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SUMMARY

The present paper discusses modeling and analysis of recurrent event data with competing risks.
We propose non-parametric estimation of cumulative incidence functions of recurrent event com-
peting risks model. Asymptotic properties of the proposed estimators are established. Simulation
procedures are carried out to assess the finite sample properties of the proposed estimators. The
proposed method is applied to real-life data.

Keywords: Recurrent event; Competing risks; Cause-specific hazard function; Cumulative inci-
dence function; Empirical process.

1. INTRODUCTION

In biomedical studies, subjects or individuals can experience the event of interest more
than once. Such events are termed recurrent events. The recurrent event data arise in
diverse fields such as public health, medicine, insurance, social science, economics, man-
ufacturing and reliability. Recurrent hospitalisation of patients with chronic diseases,
episodes of hypoglycemia in diabetics, the breakdown of mechanical or electronic sys-
tems, computer software crashes, stoppages of nuclear power plants, warranty claims for
manufactured products, serious disagreements in marriage, the onset of labour strikes
and auto insurance claims are some examples of recurrent phenomena. There are several
statistical procedures proposed in the survival analysis literature for analysing the single
type of recurrent events. Two types of time scales, viz. time since entering the study
and time since the last event (gap time), are commonly considered in the literature. Con-
ditional and marginal models have been proposed to analyse data with a single type of
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recurrent event. One can refer to Prentice et al. (1981) for conditional models and Wei
et al. (1989) for marginal models.

The standard method for the analysis of recurrent event data is focused either on
the mean function or the rate function of the underlying recurrent event process. The
non-parametric estimation of mean function and rate function is extensively studied by
different researchers. One may refer to Cook and Lawless (2007) for a comprehensive
review on this topic. Pepe and Cai (1993) proposed semi parametric procedure for the
analysis of recurrent event data using the mean function. Lawless and Nadeau (1995)
have proposed a class of marginal models for recurrent event data, and they focused on
the mean number of events experienced by a person up to the time considered. This
approach enables a comparison between treatments via robust tests (Cook et al., 1996).
Wang and Chang (1999) proposed the non-parametric estimation of univariate recurrent
survival function using the independence assumption on gap times. Semi-parametric in-
ferences have been proposed by Lin et al. (1998) and Ghosh (2004) for accelerated failure
time models and Lin et al. (2000), Maitra et al. (2020) for multiplicative rate or mean
models. Zeng and Cai (2010) and Stocker and Adekpedjou (2020) have developed a semi-
parametric additive model for recurrent event data.

A comprehensive review of models and methods for analysing recurrent event data is
given by Geffray (2013). Non-parametric estimation of intensity function of recurrent
event data is developed by Bouaziz et al. (2013). Che and Angus (2016), Qu et al. (2017)
and Han et al. (2018) have developed joint models of recurrent events and terminal event
based on the proportional intensity model and additive hazard models. Andersen et al.
(2019) focused on the marginal analysis of the expected number of events of recurrent
events with the terminal event.

Competing risks data emerge naturally in medical research when subjects under
study are at risk of more than one cause. Two frameworks, viz. cause-specific hazards
and cumulative incidence functions, are commonly employed for the analysis of such
competing risks data. The cause-specific hazards and cumulative incidence curves cap-
ture different aspects of event histories in competing risks data, and inference on these
measures may yield different results. Crowder (2001) and Lawless (2011) have provided
a comprehensive review on this topic.

The recurrent events with competing risks set up arise in many medical studies. The
development of new stochastic models for the analysis of recurrent event data with com-
peting risks is a topic of interest. Dauxois and Sencey (2009) proposed a non-parametric
test for mean-specific functions in the contexts of recurrent events with competing risks.
Sankaran and Anisha (2011) and Sankaran and Anisha (2012) discussed semi-parametric
inference for gap time distributions of recurrent event data with multiple causes. Taylor
and Pena (2014) developed non-parametric estimators of component and system life dis-
tributions of recurrent competing risks data. Dong et al. (2015) have used the method of
the mean cumulative count for estimating the burden of recurrent events in the presence
of competing risks. Gouskova et al. (2017) studied the non-parametric analysis of such
data type with the missing event type. Ning et al. (2017) derived semi-parametric rate
models for multivariate recurrent event data to estimate blood product ratios. Ma et al.
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(2018) developed the accelerated failure time for multivariate recurrent event data with
the missing event type. The association between multiple recurrent events with mul-
tivariate modelling studied by Osmani et al. (2018). Yu et al. (2018) proposed the non-
parametric correction approaches to simultaneously correct for the informative censor-
ing and measurement errors in the analysis of multivariate recurrent event data.

Most of the models developed earlier were based either on the mean number of
events or the gap time between successive events. However, one of the basic questions
for the analysis of recurrent competing risk data is to evaluate the occurrence rate of
the recurrent event of interest. Motivated by this, we propose an alternate approach
by introducing recurrent cumulative incidence functions. We propose non-parametric
estimators of recurrent cumulative incidence functions.

The paper is organized as follows. Section 2 presents the data and model. Section
3 derives recurrent non-parametric estimators of recurrent cumulative incidence func-
tions (RCIF). The asymptotic properties of the proposed estimators are given in Section
4. In Section 5, we present the simulation results to assess the efficiency of the proposed
estimator. We illustrate the proposed methods with kidney catheter data in Section 6.
Finally, Section 7 presents the major conclusions of the study.

2. THE DATA AND MODEL

Suppose there are n independent individuals having a sequence of events experiencing
k competing risks to be observed in a longitudinal study. Let Ti j , j = 1,2, . . . , mi and
i = 1,2, . . . , n denote the time from ( j − 1)th to the j th event for the i th individual. Let
Ci be the censoring time of i th individual, i = 1,2, . . . , n. Let Ji j be the cause of failure
for j th recurrence of i th individual, j = 1,2, . . . , mi , i = 1,2, . . . , n.

The proposed model requires important assumptions : There exists a baseline ran-
dom variable Zi for each individual, which may be unobservable or partially observable,
i = 1,2, . . . , n. The recurrence times Ti1,Ti2, . . . ,Ti mi

are independent and identically
distributed given Zi and for each individual one could observe cause of failure along
with Ti j , j = 1,2, . . . , mi , i = 1,2, . . . , n.

The frailty assumption ensures the correlation of recurrence time from the same
subject. This assumption is stronger than necessary in our proposed method.

Let mi l be the number of recurrent events that occurred due to the l th competing
cause for the i th individual, l = 1,2, . . . , k , i = 1,2, . . . , n. Let mi =

∑k
l=1 mi l be the

number of recurrent events experienced by the i th individual. Note that, i = 1,2, . . . , n,

mi−1
∑

j=1

Ti j ≤Ci , (1)

mi
∑

j=1

Ti j >Ci . (2)



6 Sisuma M.S., P.G. Sankaran

Clearly both mi and mi l are random variables.
We define the number of recurrence m∗i as

m∗i =
¨

1, if mi = 1,
mi − 1, if mi ≥ 2.

(3)

The observed recurrence times are given by,

yi j =
¨

ti j , if j = 1,2, .., mi − 1,
t+i ,mi

, if j = mi .

where t+i ,mi
is the censored recurrence time. It is the time from event mi − 1 to the end

of the follow-up.
Let FZ (.) denote the distribution function of the baseline random vector Zi . Let f (t |zi )
be the conditional density of Ti j given zi . The recurrent survival function of Ti j is
expressed as

S(t ) = P (Ti j > t ) =
∫ ∫ ∞

t
f (u|z)d (u)d FZ (z), (4)

In a competing risks framework, each individual is exposed to k distinct types of
risks, and then the cause-specific hazard function for an individual is defined by

λl (t ) = lim
∆t→0

1
∆t

P (t ≤ Ti j < t +∆t , Ji j = l |Ti j ≥ t ), l = 1,2, . . . , k (5)

The cumulative incidence function of Ti j is given by

Fl (t ) = P (Ti j ≤ t , Ji j = l ), l = 1,2, . . . , k . (6)

Our objective is to derive non-parametric estimators of recurrent cumulative incidence
functions Fl (t ), l = 1,2, . . . , k.

3. NON-PARAMETRIC ESTIMATION OF RECURRENT CUMULATIVE INCIDENCE
FUNCTION.

Consider ai = a(Ci ) a non negative function of Ci subject to the constraint E(a2
i )<∞.

To estimate Fl (t ), we consider the functions given in Wang and Chang (1999),

Ha(t ) = E[ai I (Ti1 ≥ t )I (Ci ≥ t )], (7)

and
Ga(t ) = E[ai I (Ti1 ≤ t )I (Ti1 ≤Ci )], (8)

where I (.) represents indicator function. We now define functions

Gal (t ) = E[ai I (Ti1 ≤ t , Ji j = l )I (Ti1 ≤Ci )], , l = 1,2, . . . , k . (9)
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The cumulative hazard function, given in Wang and Chang (1999), is

Λ(t ) =
∫ t

0

E[ai I (Ci ≥ u)]d{1− S(u)}
E[ai I (Ci ≥ u)]S(u)

=
∫ t

0

dGa(u)
Ha(u)

. (10)

The cause-specific cumulative hazard function is defined by

Λl (t ) =
∫ t

0

E[ai I (Ci ≥ u, Ji j = l )]d{Fl (u)}
E[ai I (Ci ≥ u)]S(u)

=
∫ t

0

dGal (u)
Ha(u)

, l = 1,2, . . . , k . (11)

Equations (10) and (11) have been useful in the development of asymptotic properties
of the proposed estimators. Estimators of Ha(t ) and Ga(t ) are given by

Ĥa(t ) = n−1R∗(t ) = n−1
n
∑

i=1





ai

m∗i

m∗i
∑

j=1

I (yi j ≥ t )



 (12)

and

Ĝa(t ) = n−1
n
∑

i=1





ai I (mi ≥ 2)
m∗i

m∗i
∑

j=1

I (yi j ≤ t )



 , (13)

where R∗(t ) is the total mass of risk set at t given by

R∗(t ) =
n
∑

i=1





ai

m∗i

m∗
∑

j=1

I (yi j ≥ t )



 . (14)

Non-parametric estimator of Gal (t ) is given by

Ĝal (t ) = n−1
n
∑

i=1





ai I (mi l ≥ 2)
mi l

mi l
∑

j=1

I (yi j ≤ t , Ji j = l )



 , l = 1,2, . . . , k . (15)

Note that Ĥa(t ), Ĝa(t ) and Ĝal (t ) are moment type estimators of Ha(t ), Ga(t ) and
Gal (t ) respectively. The estimators of the cause-specific cumulative hazard functions
Λl (t ) is obtained as

Λ̂l (t ) =
∫ t

0

dĜal (u)

Ĥa(u)
, l = 1,2, . . . , k . (16)

From Wang and Chang (1999), the estimator of the cumulative hazard function Λ(t ) is

Λ̂(t ) =
∫ t

0

dĜa(u)

Ĥa(u)
. (17)
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Then, the estimator of the survival function Ŝ(t ) can be derived from the relation
S(t ) = exp{−Λ(t )}.

The recurrent cumulative incidence function can be estimated by the non-parametric
plug-in estimator as

F̂l (t ) =
∫ t

0
Ŝ(u)d Λ̂l (u), l = 1,2, . . . , k . (18)

Note that Ĥa(t ), Ĝa(t ) and Ĝal (t ) are unbiased estimators of Ha(t ), Ga(t ) and Gal (t ),
respectively.

4. ASYMPTOTIC PROPERTIES OF ESTIMATORS

We use an empirical process approach for the development of asymptotic properties of
estimators. Theorem 1 gives the asymptotic normality of proposed estimators. Let t ∗

be a non negative constant satisfying t ∗ < sup{t : S(t )G(t )> 0}.

THEOREM 1. Assume that ai is a bounded function. As n →∞, the random process
p

n{F̂l (t )− Fl (t )} for 0 < t < t ∗ converges weakly to a zero mean Gaussian process with
variance-covariance function σl (t1, t2) = E[εl i (t1)εl i (t2)], l = 1,2, . . . , k .

PROOF. See the Appendix. 2

REMARK 2. Since the analytic expression for the variance-covariance function is not in
a closed form, we use the bootstrap procedure for estimating the variance-covariance function
using the re-sampling method.

THEOREM 3. Let Ti1,Ti2, ..,Ti j be independent and identically distributed random

variables given Zi . Denote F̂l (t ) be the non-parametric estimator Fl (t ) for 0 < t < t ∗.
Then F̂l (t ) is strongly consistent for Fl (t ).

PROOF. See the Appendix. 2

REMARK 4. Selection of ai with minimum asymptotic variance of F̂l (t ) is always a
topic of interest. The optimal weight, however, does not have a closed analytical expression
and could vary at different recurrent time points. The bootstrap procedure is employed to
obtain the optimal weight.
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5. SIMULATION STUDIES

We carry out an extensive simulation study to evaluate the performance of the proposed
estimators.

The following algorithm is used for simulating data with recurrent events.

1. Generate frailty values (zi , i = 1,2, . . . , n) from the exponential distribution with
parameter one.

2. The i.i.d. recurrence times for the given zi are generated from the cause specific
Weibull hazard function λl (t |zi ), where λl (t |zi ) = ziλlαl tαl−1 with parameters
λl ,αl ≥ 0, l = 1,2, .., k.

3. For simplicity, we take the number of causes as two.

4. We choose the parameters λ1 = 0.1,λ2 = 0.12 and α1 = α2 = α= 2.

5. Two causes are chosen using a binomial experiment with probability of success
λl (t )

λ1(t )+λ2(t )
, l = 1,2.

The recurrence times with competing risks data are generated by the method given in
Beyersmann et al. (2009). The simulation is carried out with sample of sizes 50,100,200
and 500. The observation of the recurrence time process is terminated by the censoring
time Ci , i = 1,2, . . . , n. We consider both random censoring and fixed censoring. In
the case of random censoring, censoring time Ci are generated from U(0,3) and U(0,5)
distributions, i = 1,2, . . . , n. In the case of fixed censoring, we consider Ci = 3 and
Ci = 5 for i = 1,2, . . . , n. To study the effect of weight function a(Ci ), we consider the
weight function a(Ci ) = 1 and a(Ci ) =Ci , where Ci ∼U (0,3) and U (0,5) distributions.
We calculate the estimator of Fl (t ) from Eq. (18) and calculate absolute bias (Abs.bias)
and mean squared errors (MSE) of the estimators based on 1000 replications.

The absolute bias and mean squared error of estimators with a(Ci ) = Ci ∼ U (0,3)
and a(Ci ) = Ci ∼ U (0,5) are presented in Table 1 and Table 2, respectively. Similarly,
absolute bias and mean squared error of estimators with a(Ci ) = 1 in the case of random
censoring are presented in Table 3 and Table 4, respectively. Simulation results for fixed
censoring times Ci = 3 and Ci = 5 are presented in Table 5 and Table 6, respectively.

Mean squared errors of the estimators decrease as the sample size increases. The
absolute bias of the estimators also decreases as the sample size increases.
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TABLE 1
Estimates of recurrent cumulative incidence functions

with a(Ci ) =Ci ∼U (0,3).

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 1.50× 10−2 5.20× 10−4 1.76× 10−2 5.60× 10−4

0.4 1.54× 10−2 7.90× 10−4 2.01× 10−2 9.00× 10−4

0.6 6.64× 10−3 8.50× 10−4 1.05× 10−2 8.10× 10−4

0.8 8.14× 10−3 1.11× 10−3 6.72× 10−3 9.80× 10−4

1 2.84× 10−2 1.99× 10−3 2.98× 10−2 2.04× 10−3

1.2 5.04× 10−2 3.94× 10−3 5.60× 10−2 4.49× 10−3

1.4 7.40× 10−2 7.08× 10−3 8.36× 10−2 8.52× 10−3

1.6 9.73× 10−2 1.13× 10−2 1.11× 10−1 1.41× 10−2

100

0.2 1.43× 10−2 3.20× 10−4 1.68× 10−2 4.10× 10−4

0.4 1.49× 10−2 4.10× 10−4 1.78× 10−2 5.80× 10−4

0.6 5.92× 10−3 3.10× 10−4 7.60× 10−3 4.20× 10−4

0.8 7.86× 10−3 4.40× 10−4 6.57× 10−3 4.00× 10−4

1 2.81× 10−2 1.30× 10−3 2.74× 10−2 1.16× 10−3

1.2 4.61× 10−2 2.62× 10−3 5.01× 10−2 2.95× 10−3

1.4 6.03× 10−2 4.04× 10−3 7.45× 10−2 5.98× 10−3

1.6 7.03× 10−2 5.26× 10−3 1.08× 10−1 1.22× 10−2

200

0.2 9.50× 10−3 1.10× 10−4 1.26× 10−2 1.80× 10−4

0.4 1.19× 10−2 2.00× 10−4 1.15× 10−2 1.70× 10−4

0.6 5.31× 10−3 1.20× 10−4 6.48× 10−3 1.70× 10−4

0.8 7.02× 10−3 2.70× 10−4 5.09× 10−3 1.90× 10−4

1 2.70× 10−2 9.80× 10−4 2.31× 10−2 7.10× 10−4

1.2 3.76× 10−2 1.54× 10−3 4.49× 10−2 2.19× 10−3

1.4 5.20× 10−2 2.80× 10−3 6.11× 10−2 3.87× 10−3

1.6 6.80× 10−2 4.69× 10−3 9.75× 10−2 9.70× 10−3

500

0.2 7.77× 10−3 6.00× 10−5 1.03× 10−2 1.10× 10−4

0.4 9.48× 10−3 1.00× 10−4 7.70× 10−3 7.00× 10−5

0.6 4.51× 10−3 5.00× 10−5 5.82× 10−3 6.00× 10−5

0.8 6.62× 10−3 1.30× 10−4 5.00× 10−3 1.00× 10−4

1 1.82× 10−2 3.70× 10−4 1.99× 10−2 4.40× 10−4

1.2 3.31× 10−2 1.13× 10−3 3.97× 10−2 1.61× 10−3

1.4 4.73× 10−2 2.25× 10−3 5.98× 10−2 3.59× 10−3

1.6 6.48× 10−2 4.21× 10−3 8.97× 10−2 8.06× 10−3
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TABLE 2
Estimates of recurrent cumulative incidence functions

with a(Ci ) =Ci ∼U (0,5).

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 5.16× 10−2 3.24× 10−3 5.56× 10−2 3.74× 10−3

0.4 7.33× 10−2 6.45× 10−3 8.08× 10−2 7.75× 10−3

0.6 7.84× 10−2 7.70× 10−3 8.63× 10−2 9.10× 10−3

0.8 7.29× 10−2 7.23× 10−3 7.96× 10−2 8.30× 10−3

1 6.12× 10−2 5.93× 10−3 6.49× 10−2 6.48× 10−3

1.2 4.44× 10−2 4.40× 10−3 4.65× 10−2 4.72× 10−3

1.4 2.57× 10−2 3.32× 10−3 2.42× 10−2 3.35× 10−3

1.6 5.76× 10−3 2.83× 10−3 8.50× 10−4 3.02× 10−3

100

0.2 4.60× 10−2 2.28× 10−3 5.13× 10−2 2.78× 10−3

0.4 6.70× 10−2 4.82× 10−3 6.87× 10−2 4.96× 10−3

0.6 6.19× 10−2 4.15× 10−3 7.74× 10−2 6.38× 10−3

0.8 6.16× 10−2 4.27× 10−3 6.92× 10−2 5.23× 10−3

1 5.82× 10−2 4.23× 10−3 5.72× 10−2 3.91× 10−3

1.2 4.00× 10−2 2.45× 10−3 4.41× 10−2 2.90× 10−3

1.4 2.49× 10−2 1.71× 10−3 2.11× 10−2 1.49× 10−3

1.6 4.15× 10−3 1.07× 10−3 4.40× 10−4 1.33× 10−3

200

0.2 4.47× 10−2 2.05× 10−3 4.91× 10−2 2.47× 10−3

0.4 5.89× 10−2 3.53× 10−3 6.78× 10−2 4.67× 10−3

0.6 5.67× 10−2 3.27× 10−3 6.99× 10−2 4.98× 10−3

0.8 5.17× 10−2 2.75× 10−3 6.17× 10−2 3.92× 10−3

1 3.61× 10−2 1.40× 10−3 5.56× 10−2 3.31× 10−3

1.2 2.91× 10−2 1.04× 10−3 4.03× 10−2 1.96× 10−3

1.4 1.64× 10−2 5.70× 10−4 1.89× 10−2 7.60× 10−4

1.6 3.25× 10−3 4.60× 10−4 6.00× 10−5 5.70× 10−4

500

0.2 3.42× 10−2 1.18× 10−3 4.33× 10−2 1.88× 10−3

0.4 5.38× 10−2 2.90× 10−3 6.18× 10−2 3.84× 10−3

0.6 5.10× 10−2 2.62× 10−3 5.81× 10−2 3.38× 10−3

0.8 4.93× 10−2 2.45× 10−3 5.91× 10−2 3.53× 10−3

1 3.28× 10−2 1.09× 10−3 5.09× 10−2 2.66× 10−3

1.2 1.91× 10−2 3.90× 10−4 3.54× 10−2 1.35× 10−3

1.4 1.24× 10−2 2.20× 10−4 1.28× 10−2 2.70× 10−4

1.6 2.09× 10−3 4.00× 10−5 3.00× 10−5 2.10× 10−4
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TABLE 3
Estimates of recurrent cumulative incidence functions

with a(Ci ) = 1 and Ci ∼U (0,3).

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 9.27× 10−3 2.20× 10−4 1.11× 10−2 2.40× 10−4

0.4 6.54× 10−3 3.10× 10−4 9.47× 10−3 3.40× 10−4

0.6 4.23× 10−3 4.30× 10−4 2.41× 10−3 3.90× 10−4

0.8 2.04× 10−2 9.80× 10−4 2.12× 10−2 1.00× 10−3

1 4.15× 10−2 2.39× 10−3 4.54× 10−2 2.76× 10−3

1.2 6.41× 10−2 4.93× 10−3 7.22× 10−2 6.07× 10−3

1.4 8.79× 10−2 8.71× 10−3 1.00× 10−1 1.10× 10−2

1.6 1.11× 10−1 1.36× 10−2 1.28× 10−1 1.76× 10−2

100

0.2 8.84× 10−3 1.30× 10−4 1.04× 10−2 1.70× 10−4

0.4 5.27× 10−3 1.10× 10−4 7.67× 10−3 2.00× 10−4

0.6 3.57× 10−3 1.90× 10−4 1.67× 10−3 1.50× 10−4

0.8 2.02× 10−2 6.50× 10−4 2.04× 10−2 6.20× 10−4

1 4.10× 10−2 1.99× 10−3 4.40× 10−2 2.21× 10−3

1.2 5.36× 10−2 3.10× 10−3 6.95× 10−2 5.16× 10−3

1.4 7.60× 10−2 6.03× 10−3 9.47× 10−2 9.28× 10−3

1.6 9.36× 10−2 8.99× 10−3 1.10× 10−1 1.23× 10−2

200

0.2 7.43× 10−3 7.00× 10−5 8.42× 10−3 9.00× 10−5

0.4 4.79× 10−3 6.00× 10−5 7.45× 10−3 1.00× 10−4

0.6 3.23× 10−3 1.00× 10−4 9.60× 10−4 6.00× 10−5

0.8 1.96× 10−2 5.10× 10−4 2.03× 10−2 5.20× 10−4

1 4.04× 10−2 1.78× 10−3 4.23× 10−2 1.92× 10−3

1.2 5.08× 10−2 2.63× 10−3 5.47× 10−2 3.08× 10−3

1.4 6.38× 10−2 4.10× 10−3 8.35× 10−2 7.07× 10−3

1.6 8.55× 10−2 7.35× 10−3 1.06× 10−1 1.13× 10−2

500

0.2 5.30× 10−3 3.00× 10−5 8.01× 10−3 7.00× 10−5

0.4 1.75× 10−3 1.00× 10−5 6.38× 10−3 5.00× 10−5

0.6 3.00× 10−3 5.00× 10−5 8.30× 10−4 3.00× 10−5

0.8 1.95× 10−2 4.30× 10−4 2.01× 10−2 4.40× 10−4

1 4.01× 10−2 1.68× 10−3 3.99× 10−2 1.63× 10−3

1.2 4.55× 10−2 2.08× 10−3 5.17× 10−2 2.69× 10−3

1.4 6.32× 10−2 4.01× 10−3 8.04× 10−2 6.47× 10−3

1.6 8.28× 10−2 6.87× 10−3 1.06× 10−1 1.12× 10−2
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TABLE 4
Estimates of recurrent cumulative incidence functions

with a(Ci ) = 1 and Ci ∼U (0,5).

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 3.54× 10−2 1.55× 10−3 3.86× 10−2 1.82× 10−3

0.4 4.83× 10−2 2.89× 10−3 5.37× 10−2 3.54× 10−3

0.6 4.80× 10−2 3.16× 10−3 5.33× 10−2 3.76× 10−3

0.8 3.91× 10−2 2.60× 10−3 4.29× 10−2 2.96× 10−3

1 2.50× 10−2 1.89× 10−3 2.57× 10−2 2.03× 10−3

1.2 6.72× 10−3 1.49× 10−3 5.21× 10−3 1.60× 10−3

1.4 1.30× 10−2 1.79× 10−3 1.83× 10−2 2.07× 10−3

1.6 3.37× 10−2 2.88× 10−3 4.24× 10−2 3.75× 10−3

100

0.2 3.43× 10−2 1.29× 10−3 3.85× 10−2 1.62× 10−3

0.4 4.25× 10−2 1.97× 10−3 5.34× 10−2 3.13× 10−3

0.6 4.25× 10−2 2.04× 10−3 5.30× 10−2 3.20× 10−3

0.8 3.64× 10−2 1.69× 10−3 4.08× 10−2 2.08× 10−3

1 2.01× 10−2 8.10× 10−4 2.31× 10−2 1.06× 10−3

1.2 5.72× 10−3 5.40× 10−4 4.86× 10−3 1.33× 10−3

1.4 1.23× 10−2 7.20× 10−4 1.65× 10−2 9.30× 10−4

1.6 3.00× 10−2 1.64× 10−3 3.87× 10−2 2.18× 10−3

200

0.2 3.17× 10−2 1.04× 10−3 3.57× 10−2 1.31× 10−3

0.4 3.70× 10−2 1.40× 10−3 4.30× 10−2 1.89× 10−3

0.6 3.67× 10−2 1.40× 10−3 4.15× 10−2 1.78× 10−3

0.8 3.02× 10−2 1.00× 10−3 3.79× 10−2 1.57× 10−3

1 1.88× 10−2 5.10× 10−4 1.45× 10−2 3.20× 10−4

1.2 3.92× 10−3 2.50× 10−4 2.36× 10−3 2.80× 10−4

1.4 1.21× 10−2 4.30× 10−4 1.50× 10−2 4.50× 10−4

1.6 2.15× 10−2 7.00× 10−4 2.23× 10−2 6.40× 10−4

500

0.2 2.10× 10−2 4.40× 10−4 3.18× 10−2 1.02× 10−3

0.4 3.27× 10−2 1.07× 10−3 3.95× 10−2 1.56× 10−3

0.6 2.73× 10−2 7.50× 10−4 3.87× 10−2 1.51× 10−3

0.8 2.80× 10−2 8.10× 10−4 3.44× 10−2 1.22× 10−3

1 1.40× 10−2 2.20× 10−4 6.14× 10−3 5.00× 10−5

1.2 5.10× 10−4 5.00× 10−5 1.98× 10−3 1.10× 10−4

1.4 1.02× 10−2 1.90× 10−4 1.06× 10−2 1.90× 10−4

1.6 1.37× 10−2 2.50× 10−4 1.95× 10−2 4.30× 10−4
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TABLE 5
Estimates of recurrent cumulative incidence functions

with a(Ci ) =C = 3.

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 3.65× 10−2 1.59× 10−3 4.10× 10−2 1.98× 10−3

0.4 5.17× 10−2 3.18× 10−3 5.87× 10−2 4.05× 10−3

0.6 5.19× 10−2 3.39× 10−3 5.96× 10−2 4.41× 10−3

0.8 4.26× 10−2 2.67× 10−3 5.04× 10−2 3.62× 10−3

1 2.82× 10−2 1.82× 10−3 3.37× 10−2 2.38× 10−3

1.2 9.69× 10−3 1.21× 10−3 1.15× 10−2 1.55× 10−3

1.4 1.06× 10−2 1.36× 10−3 1.30× 10−2 1.71× 10−3

1.6 3.17× 10−2 2.36× 10−3 3.79× 10−2 3.06× 10−3

100

0.2 3.56× 10−2 1.40× 10−3 3.83× 10−2 1.56× 10−3

0.4 5.05× 10−2 2.79× 10−3 5.79× 10−2 3.65× 10−3

0.6 5.06× 10−2 2.90× 10−3 5.94× 10−2 3.92× 10−3

0.8 4.14× 10−2 2.16× 10−3 4.92× 10−2 2.90× 10−3

1 2.66× 10−2 1.21× 10−3 3.20× 10−2 1.61× 10−3

1.2 7.82× 10−3 6.20× 10−4 1.01× 10−2 7.70× 10−4

1.4 9.72× 10−3 6.10× 10−4 1.29× 10−2 8.20× 10−4

1.6 2.86× 10−2 1.30× 10−3 3.74× 10−2 2.09× 10−3

200

0.2 2.98× 10−2 9.10× 10−4 3.53× 10−2 1.27× 10−3

0.4 4.93× 10−2 2.54× 10−3 5.06× 10−2 2.62× 10−3

0.6 4.92× 10−2 2.57× 10−3 5.35× 10−2 2.97× 10−3

0.8 4.09× 10−2 1.87× 10−3 4.44× 10−2 2.11× 10−3

1 2.62× 10−2 9.40× 10−4 2.88× 10−2 1.03× 10−3

1.2 6.74× 10−3 2.90× 10−4 6.10× 10−3 2.50× 10−4

1.4 4.84× 10−3 2.70× 10−4 2.94× 10−3 2.00× 10−4

1.6 2.34× 10−2 7.80× 10−4 2.67× 10−2 9.10× 10−4

500

0.2 2.77× 10−2 7.70× 10−4 3.45× 10−2 1.20× 10−3

0.4 4.17× 10−2 1.75× 10−3 4.75× 10−2 2.27× 10−3

0.6 4.24× 10−2 1.81× 10−3 4.64× 10−2 2.16× 10−3

0.8 3.70× 10−2 1.40× 10−3 3.79× 10−2 1.46× 10−3

1 2.29× 10−2 5.70× 10−4 2.50× 10−2 6.60× 10−4

1.2 4.85× 10−3 8.00× 10−5 2.29× 10−3 5.00× 10−5

1.4 2.35× 10−3 5.00× 10−5 1.90× 10−4 5.00× 10−5

1.6 2.23× 10−2 5.50× 10−4 2.34× 10−2 6.00× 10−4
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TABLE 6
Estimates of recurrent cumulative incidence functions with

a(Ci ) =C = 5.

n t
Abs.bias
F̂1(t )

MSE
F̂1(t )

Abs.bias
F̂2(t )

MSE
F̂2(t )

50

0.2 1.05× 10−1 1.16× 10−2 1.09× 10−1 1.24× 10−2

0.4 1.57× 10−1 2.57× 10−2 1.66× 10−1 2.86× 10−2

0.6 1.82× 10−1 3.44× 10−2 1.91× 10−1 3.78× 10−2

0.8 1.88× 10−1 3.72× 10−2 1.96× 10−1 4.01× 10−2

1 1.85× 10−1 3.63× 10−2 1.91× 10−1 3.86× 10−2

1.2 1.76× 10−1 3.33× 10−2 1.78× 10−1 3.40× 10−2

1.4 1.63× 10−1 2.90× 10−2 1.61× 10−1 2.84× 10−2

1.6 1.48× 10−1 2.43× 10−2 1.42× 10−1 2.28× 10−2

100

0.2 1.04× 10−1 1.11× 10−2 1.09× 10−1 1.21× 10−2

0.4 1.56× 10−1 2.49× 10−2 1.64× 10−1 2.75× 10−2

0.6 1.81× 10−1 3.33× 10−2 1.89× 10−1 3.65× 10−2

0.8 1.88× 10−1 3.60× 10−2 1.95× 10−1 3.89× 10−2

1 1.85× 10−1 3.52× 10−2 1.89× 10−1 3.67× 10−2

1.2 1.75× 10−1 3.18× 10−2 1.77× 10−1 3.22× 10−2

1.4 1.62× 10−1 2.73× 10−2 1.60× 10−1 2.68× 10−2

1.6 1.47× 10−1 2.28× 10−2 1.41× 10−1 2.13× 10−2

200

0.2 1.03× 10−1 1.07× 10−2 1.05× 10−1 1.12× 10−2

0.4 1.49× 10−1 2.23× 10−2 1.56× 10−1 2.43× 10−2

0.6 1.79× 10−1 3.24× 10−2 1.77× 10−1 3.14× 10−2

0.8 1.80× 10−1 3.26× 10−2 1.84× 10−1 3.41× 10−2

1 1.70× 10−1 2.91× 10−2 1.78× 10−1 3.20× 10−2

1.2 1.61× 10−1 2.63× 10−2 1.62× 10−1 2.64× 10−2

1.4 1.52× 10−1 2.35× 10−2 1.57× 10−1 2.51× 10−2

1.6 1.37× 10−1 1.90× 10−2 1.34× 10−1 1.83× 10−2

500

0.2 9.90× 10−2 9.81× 10−3 9.90× 10−2 9.81× 10−3

0.4 1.40× 10−1 1.95× 10−2 1.46× 10−1 2.15× 10−2

0.6 1.60× 10−1 2.57× 10−2 1.66× 10−1 2.76× 10−2

0.8 1.68× 10−1 2.84× 10−2 1.75× 10−1 3.05× 10−2

1 1.62× 10−1 2.62× 10−2 1.66× 10−1 2.77× 10−2

1.2 1.51× 10−1 2.29× 10−2 1.53× 10−1 2.36× 10−2

1.4 1.41× 10−1 1.99× 10−2 1.40× 10−1 1.95× 10−2

1.6 1.24× 10−1 1.55× 10−2 1.20× 10−1 1.43× 10−2
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6. AN APPLICATION

We now apply the proposed methods to the Kidney catheter data (Lawless, 2011). The
data set is available in survival package of R software (https://vincentarel
bundock.github .io/Rdatasets/csv/survival/kidney.csv). The complete analysis of the
data is not carried out here. Our aim here is to illustrate the procedure using real-life
data. These data show the recurrence time to infection at the point of insertion of the
catheter for 38 kidney patients using portable dialysis equipment with four different
causes. Catheters may be removed for reasons other than infection, in which case the
observation is censored. Data on the first and second recurrences of infection are given.
Kidney disease type glomerulonephritis (GN), acute nephritis (AN), polycystic kidney
diseases (PKD) and other diseases (OTHER) are four different causes. Table 7 shows the
kidney catheter data. The variable id represents the individual, and recurrence time is
the time at which the infection occurred. The variable status shows 1 if the infection
happens and 0 if the patient is censored. The variable disease shows four different types
of kidney disease.

The tiny structures that do the work in our kidneys are called nephrons. These are
the basic functional units of blood filtration and urine production. Each of our kid-
neys contains about one million nephrons. Each nephron has a small blood vessel that
brings in unfiltered blood, a glomerulus that filters the blood, a tubule that caries away
filtered waste materials in the urine and a small blood vessel that returns filtered blood
to the body. Nephritis is inflammation of the kidneys that may involve the glomeruli,
tubules or interstitial tissue surrounding the glomeruli and tubules. Diseases that injure
glomeruli are called glomerular diseases. There are two types of glomeruli nephritis -
acute and chronic. The acute form develops suddenly. It may be caused by infections
such as strep throat. Polycystic kidney disease (PKD) is an inherited kidney disorder. It
causes fluid-filled cysts to form in the kidneys. PKD may impair kidney function and
eventually cause kidney failure. One of the leading causes of kidney failure is PKD. Kid-
ney disease usually leads to kidney failure to some degree which depends on the type of
disease.

We compute estimates of recurrent cumulative incidence functions (RCIF) corre-
sponding to four causes, and the results are presented in Figure 1. The red, blue, black
and green curves represent the estimators of RCIF corresponding to the causes ‘GN’,
‘AN’, ‘PKD’ and ‘OTHER’, respectively. The individuals under study have different
censoring times, and we have chosen the weight function a(Ci ) =Ci for computing the
estimates.

In the early period, three causes, GN, AN and OTHER, are competing with each
other and the third cause PKD, seems to have lesser risk as the cumulative incidence
function is small. Initially, the cause AN is dominating up to 17 days. After that, the
cause OTHER is dominating up to 51 days. The cause of GN having control over the
remaining causes up to 245 days. Finally, the fourth cause, OTHER, is dominating after
245 days. Thus the probability of occurrence of recurrent infection in kidney patients
due to the fourth cause, OTHER, is more dominant than the other three causes after

https://vincentarelbundock.github.io/Rdatasets/csv/survival/kidney.csv
https://vincentarelbundock.github.io/Rdatasets/csv/survival/kidney.csv
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TABLE 7
Kidney catheter data.

id recurrent time status disease id recurrent time status disease

1 8 1 Other 20 15 1 Other
1 16 1 Other 20 108 0 Other
2 23 1 GN 21 152 1 PKD
2 13 0 GN 21 562 1 PKD
3 22 1 Other 22 402 1 Other
3 28 1 Other 22 24 0 Other
4 447 1 Other 23 13 1 AN
4 318 1 Other 23 66 1 AN
5 30 1 Other 24 39 1 AN
5 12 1 Other 24 46 0 AN
6 24 1 Other 25 12 1 AN
6 245 1 Other 25 40 1 AN
7 7 1 GN 26 113 0 AN
7 9 1 GN 26 201 1 AN
8 511 1 GN 27 132 1 GN
8 30 1 GN 27 156 1 GN
9 53 1 AN 28 34 1 AN
9 196 1 AN 28 30 1 AN
10 15 1 GN 29 2 1 GN
10 154 1 GN 29 25 1 GN
11 7 1 AN 30 130 1 GN
11 333 1 AN 30 26 1 GN
12 141 1 Other 31 27 1 AN
12 8 0 Other 31 58 1 AN
13 96 1 AN 32 5 0 AN
13 38 1 AN 32 43 1 AN
14 149 0 AN 33 152 1 PKD
14 70 0 AN 33 30 1 PKD
15 536 1 Other 34 190 1 GN
15 25 0 Other 34 5 0 GN
16 17 1 AN 35 119 1 Other
16 4 0 AN 35 8 1 Other
17 185 1 Other 36 54 0 Other
17 177 1 Other 36 16 0 Other
18 292 1 Other 37 6 0 PKD
18 114 1 Other 37 78 1 PKD
19 22 0 GN 38 63 1 PKD
19 159 0 GN 38 8 0 PKD
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Figure 1 – Estimates of the recurrent cumulative incidence functions (RCIF) for GN, AN, PKD
and OTHER.

245 days. The third cause, PKD, does not have much influence on the recurrence time.

7. CONCLUSION

In this article, we have developed non-parametric estimators of cumulative incidence
functions of recurrent events experiencing competing risks. Simulation results estab-
lished that the absolute bias and mean squared error of the estimators decrease as sample
size increases. The proposed method was applied to a real-life data set. The existence of
frailty assumption is used for ensuring the i.i.d. structure of the recurrence time within
the subject, and the distribution of frailty is not used in this proposed methodology.
The work in this direction will be reported elsewhere.
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APPENDIX

A. PROOFS

PROOF. Theorem 1
We use an empirical process approach to prove the theorem. Write,

Λ̂l (t )−Λl (t ) =
¨

∫ t

0

dĜal (u)

Ĥa(u)
−

dGal (u)
Ha(u)

«

=
∫ t

0

¨

1

Ĥa(u)
− 1

Ha(u)

«

dGal (u)+
∫ t

0

1
Ha(u)

d
¦

Ĝal (u)−Gal (u)
©

+
∫ t

0

¨

1

Ĥa(u)
− 1

Ha(u)

«

d
¦

Ĝal (u)−Gal (u)
©

. (19)

The third term in Eq. (19) can be shown to be of order of op (n
− 1

2 ) and is asymptotically
negligible. Approximating the first term of Eq. (19) using techniques similar to those of
Breslow and Crowley (1974), we obtain

Λ̂l (t )−Λl (t ) =
∫ t

0

¨

Ha(u)− Ĥa(u)

Ha(u)Ĥa(u)

«

dGal (u)+
∫ t

0
{Ha(u)}

−1d
¦

Ĝal (u)−Gal (u)
©

+ op (n
− 1

2 )

=
∫ t

0
{Ha(u)}

−2
¦

Ha(u)− Ĥa(u)
©

dGal (u)+
∫ t

0
{Ha(u)}

−1d
¦

Ĝal (u)−Gal (u)
©

+ op (n
− 1

2 )

=−
∫ t

0
{Ha(u)}

−2Ĥa(u)dGal (u)+
∫ t

0
{Ha(u)}

−1dĜal (u)+ op (n
− 1

2 )

=− 1
n

n
∑

i=1

ψi l (t )+ op (n
− 1

2 ), (20)

where

ψi l (t ) =
∫ t

0
{Ha(u)}

−2

(

ai

m∗i

m∗i
∑

j=1

I (yi j ≥ u)

)

dGal (u)

−
ai I (mi l ≥ 2)

mi l

mi l
∑

j=1

I (yi j < t , Ji j = l )

Ha(yi j )
, l = 1,2, . . . , k . (21)
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Now applies integration by parts on the first term of Eq. (21) and deletes higher order
terms which are asymptotically negligible. Then we get E[ψi l (t )] = 0.

Define Wl (t ) =
p

n{Λ̂l (t )−Λl (t )}. From Eq. (20), we obtain

Wl (t ) =
p

n{Λ̂l (t )−Λl (t )}

=−n−
1
2

n
∑

i=1

ψi l (t )+ op (n
− 1

2 ). (22)

Note that

F̂l (t )− Fl (t ) =
∫ t

0
S(u)d
¦

Λ̂l (u)−Λl (u)
©

+
∫ t

0

¦

Ŝ(u)− S(u)
©

d Λ̂l (u). (23)

Note that Λ(t ) =
∑k

l=1Λl (t ), S(t ) = exp−(Λ(t )) and Ŝ(t ) = exp−(Λ̂(t )). Then,

∫ t

0
{Ŝ(u)− S(u)}d Λ̂l (u) =

∫ t

0
(−S(u))
�

1− e−
∑k

l=1 Λ̂l (u)+
∑k

l=1Λl (u)
�

d Λ̂l (u) (24)

Using Taylor series expansion, we obtain Eq. (24) as

∫ t

0
{Ŝ(u)− S(u)}d Λ̂l (u) =

∫ t

0
(−S(u))
�

1−
�

1+−
k
∑

l=1

Λ̂l (u)+
k
∑

l=1

Λl (u)+ op (n)
��

× d Λ̂l (u)

=−
∫ t

0
(S(u)
�

k
∑

l=1

Λ̂l (u)−
k
∑

l=1

Λl (u)
�

d Λ̂l (u). (25)

It follows that,

p
n{F̂l (t )− Fl (t )} ≈

∫ t

0
S(u)dWl (u)−

k
∑

l=1

∫ t

0
S(u)Wl (u)dΛl (u). (26)

Now the second term in the expression Eq. (26) can be written as

∫ t

0
S(u)Wl (u)dΛl (u) =

∫ t

0
Wl (u)S(u)dΛl (u)

=
∫ t

0
Wl (u)d Fl (u). (27)
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Then, by using integration by parts, Eq. (27) becomes,

∫ t

0
Wl (u)d Fl (u) = Fl (t )Wl (t )−

∫ t

0
Fl (u)dWl (u)

=
∫ t

0
{Fl (t )− Fl (u)}dWl (u)

=
∫ t

0
F c

l (t , u)dWl (u), (28)

where F c
l (t , u) = Fl (t )− Fl (u). Using Eq. (22), the identity Eq. (27) becomes

∫ t

0
S(u)Wl (u)dΛl (u) =

∫ t

0
F c

l (t , u)dWl (u)

=− 1
p

n

n
∑

i=1

∫ t

0
F c

l (t , u)ψi l (u)+ op (n
− 1

2 ). (29)

Substituting Eq. (29) in Eq. (26) we get,

p
n{F̂l (t )− Fl (t )} ≈

∫ t

0
S(u)dWl (u)−

k
∑

l=1

∫ t

0
F c

l dWl (u)

=− 1
p

n

n
∑

i=1

∫ t

0
S(u)ψi l (u)+

1
p

n

k
∑

l=1

n
∑

i=1

∫ t

0
F c

l (t , u)ψi l (u)

+ op (n
− 1

2 )

=− 1
p

n

n
∑

i=1

�

k
∑

l=1

∫ t

0
F c

l (t , u)ψi l (u)+
∫ t

0
S(u)ψi l (u)
�

+ op (n
− 1

2 )

=− 1
p

n

n
∑

i=1

�

∫ t

0
[

k
∑

l=1

F c
l (t , u)+ S(u)]ψi l (u)

�

+ op (n
− 1

2 )

=− 1
p

n

n
∑

i=1

εl i (t )+ op (n
− 1

2 ). (30)

where εl i (t ) =
∫ t

0 [
∑k

l=1 F c
l (t , u)+ S(u)]ψi l (u).

Hence,
p

n{F̂l (t )− Fl (t )} has an asymptotically i.i.d. representation of Eq. (30).
Then, E(εl i (t )) = 0, sinceψi l (t ) = 0. The random variables F c

l (t , u)ψi l (t ) and S(t )ψi l (t )
are uniformly bounded in 0 ≤ t ≤ t ∗ when ai is bounded, i = 1,2, . . . , n and l =
1,2, . . . , k. Then the random variable εl i (t ) is also uniformly bounded in 0 ≤ t ≤ t ∗.
Thus, by multivariate central limit theorem, the finite-dimensional distributions of a
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random process
p

n{F̂l (t )− Fl (t )} converge weakly to mean zero Gaussian processes
with variance-covariance function

σl (t1, t2) = E[εl i (t1)εl i (t2)], l = 1,2, . . . , k . (31)

Using the techniques of Billingsley (2013), we can derive

E
��

Ĥa(t )−Ha(t1)
��

Ĥa(t2)−Ha(t )
��

≤ constant.(t − t1)(t2− t ), (32)

E
��

Ĝa(t )−Ga(t1)
��

Ĝa(t2)−Ga(t )
��

≤ constant.(t − t1)(t2− t ) (33)

and

E
��

Ĝal (t )−Gal (t1)
��

Ĝal (t2)−Gal (t )
��

≤ constant.(t− t1)(t2− t ), l = 1,2, .., k (34)

for t1 ≤ t ≤ t2. The tightness of sequences follows from Theorem 13.5 of Billingsley
(2013) and arguments similar to those of Breslow and Crowley (1974). Thus we complete
the proof. 2

PROOF. Theorem 3
We have

F̂l (t )− Fl (t ) =
∫ t

0
S(u)d
¦

Λ̂l (u)−Λl (u)
©

+
∫ t

0

¦

Ŝ(u)− S(u)
©

d Λ̂l (u). (35)

Now

sup0<t<t ∗

�

�

�F̂l (t )− Fl (t )
�

�

�≤sup0<t<t ∗

�

�

�

�

�

∫ t

0
S(u)d
�

Λ̂l (u)−Λl (u)
�

�

�

�

�

�

+ sup0<t<t ∗

�

�

�

�

�

∫ t

0

�

Ŝ(u)− S(u)
�

d Λ̂l (u)

�

�

�

�

�

. (36)

We know that

Ŝ(t )− S(t ) =
1
n

n
∑

i=1

S(t )φi (t )+ op (n
− 1

2 ), (37)

where

φi (t ) =
∫ t

0
{Ha(u)}

−2{
ai

m∗i

m∗i
∑

j=1

I (yi j ≥ u)}dGa(u)

ai I (mi ≥ 2)
m∗i

m∗i
∑

j=1

1
Ha(yi j )

I (yi j < t )



Nonparametric Estimation of Cumulative Incidence Functions of Recurrent Events 23

and

Λ̂l (t )−Λl (t ) =−
1
n

n
∑

i=1

ψi l (t )+ op (n
− 1

2 ). (38)

Then, as n→∞
sup0<t<t ∗

�

�

�Ŝ(t )− S(t )
�

�

�

a.s→ 0 (39)

and

sup0<t<t ∗

�

�

�Λ̂l (t )−Λl (t )
�

�

�

a.s→ 0. (40)

Thus, we can conclude that as n→∞

sup0<t<t ∗

�

�

�F̂l (t )− Fl (t )
�

�

�

a.s→ 0. (41)

which implies that F̂l (t ) is strongly consistent for Fl (t ). 2
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