0700 − 1.2011 1.0000 0.9783 1.0242
0.50 1.0095 1.0005 0.8679 1.1420 − 1.2043 1.0000 0.9593 1.0506
0.75 1.0216 1.0011 0.8069 1.2153 − 1.2099 1.0000 0.9430 1.0792

5 -0.75 1.0290 1.0016 1.3026 0.7577 − 1.1422 1.0182 1.0846 0.9756
-0.50 1.0127 1.0007 1.1961 0.8305 − 1.1245 1.0080 1.0498 0.9767
-0.25 1.0031 1.0002 1.0950 0.9116 − 1.1144 1.0020 1.0216 0.9850
0.25 1.0031 1.0002 0.9116 1.0950 − 1.1144 1.0020 0.9850 1.0216
0.50 1.0127 1.0007 0.8305 1.1961 − 1.1245 1.0080 0.9767 1.0498
0.75 1.0290 1.0016 0.7577 1.3026 − 1.1422 1.0182 0.9756 1.0846

10 -0.75 1.0358 1.0022 1.3901 0.7200 1.0550 − − − −
-0.50 1.0156 1.0008 1.2485 0.7992 1.0239 − − − −
-0.25 1.0039 1.0002 1.1185 0.8933 1.0059 − − − −
0.25 1.0039 1.0002 0.8933 1.1185 1.0059 − − − −
0.50 1.0156 1.0008 0.7992 1.2485 1.0239 − − − −
0.75 1.0358 1.0022 0.7200 1.3901 1.0550 − − − −

15 -0.75 1.0384 1.0024 1.4251 0.7077 − 1.1007 1.0593 1.0903 1.0425
-0.50 1.0167 1.0009 1.2690 0.7882 − 1.0624 1.0256 1.0447 1.0126
-0.25 1.0041 1.0002 1.1275 0.8866 − 1.0412 1.0063 1.0151 0.9990
0.25 1.0041 1.0002 0.8866 1.1275 − 1.0412 1.0063 0.9990 1.0151
0.50 1.0167 1.0009 0.7882 1.2690 − 1.0624 1.0256 1.0126 1.0447
0.75 1.0384 1.0024 0.7077 1.4251 − 1.1007 1.0593 1.0425 1.0903

20 -0.75 1.0397 1.0025 1.4439 0.7017 1.0728 − − − −
-0.50 1.0173 1.0010 1.2800 0.7826 1.0313 − − − −
-0.25 1.0043 1.0002 1.1322 0.8831 1.0077 − − − −
0.25 1.0043 1.0002 0.8831 1.1322 1.0077 − − − −
0.50 1.0173 1.0010 0.7826 1.2800 1.0313 − − − −
0.75 1.0397 1.0025 0.7017 1.4439 1.0728 − − − −
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TABLE 4
The efficiencies for α2 = 0.20.

n α3 ESRS
RSS ERSS

BLUE ELRSS EURSS EERSS1
EERSS2

EERSS3
EERSS4

EERSS5

3 -0.8 1.0309 1.0031 1.1795 0.8535 − 1.2118 1.0000 1.0708 0.9622
-0.6 1.0171 1.0013 1.1355 0.8827 − 1.2070 1.0000 1.0512 0.9669
-0.4 1.0075 1.0005 1.0900 0.9179 − 1.2032 1.0000 1.0327 0.9753
-0.2 1.0019 1.0001 1.0445 0.9575 − 1.2008 1.0000 1.0155 0.9865
0.2 1.0019 1.0001 0.9575 1.0445 − 1.2008 1.0000 0.9865 1.0155
0.4 1.0075 1.0005 0.9179 1.0900 − 1.2032 1.0000 0.9753 1.0327
0.6 1.0171 1.0013 0.8827 1.1355 − 1.2070 1.0000 0.9669 1.0512
0.8 1.0309 1.0031 0.8535 1.1795 − 1.2118 1.0000 0.9622 1.0708

5 -0.8 1.0416 1.0061 1.2530 0.8430 − 1.1520 1.0292 1.0890 1.0070
-0.6 1.0230 1.0022 1.1897 0.8609 − 1.1345 1.0153 1.0581 0.9924
-0.4 1.0101 1.0007 1.1245 0.8971 − 1.1216 1.0065 1.0335 0.9880
-0.2 1.0025 1.0001 1.0606 0.9447 − 1.1137 1.0016 1.0142 0.9911
0.2 1.0025 1.0001 0.9447 1.0606 − 1.1137 1.0016 0.9911 1.0142
0.4 1.0101 1.0007 0.8971 1.1245 − 1.1216 1.0065 0.9880 1.0335
0.6 1.0230 1.0022 0.8609 1.1897 − 1.1345 1.0153 0.9924 1.0581
0.8 1.0416 1.0061 0.8430 1.2530 − 1.1520 1.0292 1.0070 1.0890

10 -0.8 1.0516 1.0102 1.3252 0.8696 1.0974 − − − −
-0.6 1.0284 1.0033 1.2428 0.8525 1.0476 − − − −
-0.4 1.0124 1.0009 1.1577 0.8816 1.0197 − − − −
-0.2 1.0031 1.0002 1.0757 0.9338 1.0047 − − − −
0.2 1.0031 1.0002 0.9338 1.0757 1.0047 − − − −
0.4 1.0124 1.0009 0.8816 1.1577 1.0197 − − − −
0.6 1.0284 1.0033 0.8525 1.2428 1.0476 − − − −
0.8 1.0516 1.0102 0.8696 1.3252 1.0974 − − − −

15 -0.8 1.0553 1.0121 1.3535 0.8955 − 1.1231 1.1120 1.1398 1.1092
-0.6 1.0304 1.0038 1.2637 0.8531 − 1.0842 1.0523 1.0721 1.0447
-0.4 1.0133 1.0010 1.1706 0.8768 − 1.0562 1.0212 1.0335 1.0139
-0.2 1.0033 1.0002 1.0814 0.9299 − 1.0398 1.0051 1.0107 1.0006
0.2 1.0033 1.0002 0.9299 1.0814 − 1.0398 1.0051 1.0006 1.0107
0.4 1.0133 1.0010 0.8768 1.1706 − 1.0562 1.0212 1.0139 1.0335
0.6 1.0304 1.0038 0.8531 1.2637 − 1.0842 1.0523 1.0447 1.0721
0.8 1.0553 1.0121 0.8955 1.3535 − 1.1231 1.1120 1.1092 1.1398

20 -0.8 1.0573 1.0132 1.3686 0.9145 1.1416 − − − −
-0.6 1.0315 1.0040 1.2749 0.8545 1.0647 − − − −
-0.4 1.0137 1.0011 1.1775 0.8745 1.0260 − − − −
-0.2 1.0034 1.0002 1.0845 0.9279 1.0062 − − − −
0.2 1.0034 1.0002 0.9279 1.0845 1.0062 − − − −
0.4 1.0137 1.0011 0.8745 1.1775 1.0260 − − − −
0.6 1.0315 1.0040 0.8545 1.2749 1.0647 − − − −
0.8 1.0573 1.0132 0.9145 1.3686 1.1416 − − − −
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The efficiencies in Table 3 and Table 4 are used to get an idea about the gain in
efficiency of the estimators of θ2. The results indicate that it all depends on the sample
size and the association parameters. We summarize the performance of the estimators
in the following.

i) There is notable gain in efficiency of the estimator of θ2 under the LRSS scheme
over the BLUE under the RSS scheme as the sample size increases.

ii) For even sample sizes, the BLUE based on the LRSS (URSS) scheme outperforms
the BLUE under the RSS, URSS (LRSS) and ERSS1 schemes for α3 < 0 (α3 > 0).
For n =5, 10, 15 and 20, the gain in efficiency for θ̂2,LRSS over θ̂2,BLUE is almost
30%, 39%, 43% and 44%, respectively, when α2 =−0.25 and α3 =−0.75, whereas
the same amount of gain in efficiency for θ̂2,URSS over θ̂2,BLUE is observed with
respect to n when α2 =−0.25 and α3 = 0.75.

iii) When the sample size is odd, no particular sampling scheme among the LRSS,
URSS, ERSSi , i = 2,4,5 schemes is found to be the most efficient unconditionally.

iv) It is observed that the BLUE based on LRSS/URSS and ERSSi , i = 2,4,5 are close
competitors, and the performance of efficiencies under the respective sampling
schemes change with respect to the association parameters and the sample size. In
most cases it is observed that for α3 < 0 (α3 > 0), the LRSS (URSS) scheme ranks
first followed by the ERSS2 scheme (except n = 3).

v) For the same values of n and α2, ERSSi , i = 2,4,5 outperforms URSS/LRSS for
some values of α3, whereas URSS/LRSS outperforms ERSSi for other values of
α3. No specific condition on parameters is observed for the performance of these
schemes one over the other.

In the following, we will examine the trends in the efficiencies of the estimators under
various schemes with respect to n, α2 and α3 graphically.

5.2. Efficiency across α3 when the sample size and α2 are fixed

Figure 3 presents the trends in efficiencies of θ̂2,LRSS, θ̂2,URSS and θ̂2,ERSS1
over θ̂2,BLUE

across α3 when n = 6 and α2 = −0.2. As the sample size is even, here the ERSSi , i =
2,3,4,5 schemes are not under consideration.
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Figure 3 – Efficiencies ELRSS, EURSS and EERSS1
for n = 6 and α2 =−0.2.

Figure 4 presents the trends in efficiencies of θ̂2,ERSSi
, i = 2,3,4,5 along with θ̂2,LRSS,

θ̂2,URSS over θ̂2,BLUE across α3 for n = 9 and α2 = 0.2.

Figure 4 – Efficiencies ELRSS, EURSS and EERSSi
, i = 2,3,4,5 for n = 9 and α2 = 0.2.
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Here for α3 < 0, ELRSS decreases quadratically as α3 increases. The behavior of EURSS

is exactly opposite to that of ELRSS with respect toα3 as Var(θ̂2,LRSS)
�

�

α3
=Var(θ̂2,URSS)

�

�

−α3
.

From Figure 4 it can be observed that for α3 <−0.2 (α3 > 0.2), the estimator of θ2 under
LRSS (URSS) scheme outperforms all other schemes when α2 = 0.2. We observe that
efficiencies EERSSi

, i = 2,3,4,5 vary in a small interval. Their performance is presented
separately in Figure 5 for the same values of the parameters as in Figure 4.

Figure 5 – Efficiencies EERSSi
, i = 2,3,4,5 for n = 9 and α2 = 0.2.

From Figure 5, observe that the estimator of θ2 under ERSS2 is more efficient than
ERSSi , i = 3,4,5. The efficiencies EERSSi

, i = 2,3,4,5 increase quadratically as |α3| in-
creases. The behavior of EERSS4

is exactly opposite to that of EERSS5
with respect to α3. It

can also be observed that the rank of efficiencies of the estimators under these sampling
schemes may change for different values of n, α2 and α3.

5.3. Efficiency of θ̂2,LRSS and θ̂2,U RSS across n and α3

As the LRSS and URSS schemes are conditionally best performing, we study their per-
formance in detail. The variation in efficiencies of θ̂2,LRSS and θ̂2,URSS over θ̂2,BLUE with
respect to n and α3 are presented in Figure 6 and 7, respectively, for α2 =−0.25. These
graphs help us to study the effect of n and α3 jointly on the efficiencies ELRSS and EURSS
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for fixed α2. The efficiency performance of θ̂2,LRSS for α3 < 0 is exactly the same as

that of the performance of θ̂2,URSS for α3 > 0, thus the efficiency performances ELRSS
and EURSS are complementary to each other. Further both the efficiencies ELRSS and
EURSS increase quadratically with respect to n and stabilize for larger n. Also, for α3 < 0
(α3 > 0), ELRSS (EURSS) increases (decreases) irrespective of n for given α2.

Figure 6 – Efficiency ELRSS of θ̂2,LRSS over θ̂2,BLUE across n and α3 when α2 =−0.25.

To visualize the gain in efficiencies of θ̂2,LRSS and θ̂2,URSS over θ̂2,BLUE with respect
to α2 and α3 simultaneously, we present surface plots of ELRSS and EURSS for n = 7 in
Figure 8.
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Figure 7 – Efficiency EURSS of θ̂2,URSS over θ̂2,BLUE across n and α3 when α2 =−0.25.

Figure 8 – Efficiency ELRSS (EURSS) of θ̂2,LRSS (θ̂2,URSS) over θ̂2,BLUE with respect to α2 and α3 when
n = 7.
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The trends in efficiencies ELRSS and EURSS with respect to α2 and α3 can be seen
marginally as well as jointly in Figure 8.

5.4. Efficiency of θ̂2,ERSS2
and θ̂2,ERSS4

over θ̂2,LRSS and θ̂2,URSS

We observe that for odd sample sizes, the estimators θ̂2,LRSS, θ̂2,URSS, θ̂2,ERSSi
, i = 2,4,5

compete for efficiency performance. Further as Var(θ̂2,ERSS4
)
�

�

α3
= Var(θ̂2,ERSS5

)
�

�

−α3
,

among θ̂2,ERSS4
and θ̂2,ERSS5

, we consider only θ̂2,ERSS4
for study. Hence, we consider ef-

ficiencies of θ̂2,ERSS2
and θ̂2,ERSS4

over θ̂2,LRSS and θ̂2,URSS for further study. Specifically,
the efficiency performance with respect to α2 and α3 for given sample size is of interest.
Figure 9 and Figure 10 present the efficiency performance of θ̂2,ERSS2

and θ̂2,ERSS4
over

θ̂2,LRSS, θ̂2,URSS for n = 9 respectively.

Figure 9 – Efficiency of θ̂2,ERSS2
over θ̂2,LRSS and θ̂2,URSS for n = 9.
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Figure 10 – Efficiency of θ̂2,ERSS4
over θ̂2,LRSS and θ̂2,URSS for n = 9.

Figure 9 and Figure 10 help to understand the over- or underperformance of θ̂2,ERSS2

and θ̂2,ERSS4
over θ̂2,LRSS and θ̂2,URSS with respect to α2 and α3 for given sample size.

These findings are usually affected by the sample size and association parameters.

6. SIMULATION FROM THE CTBE (α2,α3,θ1,θ2) DISTRIBUTION

The simulation study from the CTBE(α2,α3,θ1,θ2) distribution will be helpful to verify
and illustrate the developed results. But presently no software is known to provide sim-
ulations from the CTBE distribution. Hence to overcome this difficulty, we develop an
algorithm to simulate data from the CTBE(α2,α3,θ1,θ2) distribution and implement it
in Matlab. We develop a Matlab function rctbe(α2,α3,θ1,θ2, n) that generates a random
sample of size n from the CTBE(α2,α3,θ1,θ2) distribution. It is based on the following
algorithm.

i) Simulate u0 from the U (0,1) distribution and use it as value of F (x) = 1− e−x/θ1 .
We get a realization of X by inverting F (x) = u0 as x0 =−θ1log(1− u0).

ii) Generate another U (0,1) random number v0 and use it as a simulated value of
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F (y|x0). The distribution function of Y |X = x is

F (y|x) =
�

1− e
y
θ2

�h

1+α2e
−y
θ2 +α3

�

2e
−x
θ1 − 1

�

e
−y
θ2

i

. (28)

Now solve the equation v0 =
�

1− e
y
θ2

�h

1+α2e
−y
θ2 +α3

�

2e
−x0
θ1 − 1

�

e
−y
θ2

i

, for y,

which leads to two solutions. Among these two solutions choose y such that
0< y <∞ and let it be y0.

iii) The pair (x0, y0) represents a sample from CTBE(α2,α3,θ1,θ2) distribution.

To check the validity of simulation methodology developed, samples of sizes 100 and
1000 are generated from the CTBE(α2,α3, 1, 1) distribution for (α2,α3) = (±0.1,±0.9)
using the rctbe() function in Matlab, and various sample quantities are compared with
the corresponding population quantities. The results are summarised in Table 5.

TABLE 5
Sample and population quantities associated with the simulated data.

(α2,α3) Population quantities Sample quantities n = 100 n = 1000

(0.1,0.9) E(X ) 1 X 0.9303 1.0108
E(Y ) 0.9500 Y 1.0573 0.9645

Var(X ) 1 S2
X 0.8377 1.0355

Var(Y ) 0.9475 S2
Y 1.2624 0.9954

ρ 0.2312 r 0.5221 0.2452

(−0.1,0.9) E(X ) 1 X 0.9226 0.9966
E(Y ) 1.0500 Y 1.2158 1.0978

Var(X ) 1 S2
X 0.7505 1.0302

Var(Y ) 1.0475 S2
Y 1.0607 1.1613

ρ 0.2198 r 0.1891 0.2086

(0.1,−0.9) E(X ) 1 X 0.9281 1.0005
E(Y ) 0.9500 Y 0.9974 0.9480

Var(X ) 1 S2
X 0.8647 0.9952

Var(Y ) 0.9475 S2
Y 0.7314 0.9099

ρ -0.2312 r -0.1583 -0.2383

(−0.1,−0.9) E(X ) 1 X 0.9635 0.9987
E(Y ) 1.0500 Y 1.0257 1.0788

Var(X ) 1 S2
X 0.6830 1.0008

Var(Y ) 1.0475 S2
Y 0.9895 1.0327

ρ -0.2198 r -0.2360 -0.2254
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Now we present one more simulation study which shows the reasonability of the
estimators obtained under the method of moments in Section 4 and provide support to
the use of the moment estimates as substitutes of population parameters when needed.
The moment estimators of all parameters of the CTBE(α2,α3,θ1,θ2) distribution pro-
posed in Section 4 are evaluated for samples of sizes 500 and 1000 for some values of
α2,α3,θ1,θ2. The results are presented in Table 6.

TABLE 6
Moment estimates of the parameter of the CTBE(α2,α3,θ1,θ2) distribution for simulated data.

n True value of parameter Moment estimates of parameters

α2 α3 θ1 θ2 α̂2 α̂3 θ̂1 θ̂2

500 0.2 0.8 1 1 0.2963(0.9047) 0.7037 0.9758 1.0681
0.1 -0.9 2 2.5 0.2455(0.9248) -0.7545 1.9848 2.5925

1000 0.2 0.8 1 1 0.2188(0.9346) 0.7491 0.9417 0.9798
0.1 -0.9 2 2.5 0.2237(0.9328) -0.7763 2.1159 2.592

The values in the bracket from Table 6 indicate an infeasible solution of the quadratic
moment equation for α̂2 in Eq. (23) for respective samples. The next Section is devoted
to illustrating the performance of the proposed estimators of θ2 under different RSS
schemes through a simulation study and real-life data.

7. AN APPLICATION

This Section illustrates applications of the developed results to simulated and real-life
data. The performance of the proposed estimators based on simulated data from the
CTBE(α2,α3,θ1,θ2) distribution under the RSS, LRSS, URSS, and ERSS1 schemes is
demonstrated. Further, the RSS sampling schemes are used to estimate the mean of min-
imum mercury concentration in sampled fish using mercury concentration data under
the assumption that (X ,Y )∼ CTBE(α2,α3,θ1,θ2) distribution.

7.1. Estimation based on simulated data

To compare the performance of estimators under various RSS schemes, we perform a
simulation study. The following steps are followed to get the results.

• Simulate 5000 pairs of observations from the distribution
CTBE(α2 = α

0
2,α3 = α

0
3,θ1 = θ

0
1,θ2 = θ

0
2) using the rctbe() function developed

in Matlab and treat it as a population.

• From this populations of size 5000, generate RSS, LRSS, URSS, and ERSS samples
of size n each, using the RSSampling package (Sevinc et al., 2019) in R.
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• Estimate θ2 and its variance for each of the RSS, LRSS, URSS, and ERSS samples
under the assumption that (X ,Y )∼ CTBE(α0

2,α0
3,θ0

1,θ2).

The experiments are performed for (α0
2,α0

3,θ0
1,θ0

2) = (−0.1,0.9,1,1), (−0.1,−0.9,1,1)
and (−0.1,0.9,1,2) with n = 10. Results are reported in Table 7.

TABLE 7
The Estimates of θ2 under different RSS schemes for simulated data.

(X ,Y )∼ CTBE(α2,α3,θ1,θ2) Scheme θ̂2 Var(θ̂2)

(-0.1,0.9,1,1) RSS 1.62 0.24
ERSS1 1.30 0.35
LRSS 1.36 0.23
URSS 1.19 0.09

(-0.1,-0.9,1,1) RSS 1.16 0.12
ERSS1 1.25 0.19
LRSS 0.98 0.06
URSS 0.93 0.11

(-0.1,0.9,1,2) RSS 1.79 0.29
ERSS1 1.25 0.33
LRSS 1.38 0.24
URSS 1.80 0.20

The results shows that for α3 > 0, θ̂2,URSS has the smallest variance and for

α3 < 0, θ̂2,LRSS has the smallest variance. This confirms the outcomes of the efficiency
performance study.

7.2. Estimation of mean minimum mercury concentration in sampled fish

We consider a data set used by Lange et al. (1993) who studied the influence of water
chemistry on mercury concentration in largemouth bass from 53 different Florida lakes.
The data consist of amount of alkalinity (mg/l), calcium (mg/l), chlorophyll (mg/l) etc.
in each of the water samples. Then the sample of fishes was taken from each lake to
measure the minimum mercury concentration (µg/g). Lange et al. (1993) observed that
the bio-accumulation of mercury in the largemouth bass was strongly influenced by the
chemical characteristics of the lakes. In the present study we consider bivariate data,
namely the amount of alkalinity (mg/l) in water sample as variable X and the minimum
mercury concentration in the sampled fish as variable Y. These data are also used by
Mohsin et al. (2014) and Chacko (2017). Mohsin et al. (2014) fitted a bivariate expo-
nential distribution to the data while Chacko (2017) assumed (X ,Y ) to have an MTBE
distribution. We assume (X ,Y ) to follow the CTBE(α2,α3,θ1,θ2) distribution with
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the objective to estimate the scale parameter θ2 associated with Y and hence to estimate
the mean minimum mercury concentration in largemouth bass from different Florida
lakes. We draw random samples of size 6 from the data set using RSSampling package
in R using the RSS, LRSS, and ERSS1 schemes. The samples under the RSS schemes are
given in Table 8.

TABLE 8
Samples under various RSS schemes.

Scheme Sample values for y-variable

RSS 0.31 0.37 0.26 0.04 0.31 0.07
LRSS 0.31 0.31 0.31 0.36 0.25 0.30
ERSS1 0.31 0.04 0.31 0.04 0.25 0.07

The estimator of θ2 under different RSS schemes is a function of α2 and α3, which are
unknown in this situation. Hence, we obtain moment estimates of α2 and α3 based on
all available data as proposed in Section 4. These give α̂2 =−0.7759 and α̂3 =−0.2241.

We also wish to compare the estimators of θ2 under different RSS schemes when
(X ,Y ) ∼ MTBE(α3,θ1,θ2) (i.e. CTBE(0,α3,θ1,θ2)). Under this assumption we need
an estimator of α3. We use the estimator of α3 given by Chacko and Thomas (2008).
Accordingly, α̂3 =−1 as corr(X ,Y ) =−0.5254. Table 9 shows the estimates of θ2, when
(X ,Y )∼CTBE(α2,α3,θ1,θ2) and (X ,Y )∼MTBE(α3,θ1,θ2) under the RSS, LRSS and
ERSS1 schemes.

TABLE 9
Estimate of θ2 under different RSS schemes for bivariate data.

Assumption about distribution Scheme Estimator
of θ2

Estimate
of θ2

Variance
/θ2

2

Estimated
mean min.
mercury
conc.

(X ,Y )∼ CTBE(α2,α3,θ1,θ2) RSS θ̂2,RSS 0.17 0.11 0.23

LRSS θ̂2,LRSS 0.21 0.10 0.29

ERSS1 θ̂2,ERSS1
0.13 0.17 0.18

(X ,Y )∼MTBE(α3,θ1,θ2) RSS θ̂2,RSS 0.23 0.16 0.23

(i.e. CTBE(0,α3,θ1,θ2)) LRSS θ̂2,LRSS 0.23 0.11 0.23

ERSS1 θ̂2,ERSS1
0.17 0.20 0.17

The results in Table 9 are consistent with those for simulated data. That is, among
the RSS, LRSS and ERSS1 schemes, θ̂2,LRSS has the smallest variance. This confirms the
conclusion that for even sample sizes, the LRSS scheme gives the most efficient estima-
tor of θ2 when α3 < 0. Further, observe that the estimates of θ2 under respective RSS
schemes are better in terms of variances when the variables (X ,Y ) are assumed to have
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the CTBE distribution than that of when they are assumed to have the MTBE distribu-
tion.

8. CONCLUSIONS

This paper considers the problem of estimation of scale parameter associated with one
variate of CTBE distribution under various RSS schemes. Some important aspects of
CTBE distribution are obtained, namely its COS, and moment estimators of all param-
eters. The core contribution of the paper is estimation of the scale parameter associ-
ated with a study variable under different RSS schemes, namely RSS, LRSS, URSS, and
ERSS. The efficiency performance of the proposed estimators is presented numerically
and variation in efficiencies with respect to association parameters and sample size is
presented graphically. The proposed estimators’ performance is also studied through a
simulation study and implemented to real-life data. The other important contribution
of the paper is an algorithm for simulation from the CTBE distribution and its imple-
mentation in software. The simulation is extensively used to verify the results developed
and to confirm the feasibility of the proposed moment estimators.
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