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1. INTRODUCTION

The standard survival analysis techniques use an assumption that all subjects in the study
population is susceptible to the event of interest and will eventually experience this event
if the follow up time is more. But in certain situations, all of the study subjects do not
experience the event of interest even after extended follow up time. For example, in drug
trials to test the effectiveness of drugs, it is seen that recurrence of the disease does not
happen in certain patients due to the influence of the drug. These disease free individu-
als, or more generally, the event free individuals in an observational window are said to
be immune or cured. The presence of immune or cured subjects in a data set is usually
suggested by a Kaplan-Meier plot of the survival function, which shows a long and stable
plateau with heavy censoring at the extreme right of the plot. Cure models are applied
in circumstances where immune are present in a time to event analysis. In studies based
on cure models, study subjects are classified into two groups, say, sensitive or susceptible
and insensitive or immune. In cure models, the survival distribution of failure time for
the uncured patients are studied and the said fraction is taken into account. The cure
models are applied in many areas like biomedical studies, finance, criminology, demog-
raphy, manufacturing, and industrial reliability. The analysis of cure models have been
done by many researchers in literature. Boag (1949) first proposed the cure model for
the analysis of breast cancer data. He proposed two components in his mixture model,
the proportion of immune in the population and latency distribution representing the
survival experience of the susceptible population. Nelson (2003) applied cure models to
study the association between variation of temperature and length of life of electric mo-
tors. Struthers and Farewell (1989) explained the progression of AIDS with cure model
in the presence of covariates. For detailed applications in cure models, one can refer to
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Peng et al. (1998), Yu et al. (2004), Mazucheli et al. (2009), Roman et al. (2012), Ortega
et al. (2015).

The regression model in survival analysis quantifies the effect of a set of explanatory
variables on survival of individuals under study. Apart from ordinary survival regres-
sion models, the cure rate regression models allow the chance of occurrence of long-term
survivors in the data. These models simultaneously useful to study the effect of covari-
ates on the survival time of study subjects and to estimate the fraction of individuals
who are free from the event of interest. In cure models, the failure time distribution of
uncured individuals (latency) can be modeled either by parametric or semi-parametric
proportional hazards models. Yamaguchi (1992) proposed a regression model to study
inter-firm job mobility in Japan. The author used generalised gamma distribution to
model the latency part and logistic function to model the cure fraction in terms of co-
variates. Cure models based on Weibull distribution was explained by Yusuf and Bakar
(2016). Naseri et al. (2018) explained the application of cure rate model based on gen-
eralized modified Weibull distribution. The generalized Weibull distribution has non
monotone hazard rate property, which gives its importance in lifetime studies. Even
though various forms of generalised Weibull distributions confirmed its applicability
in lifetime data modeling, nobody has studied the proposed generalised Weibull distri-
bution for the regression analysis of lifetime data with cured proportion so far. Mo-
tivated by this, we propose generalised Weibull distribution developed by Mudholkar
et al. (1996) for the regression analysis of cure models. The purpose of the present study
is to describe the applicability of this distribution in cure rate regression models.

The rest of the paper is organized as follows. We introduce the cure model based
on generalised Weibull distribution in Section 2. In Section 3, we explain the likelihood
function and its inferential procedures. Section 4 contains the simulation study to assess
influence of sample size on bias of estimates. A data analysis is carried out in Section 5
to illustrate the goodness of fit and usefulness of the model. Conclusion of the study is
given in Section 6.

2. THE MODEL

Let T be a non negative random variable representing time to occurrence of the event.
Define the indicator variable Y as

Y =
¨

1, if the event occurs,
0, otherwise.

(1)

For Y = 1, the time T has the probability density function f (t |Y = 1) and survival
function S(t |Y = 1).

Assume that the distribution of lifetime for the susceptible population is generalised
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Weibull distribution developed by Mudholkar et al. (1996) with survival function

S(t |Y = 1) =
�

1−
� t
ν

�α

θ

�θ

, α, ν > 0, (2)

where, the parameter θ varies from −∞ to +∞ and the range of the random variable
T is (0,∞) for −∞<θ≤ 0 and (0, νθ

1
α ) for 0<θ <∞.

It is shown that for the generalised Weibull distribution family (2), the hazard func-
tion h(t ) is:

(a) bathtub shaped for 0<α < 1 and θ > 0,

(b) monotone decreasing for 0<α≤ 1 and θ≤ 0,

(c) unimodal for α > 1 and θ < 0,

(d) monotone increasing for α≥ 1 and θ≥ 0, and

(e) constant for α= 1 and θ→∞.

This flexibility allow us to use the model in wide range of applications.
Let Z be a (p + 1)× 1 vector of covariates. The survival function for the regression

model with regression coefficient β is defined as

S(t |Y = 1,Z = z) =



1−

�

t
eβ′ z

�α

θ





θ

. (3)

Under logistic regression assumption for incidence part of the model, the probability
of occurrence of the event is defined as

p = Pr(Y = 1) = p(b , z) =
e b ′z

1+ e b ′z
(4)

and
1− p = 1− p(b , z) =

1
1+ e b ′z

, (5)

where b = (b0, b1, ...bp ) is a vector to model the effect of covariates in the incidence part.
Then, the marginal survival function of T is

S(t |z) = 1− p + p



1−

�

t
eβ′ z

�α

θ





θ

, (6)

where t <∞. Note that as t →∞, S(t |z)→ 1− p.
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3. ESTIMATION

In regression modeling, the researcher’s primary interest is to estimate the regression
parameters of the model. Denote the observations for the i ’th individual be (ti ,δi , zi ),
i = 1, ...n, where ti is observed (survival) time or the censoring time and δi is the in-
dicator function given by δi = 1, if ti is uncensored and δi = 0, otherwise.We assume
that the censoring is statistically independent of Y.

Without loss of generality, we assume that t1, ...tm are the survival times and
tm+1, ...tm+n are censored times. Obviously, the random variable Y=1 for the first m
individuals and is unknown for the remaining n−m individuals. Then the likelihood
function for cure model corresponding to the observations (ti ,δi , zi ), i = 1, ...n is

L= L1× L2, (7)

where

L1 =
m
∏

i=1

pi f (ti |Y = 1, zi ) (8)

and

L2 =
n
∏

m+1

(1− pi )+ pi S(ti |Y = 1, zi ). (9)

The maximum likelihood estimators of the parameters are found by EM algorithm
(Dempster et al., 1977) since partial information of random variable Y is missing. The
estimation of parameters is carried out using the optimisation function NArgMax in
Wolfram Mathematica software. We use the notations L for likelihoods and l for log-
likelihoods through out the paper.

3.1. EM Algorithm

The following step by step procedure is constituted in the estimation of parameters in
EM algorithm.

Step 1 - The E step in the EM algorithm compute the conditional expectation of the
complete log-likelihood with respect to Y ’s, given the observed data and current
estimates of the parameters.

Let the observed data be {O = Observed y’s, (ti ,δi , zi ); i = 1, ..., n}. Now us-
ing Eq. (3) and Eq. (4), calculate the missing observations w1 and w2, which are
the conditional probabilities that the individuals belong to immune group or sus-
pected group given that the individuals survived up to the time t, respectively,
as
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w1 = Pr(Y = 1|T > t )

=
p(b , zi )S(ti |Y = 1, zi )

1− p(b , zi )+ p(b , zi )S(ti |Y = 1, zi )
(10)

and

w2 = Pr(Y = 0|T > t )

=
1− p(b , zi )

1− p(b , zi )+ p(b , zi )S(ti |Y = 1, zi )
. (11)

Then, by including the missing observations, the complete log-likelihood func-
tion can be written as

l = l1+ l2, (12)

where

l1 =
m
∑

i=1

log pi +
n
∑

i=m+1

w2 log(1− pi )+
n
∑

i=m+1

w1 log pi (13)

and

l2 =
n
∑

i=m+1

w1 log



1−

�

t/eβ
′z
�α

θ





θ

+
m
∑

i=1

log
�

αtα−1
�

1
eβ′z

�α−1�


1−

�

t/eβ
′z
�α

θ





θ−1

. (14)

Step 2 - M-step maximizes the likelihood function through Eq. (12) with respect to the
parameters and find out the maximum likelihood estimates of these parameters. If
α(k),β(k) and b (k) are estimates of α,β and b at the k t h iterate, then the estimates
at (k + 1)t h iterate, α(k+1), β(k+1) and b (k+1) can be obtained by maximizing the
likelihood function with respect to each parameter α, β and b respectively for
fixed values of w1 and w2. Then at the (k + 1)t h stage,

w (k+1)
1 =

P
�

b (k), zi

�

S (k)(ti |Y = 1, zi )

1− P
�

b (k), zi

�

+ P
�

b (k), zi

�

S (k)(ti |Y = 1, zi )
(15)

and

w (k+1)
2 =

1− P
�

b (k), zi

�

1− P
�

b (k), zi

�

+ P
�

b (k), zi

�

S (k)(ti |Y = 1, zi )
. (16)
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Step 3 - The E-Steps and M-Steps are repeated alternatively until the difference between
parameter estimates of successive iterations changes by an arbitrarily small quan-
tity.

3.2. Asymptotic property of estimators

Let ψ̂= (b̂ , β̂, θ̂, α̂) denote the maximum likelihood estimates of ψ= (b ,β,θ,α). Now
consider the following regularity conditions.

(a) The first and second order derivatives with respect to ψ viz., ∂ ł
∂ ψ and ∂ 2ł

∂ ψ2 exist and
are continuous functions of ψ in a range R (including the true value ψ0 of the
parameter) for almost all t . For every ψ in R,

�

�

�

∂ ł
∂ ψ

�

�

� < H1(t ) and
�

�

�

∂ 2ł
∂ ψ2

�

�

� < H2(t ),
where H1(t ) and H2(t ) are integrable functions over (−∞,∞).

(b) The third order derivative with respect to ψ, ∂ 3ł
∂ ψ3 exists such that

�

�

�

∂ 3ł
∂ ψ3

�

�

� < M (t ),
where E[M (t )]<K and K is a positive quantity.

(c) For every ψ in R, E
�

− ∂ 2ł
∂ ψ2

�

=
∞
∫

−∞

�

− ∂ 2ł
∂ ψ2

�

Ld t = I (ψ) is finite and non-zero.

(d) The range of integration is independent of ψ. This assumption is to make differen-
tiation under the integral sign valid.

Under the above mentioned regularity conditions, as n → ∞,
p

n(ψ− ψ̂)→N4(0, I−1(ψ)), where the Fisher information matrix I (ψ) can be replaced

by a consistent estimate I (ψ̂) =
�

−∂ 2 l
∂ ψi∂ ψ j

�

ψ=ψ̂
. The observed information matrix is ob-

tained by applying the method proposed by Louis (1982).
The asymptotic normality property of maximum likelihood estimates is useful to de-

termine the confidence interval of each parameter in the parametric set ψ= (b ,β,θ,α)
and for survival function of the model.

Let b̂ is the maximum likelihood estimator (MLE) of b . Then MLE of cured propor-
tion 1− p = 1

1+e b̂ ′ z
is 1− p̂=g (b̂ )= 1

1+e b̂ ′ z
is also asymptotically normally distributed by

the invariance property of maximum likelihood estimators. The 95% Confidence inter-
val of the probability of cure can be estimated using the formula (1− p̂)±1.96SE(1− p̂).

REMARK 1. In regression analysis, it is often required to test the statistical significance
of regression coefficients in the model. ie, to test the null hypothesis H0 : β = 0 against the
alternative H0 : β ̸= 0, The likelihood ratio test statistic is −2 logΛ = 2Lo g L(β̂, α̂, θ̂)−
2Lo g L(0, α̂, θ̂) which follows Chi-square distribution with p degrees of freedom where p is
number of parameters of the model.
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REMARK 2. The Akaike information criterion (AIC) is a procedure based on likelihood
function that can be used for comparing statistical models for a given set of data. Let L̂ be the
maximum value of the likelihood function for the model and let k be the number of estimated
parameters in the model. Then the AIC value of given model is AIC= 2k−2 ln(L̂). If more
than one models are given, AIC values can be computed and the model with minimum AIC
value is selected as preferred model for the given set of data.

4. SIMULATION STUDY

Simulation studies are conducted to evaluate the performance of the proposed model.
The data are generated from the model, with probability of cure defined as
1− p = 1

1+exp(b0+b1 z) .

For the purpose of simulation, the following step by step algorithm is used to gen-
erate data from the model and estimation of parameters.

1. Determine the parameter values b0, b1, β, θ and α.

2. For the i th subject, generate the covariate zi from Uniform (−0.5,0.5).

3. For the i th subject, generate the probability of cure 1− pi .

4. For the i th subject, generate the random variable Ci from Uniform (0,c ), where
c is a constant set to control the proportion of censored observations.

5. For the i th subject, generate Ti from the model.

6. For the i th subject, find ti = min(Ti ,Ci ,τ),where τ is the maximum follow up
period, τ = 10. If ti = Ti , set δi = 1, otherwise δi = 0.

7. The data set for the i th subject is (ti , zi ,δi ), i = 1, . . . , n.

8. Maximise the likelihood function with the generated data sets using EM algorithm
as described in Section 3.1.

Observations are simulated for various sample sizes and for two sets of parametric
values of b ,β,θ and α. Based on 500 simulations, the maximum likelihood estimates of
the parameters are calculated for mild censored and heavy censored data. Average levels
of mild and heavy censoring schemes are 16.8%, 41% and 21.5%, 40.5%, respectively,
for two given parametric values. The true values, absolute bias, mean squared error
(MSE) and average of estimated standard errors (ASE) based on 500 simulated data sets
for sample sizes of 50, 100 and 200 are given in Table 1. It shows that the estimates are
approximately unbiased and the bias increases as censoring changes from mild to heavy.
Also, as sample size increases, both bias and MSE decrease.
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TABLE 1
Absolute Bias, MSE and ASE of maximum likelihood estimates of b0,b1, β, θ and α.

Sample True Mild Heavy

size Parameter value Bias MSE ASE Bias MSE ASE

50 b0 1.0 0.055 0.019 0.169 0.111 0.061 0.222
b1 2.0 0.016 0.099 0.314 0.154 0.512 0.701
β 1.0 0.012 0.019 0.137 0.082 0.250 0.493
θ 1.0 0.053 0.067 0.259 0.200 0.076 0.486
α 1.0 0.046 0.015 0.122 0.195 0.070 0.181

100 b0 1.0 0.038 0.005 0.062 0.111 0.035 0.177
b1 2.0 0.003 0.095 0.308 0.157 0.285 0.510
β 1.0 0.014 0.003 0.059 0.070 0.021 0.013
θ 1.0 0.010 0.054 0.225 0.074 0.067 0.247
α 1.0 0.019 0.012 0.108 0.193 0.067 0.172

200 b0 1.0 0.009 0.004 0.047 0.035 0.032 0.150
b1 2.0 0.001 0.089 0.292 0.082 0.250 0.493
β 1.0 0.014 0.003 0.053 0.052 0.019 0.127
θ 1.0 0.002 0.010 0.099 0.031 0.038 0.236
α 1.0 0.009 0.009 0.092 0.169 0.058 0.171

50 b0 0.9 0.024 0.031 0.146 0.051 0.004 0.078
b1 2.1 0.024 0.033 0.145 0.107 0.049 0.222
β 0.7 0.088 0.032 0.0179 0.263 0.072 0.127
θ 1.1 0.109 0.109 0.238 0.269 0.238 0.242
α 0.65 0.056 0.032 0.137 0.165 0.056 0.173

100 b0 0.9 0.001 0.014 0.006 0.030 0.007 0.076
b1 2.1 0.015 0.010 0.106 0.071 0.048 0.219
β 0.7 0.055 0.012 0.097 0.070 0.021 0.083
θ 1.1 0.023 0.178 0.166 0.057 0.178 0.191
α 0.65 0.054 0.023 0.097 0.150 0.044 0.167

200 b0 0.9 0.000 0.012 0.009 0.025 0.002 0.060
b1 2.1 0.011 0.007 0.010 0.011 0.043 0.198
β 0.7 0.015 0.011 0.053 0.014 0.009 0.077
θ 1.1 0.019 0.021 0.139 0.022 0.021 0.143
α 0.65 4.2E-07 0.012 0.032 0.086 0.028 0.152
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5. DATA ANALYSIS

We illustrate the applicability of the proposed model with a real life data set. We consider
the data on survival times (in months) of 101 patients with advanced acute myelogenous
leukemia reported to the International Bone Marrow Transplant Registry. The data are
given in Klein and Moeschberger (2003). Out of 101 patients, fifty one had received an
autologous (auto) bone marrow transplant and fifty patients had an allogeneic (allo) bone
marrow transplant. The plot of the Kaplan-Meier estimator of the data is displayed in
Figure 1 and shows a large plateau at about 0.47. Furthermore, a large proportion of the
censored observations is in the plateau, which suggests that a cure model is appropriate
for these data. We considered the type of treatment (allo-auto) as a covariate in our
regression model.
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Figure 1 – Kaplan-Meier Survival curve of data set.

The maximum likelihood estimators of regression parameter were found out via
EM Algorithm as described in Section 3.1. The estimator of regression parameter and
its standard error obtained as β̂ = 2.195 (0.451) and other parameters of the model and
corresponding standard errors estimated to be b̂0 = 0.328 (0.201), b̂1 = -0.107 (0.284),
θ̂ = -1.140 (0.332) and α̂ = 0.672 (0.077). The statistical significance of the regression
coefficient was tested by likelihood ratio test procedure as mentioned in Remark 1 of
Section 3 and the result is found to be significant ( p < 0.001) and it is inferred that the
covariate, type of treatment has a significant positive effect on survival time in this study.
The present model was compared with Weibull cure models using Akaike information
criteria (AIC) as described in Remark 2 of Section 3 and it is found out that our model
is best fit compared to Weibull model. The results are described in Table 2.
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TABLE 2
Comparison of Weibull and generalised Weibull models.

Model Parameter Estimate (SE) LL AIC
b0 0.351 (0.200) - -
b1 -0.264 (0.283) - -

Weibull β 1.364 (0.505) -271.609 551.218
θ 0.422 (0.037) - -

b0 0.328 (0.201) - -
b1 -0.107 (0.285) - -

generalised Weibull β 2.195 (0.451) - -
θ -1.140 (0.332) -216.833 443.667
α 0.672 (0.077) - -

The survival curves for the model along with Kaplan-Meier estimates are drawn for
two transplant groups and are given in Figure 2. The curves are close to Kaplan- Meier
curve suggesting the proposed parametric model fits well.
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Figure 2 – Fitted curves of transplant groups ’allo’ and ’auto’.

Figure 3 shows plots of survival functions for the model parameters. From the
curves, we can see that the survival of auto group has more survival rate at early stage
of recovery. This is due to the fact that the patients in this group are not at risk of de-
veloping complications like acute graft-versus-host disease, which is commonly seen in
the allo transplant group. After this period, about one year, we can see the advantage
for allogeneic transplants, due to the decreased relapse rate in these patients. The sur-
vival curves for both groups of data crosses each other due to the early advantage for
autologous transplants group and due to the progress of allogeneic group in later stages.
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Figure 3 – Survival curves of allo and auto transplants.

The graphical method based on Total Time on Test (TTT) plot is used to illustrate
the shape of hazard function of the model. The scaled TTT transform for the generalised
Weibull distribution model is defined as

φF (u) =
H−1

F (u)

H−1
F (1)

, 0< u < 1, (17)

where

H−1
F (u) =

F −1(u)
∫

0

[1− F (x)]dx. (18)

The function F −1(u) is obtained through Eq. (3). H−1
F (u) can easily be found out using

the estimated values of model parameters. Aarset (1987) showed that the scaled TTT
transform is convex (concave) if the hazard rate is decreasing (increasing), and for bath-
tub (unimodal) hazard rates, the scaled TTT transform is first convex (concave) and
then concave (convex). Figure 4 shows the scaled TTT plot of the data. The plot drawn
give the evidence of decreasing hazard and it agree with the characteristics of the haz-
ard function of the generalised Weibull distribution explained in Section 2. Hence the
distribution assumption is appropriate to the given data.

The 95% Confidence interval of the probability of cure is estimated as (0.403,0.717)
and (0.264,0.583) for allo and auto group respectively. The overlapping of confidence
interval occurred due to the complications of allo transplants in early stage of recovery
period. The comparison of upper limit of both confidence intervals is more considered.
It can be seen that the proportion of cure in allo transplant group is more compared to
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Figure 4 – Scaled TTT transform plot showing the shape of hazard function of the distribution.

the auto transplant group giving the evidence of decreased recurrence in allo group com-
pared to auto group and our results coincides with many clinical study results conducted
in this area (Fenske et al., 2016).

The graphical check of overall fit of the proposed regression model is assessed by
Cox-Snell residuals (Klein and Moeschberger, 2003). The Cox-Snell residual ri , is de-
fined by ri = Ĥ (Ti |Zi ), where Ĥ is the fitted model. If the model fits the data, then the
ri ’s should follow a standard exponential distribution so that the hazard plot of ri ver-
sus the Nelson-Aalen estimator of the cumulative hazard of the ri ’s should be a straight
line with slope one. In our example we plot the ri versus Nelson- Aalen estimator of
cumulative hazard plot for two groups of data and shown in Figure 5. We see from these
plots that the model give reasonable fits to the data.
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Figure 5 – Cox-Snell residuals of transplant groups ’allo’ and ’auto’.
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6. CONCLUSION

In this paper we proposed a parametric regression model with generalised Weibull dis-
tribution for the analysis of survival data with cured fraction. The probability of cure
was modeled using logistic distribution assumption and the model parameters were es-
timated using maximum likelihood method via EM algorithm. The proposed model
was applied to a real data set on bone marrow transplantation and it was found to be
good fit. The proposed model was compared with Weibull cure model using the Akaike
information criterion and better results found out with the new model.
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SUMMARY

Cure models are of special attention when all of the study subjects do not experience the event
of interest even after long follow-up time. Many researchers have used exponential, gamma and
Weibull distribution in the latency part of parametric cure models. In this article, we propose
a new regression model with cured fraction, in its latency part is explained by the generalised
Weibull distribution (Mudholkar et al., 1996). The estimation of the parameters of the proposed
model is done using maximum likelihood method via EM algorithm. Simulations are carried out
to study the effect of sampling fluctuations and to know the efficiency of estimators. The proposed
model is applied to real data on acute myelogenous leukaemia. The statistical significance of the
regression parameter is checked by likelihood ratio (LR) test and the new model was compared
with Weibull cure model using Akaike information criterion (AIC).

Keywords: Cure models; EM algorithm; Likelihood ratio; Akaike information criterion; Gener-
alised Weibull distribution.
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