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1. INTRODUCTION

Discretization of existing continuous probability distributions has received wide atten-
tion in recent years. In this article, we define a new two–parameter discrete distribu-
tion which includes the discrete Burr-Hatke (DBH) distribution (see El-Morshedy et al.,
2020a). The new distribution, thus, can be considered as a new generalization of the
Burr-Hatke distribution. In the statistical literature, many discrete versions of continu-
ous distributions have been defined, studied and used in the modeling of count data, such
as the poisson-Lindley (PLi) distribution (see Sankaran, 1970), discrete Weibull (DW)
distribution (see Nakagawa and Osaki, 1975), discrete half-normal (DHN) distribution
(see Kemp, 2008), discrete Rayleigh (DR) distribution (see Roy, 2004), discrete Pareto
(DPa) distribution (see Krishna and Pundir, 2009), discrete inverse Weibull (DIW) dis-
tribution (see Jazi et al., 2010), generalized geometric (GGc) distribution (see Gomez-
Déniz, 2010), discrete Lindley (DLi) distribution (see Gomez-Déniz and Caldern-Ojeda,
2011), two-parameter discrete generalized exponential (DGE-II) distribution (see Nek-
oukhou et al., 2013), discrete inverse Rayleigh (DR) distribution (see Hussain and Ah-
mad, 2014), discrete log-logistic (DLL) distribution (see Para and Jan, 2016a), discrete
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Lomax (DLx) distribution (see Para and Jan, 2016b), discrete Burr type XII (DBXII) dis-
tribution (see Para and Jan, 2016b), two-parameter discrete Lindley (DLi-II) distribution
(see Hussain et al., 2016), discrete linear failure rate (DLFR) distribution (see Kumar
et al., 2017) and exponentiated discrete Lindley (EDLi) distribution (see El-Morshedy
et al., 2020b). A discrete family of distributions based on the Rayleigh distribution,
called the discrete Rayleigh-G (DRG) family, was recently introduced along with many
new discrete sub-distributions, such as the DR Weibull (DRW), DR exponential (DRE),
DR log-logistic (DRLL), DR Lomax (DRLx), DR Rayleigh (DRR), DR Burr XII (DR-
BXII), DR Fréchet (DRF), DR inverse Rayleigh (DRIR), DR inverse exponential (DRIE),
DR inverse Lomax (DR ILx), DR half-logistic (DRHL), DR Gumbel (DRGu), DR Lind-
ley (DRLi), DR Nadarajah-Haghighi (DRNH), DR Gompertz (DRGz), DR Dagum
(DRD), DR inverse flexible W (DRIFW), DR Burr X (DRBX) and DR inverse Gom-
pertz (DRIGz) distributions (see Aboraya et al., 2020).

Recently, Yousof et al. (2018) defined and studied a new continuous family of distri-
butions based on the Burr-Hatke (BH) distribution. A random variable (RV) Z is said
to have the generalized Burr-Hatke (GBH) distribution if its cumulative distribution
function (CDF) is given by

Fα,β(z) = P (Z ≤ z) = 1− 1
z + 1

exp
�

−(αz)β
�

|(z>0, and α,β>0). (1)

For β = 1, the GBH distribution reduces to the one parameter BH distribution first
introduced by Maniu and Voda (2008). Then, the CDF of the discrete generalized Burr-
Hatke (DGBH) distribution can be expressed as

Fπ,β(z) = 1− π
(z+1)β

z + 2
|(0<π<1 and z∈N), (2)

where N = {0,1,2, . . .}. For β = 1, the DGBH distribution reduces to the DBH distri-
bution as introduced by El-Morshedy et al. (2020a). Moreover, the following first-order
dominance holds: for β ≥ 1, we have Fπ,1 (z) ≤ Fπ,β(z), and the reverse inequality
holds for β< 1. In this sense, the parameter β makes of the former DBH distribution
more pliant. Further role of this parameter will be discussed later.

The corresponding reliability function (RF) due to Steutel and van Harn (2004) can
be written as

Sπ,β(z) = Fπ,β(z) =
π(z+1)β

z + 2
|(0<π<1 and z∈N). (3)

The probability mass function (PMF) of the DGBH distribution corresponding to (2)
and (3) can be expressed asFπ,β (0) = Fπ,β(0) = 1−π/2, and

Fπ,β(z) = Sπ,β (z − 1)− Sπ,β(z) |(0<π<1 and z∈N∗=N/{0}). (4)

That is

Fπ,β(z) =
πzβ

z + 1
− π

(z+1)β

z + 2
|(0<π<1 and z∈N∗). (5)
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After a graphical analysis, one can show that the sequence uz = Fπ,β(z + 1)/Fπ,β(z)
can be increasing, decreasing or non-monotonic, depending on π and β, contrary to
the DBH distribution corresponding toβ= 1 for which uz is increasing, implying that
the related PMF is always decreasing function in z. This illustrates the flexibility of the
proposed two-parameter DGBH distribution and the importance of the parameterβ in
this regard. The hazard rate function (HRF) can be written as

Hπ,β(z) =
Fπ,β(z)

Sπ,β (z − 1)
= 1− z + 1

z + 2
π(z+1)β−zβ |(0<π<1 and z∈N). (6)

Now, let Z be a RV following the DGBH distribution. Then, the probability generating
function (PGF) of Z is given by

π(s) =E(sZ ) = 1+(s − 1)
∞
∑

z=1

s z−1 π
zβ

z + 1
|(0<s<1). (7)

The r -th ordinary moments of Z is given by

E(Z r ) =
∞
∑

z=1

[z r − (z − 1)r ]
πzβ

z + 1
. (8)

Therefore, the mean and variance of the DGBH distribution do not have analytical
forms. We can, however, express them as the following series expansions:

E(Z) =
∞
∑

z=1

πzβ

z + 1
, (9)

and

V(Z) =
∞
∑

z=1

(2z − 1)
πzβ

z + 1
−
� ∞
∑

z=1

πzβ

z + 1

�2

. (10)

Based on (9) and (10), the index of dispersion is

D(Z) =
1
E(Z)
V(Z). (11)

Similarly, we can express the first four moments of Z , allowing us to define the following
skewness and kurtosis measures:

S(Z) =
E(Z3)− 3E(Z)E(Z2)+ 2[E(Z)]3

[V(Z)]3/2
(12)

and

K(Z) =
E(Z4)− 4E(Z)E(Z2)+ 6[E(Z)]2E(Z2)− 3[E(Z)]4

[V(Z)]2
. (13)
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All these measures can be determined numerically with the help of any mathematical
software. Also, one can remark that F0.9,4 (1) = 0.3882327 > e−1, implying that the
DGBH distribution is not infinitely divisible (see Steutel and van Harn, 2004,pp. 56).

Now, let us establish some general relations regarding the order statistics of the
DGBH distribution. The CDF of the i t h order statistic from the DGBH distribution
is given by

Fπ,β,i :n(z) =
n
∑

κ=i

�

n
κ

�

�

Fπ,β(z)
�κ �

Sπ,β(z)
�n−κ

. (14)

Applying the binomial formula to
�

Fπ,β(z)
�κ
=
�

1− Sπ,β(z)
�κ

, we have

Fπ,β,i :n(z) =
n
∑

κ=i

κ
∑

j=0

�

n
κ

��

κ

j

�

(−1) j
�

Sπ,β(z)
� j+n−κ

=
n
∑

κ=i

κ
∑

j=0

�

n
κ

��

κ

j

�

(−1) j
π( j+n−κ)(z+1)β

(z + 2) j+n−κ , |(0<π<1 and z∈N). (15)

Also, the corresponding PMF is obtained as

Fπ,β,i :n(z) = Fπ,β,i :n(z)−Fπ,β,i :n (z − 1)

=
n
∑

κ=i

κ
∑

j=0

�

n
κ

��

κ

j

�

(−1) j
�

π( j+n−κ)(z+1)β

(z + 2) j+n−κ −
π( j+n−κ)zβ

(z + 1) j+n−κ

�

, |(0<π<1 and z∈N). (16)

From this PMF, several measures and functions can be derived, as done for the former
DGBH distribution.

2. GRAPHICAL AND NUMERICAL ANALYSIS

In this Section, we analyze the effect of adding the new additional parameter β on the
PMF, HRF, skewness and kurtosis measures. The superiority of the new DGBH dis-
tribution is illustrated as well. Figure 1 gives some plots of the PMF of the DGBH
distribution. Figure 2 gives some plots of the HRF of the DGBH distribution. Accord-
ing to Figure 1, it can be seen that the shape of the PMF can be "right skewed" with
different shapes, bimodal, and "uniform-PMF". Based on Figure 2, the HRF of the new
model can be "monotonically decreasing", "upside down", "monotonically increasing",
"upside down increasing", and "upside down-constant-increasing".

The shapes of the PMF and HRF of the DGBH model can also be described an-
alytically but we must deal with some complicated equations from the mathematical
point of view. In order to support this claim, if we focus on the mode nature of the
DGBH distribtuion only, a mode z is determined by the following inequality: for any
k ∈ N, Fπ,β(k) ≤Fπ,β(z). When the mode differs from z = 0, the situation becomes
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Figure 1 – The PMF plots of the DGBH distribution.
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Figure 2 – The HRF plots of the DGBH distribution.
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inextricable, necessitating the solution of the following inequality:

πkβ

k + 1
− π

(k+1)β

k + 2
≤ π

zβ

z + 1
− π

(z+1)β

z + 2
, (17)

which depends on the conjoint actions of π and β. To the best of our knowledge, only
the use of a computer algebra system is possible to determine the numerical value of
such a z. This explains why we have proposed a graphical approach to demonstrate
the complexity of the situations and the unimodal and bimodal natures of the DGBH
distribution. So, for the shapes of the PMF and HRF, using most of computer alge-
bra systems, we can examine the local maximums and minimums and inflexion points.
Otherwise, we have to examine the new PMF and its corresponding HRF graphically
as presented in Figures 1 and 2, respectively.

Table 1 gives some numerical results related to E(Z), V(Z), S(Z),K(Z) andD(Z) of
the DGBH and DBH distributions, respectively.

Based on the numerical results given in Tables 1 and 2, it is noted that the mean of
the DGBH distribution increases as π increases. For comparison purposes, let us now
put the distributional name “DGBH”or “DBH” in index of the corresponding measures
S(Z), K(Z) and D(Z). The SDGBH(Z) is positive and can range in the interval (2.0×
10−4, 158220.3) whereas SDBH (Z) can only range in the interval (3.208,106.612), the
spread for its KDGBH(Z) ranges from 1 to ≃ ∞, whereas KDBH(Z) ranges from 17.95
to 20159.1. The DDGBH(Z) ∈ (0.5,80680.57). So, DDGBH(Z) ∈ (0.1) or DDGBH(Z) > 1.
Thus, the new DGBH distribution could be useful in modeling "under-dispersed" or
"over-dispersed" count data, whereas DDBH (Z) ∈ (1.001,2424.225) .

3. CHARACTERIZATIONS OF THE DGBH DISTRIBUTION

The problem of characterizing a distribution is an important problem in applied sci-
ences, where an investigator is vitally interested in knowing if their model follows the
right distribution. To this end, the investigator relies on conditions under which their
model would follow specifically the chosen distribution. In this Section, we present cer-
tain characterizations of the DGBH distribution. These characterizations are based on:
(i) the conditional expectation of certain function of the random variable; and (i i) in
terms of the HRF.

PROPOSITION 1. Let Z :Ω→N be a RV. The PMF of Z is indicated as (5) if and only
if

E
¨�

πZβ

Z + 1
+
π(Z+1)β

Z + 2

�
�

�

�

�

�

{Z >κ}
«

=
π(κ+1)β

κ+ 2
, κ ∈N. (18)

PROOF. If Z has the PMF given by (5), then, for any κ ∈ N, the left-hand side of
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TABLE 1
E(Z), V(Z), S(Z),K(Z) and D(Z) of the DGBH distribution.

π β E(Z) V(Z) S(Z) K(Z) D(Z)

1× 10−5 1× 10−5 1.24× 10−4 9.9865 158220.3 ≃∞ 80639.88

0.001 0.012 999.146 15818.13 ≃∞ 80659.84

0.05 0.620 49980.01 2236.565 6669461 80675.96

0.10 1.239 99967.44 1581.443 3334511 80678.31

0.15 1.859 149957.2 1291.225 2222933 80679.42

0.25 3.098 249939.9 1000.166 1333715 80680.37

0.35 4.337 349924.4 845.293 952639.9 80680.57

0.55 6.816 549893.7 674.315 606223.1 80680.02

0.95 11.773 949819.4 513.094 350982.6 80677.40

0.999 12.391 999708.3 500.129 333468.8 80677.00

0.001 100 5× 10−4 0.00050 44.68781 1998.001 0.9995

0.25 0.125 0.109 2.268 6.143 0.875

0.50 0.250 0.188 1.155 2.333 0.750

0.75 0.375 0.234 0.516 1.267 0.625

0.95 0.475 0.249 0.100 1.010 0.525

0.9999 0.450 0.250 2× 10−4 1.000 0.500

0.1 20 0.500 0.048 4.129 18.053 0.950

0.15 50 0.075 0.069 3.227 11.414 0.925

0.25 200 0.125 0.109 2.268 6.143 0.875

0.75 1000 0.375 0.234 0.516 1.267 0.625

0.95 5000 0.475 0.249 0.100 1.010 0.525

0.99 10000 0.495 0.250 0.020 1.000 0.505

0.999 100000 0.499 0.250 0.002 1.000 0.501
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TABLE 2
E(Z), V(Z), S(Z),K(Z) and D(Z) of the DBH distribution.

π E(Z) V(Z) S (Z) K(Z) D(Z)

0.001 0.001 0.001 44.762 2010.005 1.001

0.10 0.054 0.059 4.899 30.525 1.092

0.15 0.083 0.096 4.186 24.158 1.145

0.25 0.151 0.192 3.552 19.519 1.272

0.35 0.231 0.331 3.297 18.098 1.435

0.45 0.329 0.543 3.208 17.948 1.652

0.55 0.452 0.885 3.227 18.668 1.958

0.65 0.615 1.491 3.351 20.361 2.423

0.75 0.848 2.735 3.618 23.715 3.224

0.85 1.232 6.120 4.192 31.398 4.968

0.95 2.153 26.903 6.144 65.712 12.493

0.999 5.915 1945.273 34.457 2089.719 328.890

0.9999 8.211 19905.94 106.612 20159.06 2424.225
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(18), will be

�

1−Fπ,β(κ)
�−1 ∞
∑

z=κ+1





�

πzβ

z + 1

�2

−
�

π(z+1)β

z + 2

�2


=
κ+ 2

π(κ+1)β

�

π(κ+1)β

κ+ 2

�2

=
π(κ+1)β

κ+ 2
. (19)

Conversely, if (18) holds, assuming that the distribution of Z is unknown but adopting
the related notation for convenience, we get

∞
∑

z=κ+1

¨�

πzβ

z + 1
+
π(z+1)β

z + 2

�

Fπ,β(z)
«

=
�

1−Fπ,β(κ)
� π(κ+1)β

κ+ 2

=
�

1−Fπ,β(κ+ 1)+Fπ,β(κ+ 1)
� π(κ+1)β

κ+ 2
. (20)

From (20), we also have

∞
∑

z=κ+2

¨�

πzβ

z + 1
+
π(z+1)β

z + 2

�

Fπ,β(z)
«

=
�

1−Fπ,β(κ+ 1)
� π(z+2)β

κ+ 3
. (21)

Now, subtracting (21) from (20), we arrive at

�

π(κ+1)β

κ+ 2
+
π(z+2)β

κ+ 3

�

Fπ,β(κ+ 1)

=
�

1−Fπ,β(κ+ 1)
�

�

π(κ+1)β

κ+ 2
− π

(κ+2)β

κ+ 3

�

+
π(κ+1)β

κ+ 2
Fπ,β(κ+ 1), (22)

implying that

�

π(z+2)β

κ+ 3

�

Fπ,β(κ+ 1) =
�

1−Fπ,β(κ+ 1)
�

�

π(κ+1)β

κ+ 2
− π

(z+2)β

κ+ 3

�

(23)

or

Fπ,β(κ+ 1)

1−Fπ,β(κ+ 1)
=
π(κ+1)β

κ+2 −
π(κ+2)β

κ+3

π(κ+2)β

κ+3

=
(κ+ 3)π(κ+1)β

(z + 2)π(z+2)β
− 1, (24)

which is the HRF in (6), corresponding to the PMF in (5), taking at z = κ+ 1. 2
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PROPOSITION 2. Let Z : Ω→ N be a RV. The PMF of Z is (5) if and only if its HRF,
say hF (x), satisfies the following difference equation

hF (κ+ 1)− hF (κ) =
(κ+ 3)π(κ+1)β

(κ+ 2)π(κ+2)β
−
(z + 2)πκβ

(κ+ 1)π(κ+1)β
, κ ∈N, (25)

with the initial condition hF (0) = 2/π− 1.

PROOF. Clearly, if Z has PMF specified in (5), then (25) holds. Now, if (25) holds,
then

z−1
∑

κ=0

{hF (κ+ 1)− hF (κ)}=
z−1
∑

κ=0

¨

(κ+ 3)π(κ+1)β

(κ+ 2)π(z+2)β
−
(κ+ 2)πκβ

(κ+ 1)π(κ+1)β

«

, (26)

or

hF (z)− hF (0) =
2
π
+
(z + 2)πzβ

(z + 1)π(z+1)β
, (27)

or, in view of the initial condition hF (0) = 2/π− 1, we have

hF (z) =
(z + 2)πzβ

(z + 1)π(z+1)β
− 1, z ∈N, (28)

which is the HRF in (6), corresponding to the PMF in (5). 2

4. ESTIMATION

In this Section, non-Bayesian and Bayesian estimation methods are considered. In the
first sub-Section, we will consider maximum likelihood estimation (MLE) method, or-
dinary least squares estimation (OLSE) method and weighted least squares estimation
(WLSE) method. In the second sub-Section, the Bayesian estimation method under the
squared error loss function (SELF) is considered. All non-Bayesian estimation methods
are discussed in the statistical literature with more details.

4.1. Non-Bayesian estimation methods

4.1.1. The MLE method
Let Z1,Z2, . . . ,Zn be a random sample (RS) of size n from the DGBH distribution, and
z1, z2, . . . , zn be observed values of them. The log-likelihood function is given by

ℓ= ℓ(π,β) =
n
∑

i=1

ln





πzβi

zi + 1
− π

(zi+1)β

zi + 2



 |(π∈(0,1) and zi∈N), (29)
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which can be maximized either using statistical programs or by solving the nonlinear
system obtained from ℓ(π,β) by differentiation. The components of the score vector
U (π,β) = (∂ ℓ(π,β)/∂ π,∂ ℓ(π,β)/∂ β)⊺ are easily derived. Setting ∂ ℓ(π,β)/∂ π =
∂ ℓ(π,β)/∂ β = 0 and solving them simultaneously yields the MLEs for the DGBH
parameters. The Newton-Raphson algorithms are employed for the numerically solving
in such cases.

As usual, under regularity conditions, the properties of consistency and asymptotic
normality are satisfied. Especially, the asymptotic distribution behind the MLEs is mut-
livariate normal, with mean (π,β) and covariance matrix derived to the inverse of the
expected Fisher covariance matrix. This asymptotic distribution is useful to construct
confidence intervals (CIs), confidence regions, and various kinds of likelihood test (see
Casella and Berger, 1990).

Theoretically, the issue of identifiability is difficult to ensure. Ideally, to prove this
property, we need to prove that, for any k ∈N, the equalityFπ∗,β∗(k) =Fπ,β(k) implies
that π∗ = π and β∗ =β. This equality is clear for k = 0. However, for the other cases,
the complexity of Fπ∗,β∗(k) is a significant barrier to demonstrating that in full rigor.
Our practical investigations, however, have revealed no problem of this kind, but the
rigorous proof remains a strong mathematical challenge.

4.1.2. OLSE method
Let z1:n ≤ z2:n ≤ . . . ≤ zn:n be the n ordered observed values. The OLSEs are obtained
upon minimizing

OLSE(π,β) =
n
∑

i=1

�

Fπ,β (zi :n)− ς
(1)
(i ,n)

�2
=

n
∑

i=1

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�2

, (30)

with respect to π and β, where ς (1)(i ,n) = i/(n+ 1). In an equivalent manner, the OLSEs
are obtained via solving the following non-linear equations

0=
n
∑

i=1

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�

ν(π)(zi :n ;π,β), (31)

and

0=
n
∑

i=1

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�

ν(β)(zi :n ;π,β), (32)

where

ν(π)(z;π,β) =−
(z + 1)β

z + 2
π(z+1)β−1 (33)
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and

ν(β)(z;π,β) =−
(z + 1)β

z + 2
log(π) log(z + 1)π(z+1)β . (34)

4.1.3. WLSE method
The WLSEs are obtained by minimizing the function W LSE(π,β) with respect to π and
β

W LSE(π,β) =
n
∑

i=1

ς (2)(i ,n)

�

Fπ,β (zi :n)− ς
(1)
(i ,n)

�2
=

n
∑

i=1

ς (2)(i ,n)

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�2

, (35)

where ς (2)(i ,n) =
�

(1+ n)2(2+ n)
�

/ [i(1+ n− i)] . The WLSEs are obtained by solving

0=
n
∑

i=1

ς (2)(i ,n)

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�

ν(π)(zi :n ;π,β), (36)

and

0=
n
∑

i=1

ς (2)(i ,n)

�

1− π
(zi :n+1)β

zi :n + 2
− ς (1)(i ,n)

�

ν(β)(zi :n ;π,β), (37)

where ν(π)(z;π,β) and ν(β)(z;π,β) are defined by (33) and (34), respectively.

4.2. Bayesian estimation

Assume the beta and uniform priors for the parameters π and β, respectively. Then,

p1,(c1,d1)
(π)∼ beta(c1, d1) =

1
B (c1, d1)

πc1 (1−π)d1 , (38)

and

p2,(c2,d2)
(β)∼Gamma(c2, d2) =

d c2
2

Γ (c2)
βc2−1 exp (−βd2) , (39)

where B(a, b ) is the beta function and Γ (a) is the gamma function. Assume that the
parameters are independently distributed. The joint prior distribution p(ci ,di )

(π,β) is
given by

p(ci ,di )
(π,β) =

1
B (c1, d1)Γ (c2)

d c2
2 β

c2−1πc1 (1−π)d1 exp (−βd2) . (40)

The posterior distribution p (π,β|z) of the parameters is defined as p (π,β|z)∝ like-
lihood function ×p(ci ,di )

(π,β), where z = (z1, . . . , zn). If we consider the SELF, the
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Bayesian estimators of π and β are the means of their marginal posteriors and defined
as

bπ(Bayesian) =
∫

π,β
π p (π,β|z) dβdπ, (41)

and
bβ(Bayesian) =
∫

β,π
βp (π,β|z)dπdβ, (42)

respectively. It is not possible to obtain the Bayesian estimates through the above for-
mulae. So, numerical approximations are needed. We propose the use of Markov chain
Monte Carlo (MCMC) techniques, namely Gibbs sampler and M-H algorithm (for more
details see Cai, 2010; Chib and Greenberg, 1995; Korkmaz et al., 2018; Aboraya et al.,
2020).

It is worth mentioning that the MLEs and the Bayesian estimates have equivalent
asymptotic properties (for more details see Ibragimov, 1962; Chao, 1970). Also, since
the determination of the MLE is independent of the loss function and the prior mea-
sure, the asymptotic properties behind the Bayesian estimates hold for all priors and
loss functions in a certain class.

Since the conditional posteriors of the parametersπ andβ cannot be obtained in any
standard forms, using a hybrid MCMC for drawing samples from the marginal posterior
of the parameters is suggested. Then, the full conditional posteriors of π and β can be
easily derived. The simulation algorithm is given by:

1. Provide the initial values, say π and β, then at i th stage;

2. Using M-H algorithm, generate

π(i) ∼ p1

�

π(i)|π(i−1),β(i−1), z
�

; (43)

3. Using M-H algorithm, generate

β(i) ∼ p2

�

β(i)|π(i),β(i−1), z
�

; (44)

4. Repeat steps 1− 3, 100000 times to obtain the sample of size M from the corre-
sponding posteriors of interest. Obtain the Bayesian estimates of π and β using
the following formulae:

bπ(Bayesian) =
1

M−M0

M
∑

h=M0+1

π[h], and bβ(Bayesian) =
1

M−M0

M
∑

h=M0+1

β[h], (45)

respectively, where M0(≈ 50000) is the burn-in period of the generated MCMC.
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5. SIMULATIONS FOR COMPARING BAYESIAN AND NON-BAYESIAN ESTIMATION
METHODS

A numerical MCMC simulation studies are performed for assessing and comparing the
performance of non-Bayesian and Bayesian estimations. The numerical assessment is
performed based on the mean squared errors (MSEs). First, we generated 1000 samples
of the DGBH distribution, where n = 50, 150, 300, 500. The MSEs are obtained and
listed in Tables 3, 4 and 5. Three combinations of initial values are considered (I:π0 = 0.7
and β0 = 2; II: π0 = 0.243 and β0 = 0.500 and III: π0 = 0.585 and β0 = 0.9). Based

TABLE 3
MSEs for combination I.

n MLE OLS WLS Bayesian

50 π0 = 0.7 0.007 0.012 0.013 0.006

β0 = 2.0 0.989 0.807 0.761 0.113

150 π0 = 0.7 0.002 0.004 0.005 0.003

β0 = 2.0 0.041 0.0833 0.066 0.037

300 π0 = 0.7 0.001 0.002 0.003 0.001

β0 = 2.0 0.0182 0.0321 0.023 0.024

500 π0 = 0.7 0.001 0.001 0.002 0.001

β0 = 2.0 0.010 0.021 0.014 0.013

on Tables 3, 4 and 5, we note that all methods perform well. The performance of all
estimation methods improves as n→∞.

6. APPLICATION FOR COMPARING BAYESIAN AND NON-BAYESIAN ESTIMATION
METHODS

In this Section, two examples of real data sets are introduced and analyzed for compar-
ing the Bayesian and non-Bayesian estimation methods. We consider the Kolmogorov-
Smirnov (K-S) test and P-value

�

P[V ]
�

statistics in this regard.

6.1. Application 1: Carious teeth data

The first data set consists of the number of carious teeth among the four deciduous
molars. The sample size is 100. Figure 3 gives the Kaplan–Meier survival plots for the
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TABLE 4
MSEs for combination II.

n MLE OLS WLS Bayesian

50 π0 = 0.243 0.003 0.004 0.008 0.008

β0 = 0.500 0.500 0.274 0.097 0.031

150 π0 = 0.243 0.002 0.003 0.003 0.006

β0 = 0.500 0.032 0.074 0.035 0.024

300 π0 = 0.243 0.001 0.001 0.001 0.001

β0 = 0.500 0.0129 0.028 0.019 0.022

500 π0 = 0.243 0.001 0.001 0.001 0.001

β0 = 0.500 0.0067 0.016 0.013 0.006

TABLE 5
MSEs for combination III.

n MLE OLS WLS Bayesian

50 π0 = 0.585 0.008 0.014 0.014 0.014

β0 = 0.900 0.109 0.265 0.094 0.044

150 π0 = 0.585 0.003 0.005 0.005 0.004

β0 = 0.900 0.024 0.064 0.035 0.024

300 π0 = 0.585 0.002 0.002 0.003 0.002

β0 = 0.900 0.009 0.031 0.021 0.016

500 π0 = 0.585 0.001 0.001 0.002 0.001

β0 = 0.900 0.006 0.017 0.016 0.006
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carious teeth data. Table 6 gives the estimations and the values of the considered statistics
under Bayesian and non-Bayesian methods.

TABLE 6
Comparing methods under carious teeth data.

Method↓ estimations & statistics→ bπ bβ K-S P[V ]

MLE 0.764 1.309 1.204 0.548

OLS 0.724 1.006 0.757 0.685

WLS 0.721 1.190 1.411 0.494

Bayesian 0.741 1.297 1.622 0.444

Based on Table 6, the OLS method is the best with K-S = 0.757 and P[V ] = 0.685.

6.2. Application 2: Counts of cysts of kidneys data

Due to Chan et al. (2009), these data represent the counts of cysts of corticosteroid-
induced kidneys dysmorphogenesis which associated with deregulated expression of
known cystogenic molecules as well as Indian hedgehog. Figure 4 gives the Kaplan–
Meier survival plots for the counts of cysts of kidneys data. Table 7 gives the estimations
and the values of the considered statistics under Bayesian and non-Bayesian methods.

TABLE 7
Comparing methods under kidneys data.

Method↓ estimations & statistics→ bπ bβ K-S P[V ]
MLE 0.993 2.276 3.491 0.32192

OLS 0.825 0.452 3.140 0.37050

WLS 0.821 0.930 5.030 0.16962

Bayesian 0.985 1.222 2.833 0.418

Based on Table 7, the Bayesian method is the best with K-S= 2.833 and P[V ] = 0.418.
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Figure 3 – Kaplan–Meier survival plots for the carious teeth data.
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Figure 4 – Kaplan–Meier survival plots for Counts of cysts of kidneys data.
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7. APPLICATION FOR COMPARING MODELS AND TESTING OF HYPOTHESIS

7.1. Application 1: Carious teeth data

Using the carious teeth data, the fits of the DGBH model are compared with those of
some competitive models such as the DBH, Poisson (P), Geometric (Gc), DPa, DR, DLi,
DIR, PLi, EDLi, DW, DLi-II, DIW, GGc, DLL, DLFR and DGE-II models. Tables 8
and 9 give the observed frequency (OF), expected frequency (EF), MLEs, standard errors
(SEs), 95%CIs, Chi-squared test

�

χ 2
V

�

and P[V ] for the competitive models for the carious
teeth data. Figure 5 gives the box plot, quantile-quantile (Q-Q) plot and total time in
test (TTT) plot. Figure 6 presents the fitted PMF, estimated HRF (EHRF), estimated
SF (ESF) (Kaplan-Meier plot) and estimated CDF (ECDF).

TABLE 8
OF, EF, MLE, SEs, 95%CIs, χ 2

V and P[V ] for carious teeth data.

Z OF EF

DGBH DBH P Gc DPa DR DLi DIR PLi

0 64 61.791 66.44 51.17 59.88 59.88 33.50 57.13 62.50 37.50

1 17 21.087 18.54 34.28 24.02 24.02 46.94 26.88 26.41 25.00

2 10 9.066 7.460 11.49 9.640 9.640 17.01 10.45 5.990 15.63

≥ 3 9 8.056 7.560 3.060 6.460 6.460 2.550 5.450 5.100 21.87

∑

100 100 100 100 100 100 100 100 100 100

π MLE 0.764 0.671 0.670 0.401 0.184 0.665 0.625 0.625 1.998

SEs 0.097 0.062 0.082 0.038 0.032 0.029 0.049 0.049 0.263

95%LowerCI 0.573 0.549 0.509 0.327 0.121 0.608 0.529 0.529 1.481

95%UpperCI 0.955 0.792 0.831 0.475 0.247 0.722 0.721 0.721 2.514

β MLE 1.309 - - - - - - - -

SEs 0.329 - - - - - - - -

95%LowerCI 0.663 - - - - - - - -

95%UpperCI 1.954 - - - - - - - -

χ 2
V 0.967 1.357 23.65 3.347 3.325 66.7 6.638 9.056 30.899

d.f 2 2 2 2 2 2 2 2 2

P[V ] 0.548 0.507 <0.001 0.188 0.199<0.001 .036 0.011<0.001
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TABLE 9
OF, EF, MLE, SEs, 95%CIs, χ 2

V and P[V ] for the carious teeth data (continued).

Z OF EF

DGBH EDLi DW DLi-II DIW GGc DLL DLFR DGE-II

0 64 61.791 63.57 62.58 59.88 63.30 62.73 62.73 59.90 63.51

1 17 21.087 19.75 21.35 24.02 22.48 21.36 22.42 24.01 20.19

2 10 9.066 9.090 8.85 9.640 4.440 8.760 7.010 9.630 8.81

≥ 3 9 8.056 7.230 7.22 6.460 7.780 7.150 7.840 6.460 7.49

∑

100 100 100 100 100 100 100 100 100 100

π MLE 0.764 0.379 0.374 0.401 0.633 0.467 0.745 0.402 0.468

SEs 0.097 0.065 0.049 0.269 0.049 0.089 0.101 0.056 0.072

95%LowerCI 0.573 0.252 0.278 0.000 0.537 0.293 0.546 0.291 0.327

95%UpperCI 0.955 0.506 0.470 0.928 0.729 0.641 0.944 0.511 0.609

β MLE 1.309 0.543 0.895 0.478 1.576 0.678 1.768 1.000 0.718

SEs 0.329 0.158 0.119 0.529 0.251 0.302 0.267 0.044 0.206

95%LowerCI 0.663 0.234 0.662 0.000 1.084 0.086 1.244 0.912 0.324

95%UpperCI 1.954 0.852 1.128 1.514 2.067 1.270 2.292 1.080 1.122

χ 2
V 0.967 0.739 1.507 3.347 3.503 1.57 2.783 3.340 0.973

d.f 2 1 1 1 1 1 1 1 1

P[V ] 0.548 0.390 0.219 0.067 0.061 0.210 0.095 0.068 0.324

Based on Tables 8 and 9, and Figure 6, the DGBH model provides the best fits against
all competitive models with P[V ] = 0.548. For bπ = 0.764 and bβ = 1.309, we have
E(Z) = 2.424, V(Z) = 17.244, S(Z) = 10.263,K(Z) = 231.096 and D(Z) = 7.114> 1.

7.2. Application 2: Counts of cysts of kidneys data

For counts of cysts of kidneys data set, we compare the fits of the DGBH model with
those of the DLi-II, DIW, DR, DIR, DLi, PLi, P and Gc models. Table 10 gives the ob-
served frequency (OF), expected frequency (EF), MLEs, standard errors (SEs), 95%CIs,
χ 2

V and P[V ] for the competitive models for the counts of cysts of kidneys data. Figure 7
gives the box plot, Q-Q plot and TTT plot, and Figure 8 displays the fitted PMF, EHRF,
ESF and ECDF.
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Figure 5 – Box plot, Q-Q plot and TTT plot for the carious teeth data.

0 1 2 3 4

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

x

F
it
te

d
 P

M
F

F
it
te

d
 P

M
F

0 1 2 3 4

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Exp

Obs

0 10 20 30 40

0
.0

0
.5

1
.0

1
.5

2
.0

x

E
H

R
F

π = 0.76418  β = 1.30853

0 1 2 3 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Kaplan−Meier

x

E
S

F

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ECDF

y

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Index

y

Figure 6 – The fitted PMF, EHRF, ESF and ECDF for the carious teeth data.
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TABLE 10
OF, EF, MLE, SEs, 95%CIs, χ 2

V and P[V ] for the counts of cysts of kidneys data.

Z OF EF

DGBH DLi-II DIW Gc P DR DIR DLi PLi

0 65 55.297 46.03 63.91 45.98 27.42 11.00 60.94 40.25 44.14

1 14 19.079 26.77 20.70 26.67 38.08 26.83 33.96 29.83 28.00

2 10 10.156 15.57 8.05 15.57 26.47 29.55 8.11 18.36 17.70

3 6 6.602 9.05 4.23 9.060 12.26 22.23 3.00 10.35 9.57

4 4 4.777 5.27 2.60 5.280 4.26 12.49 1.42 5.53 5.34

5 2 3.648 3.06 1.75 3.070 1.18 5.42 0.87 2.86 2.92

6 2 2.842 1.78 1.26 1.79 0.27 1.85 0.47 1.44 1.57

7 2 2.208 1.04 0.95 1.04 0.05 0.52 0.31 0.71 0.84

8 1 1.684 0.60 0.74 0.62 0.01 0.11 0.21 0.35 0.44

9 1 1.247 0.35 0.59 0.35 0.00 0.02 0.15 0.17 0.23

10 1 0.891 0.20 0.48 0.21 0.00 0.00 0.11 0.08 0.12

11 2 0.610 0.28 4.74 0.28 0.00 0.00 0.54 0.07 0.13

∑

110 110 110 110 110 110 110 110 110 110

π MLE 0.993 0.581 0.581 0.582 1.390 0.901 0.554 0.436 1.087

SEs 0.013 0.045 0.048 0.030 0.112 0.009 0.049 0.026 1.109

95%LowerCI 0.968 0.494 0.489 0.523 1.170 0.882 0.458 0.385 0.873

95%UpperCI 1.018 0.669 0.675 0.641 1.601 0.918 0.649 0.487 1.301

β MLE 2.276 0.001 1.049 - - - - - -

SEs 0.762 0.058 0.146 - - - - - -

95%LowerCI 0.782 0.000 0.763 - - - - - -

95%UpperCI 3.769 0.115 1.335 - - - - - -

χ 2
V 0.967 22.89 24.135 22.84 294.10 321.07 51.047 43.48 31.151

d.f 4 3 3 4 4 4 4 4 4

P[V ] 0.322 <0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001
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Figure 7 – Box plot, Q-Q plot and TTT plot for the counts of cysts of kidneys data.
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Figure 8 – The fitted PMF, EHRF, ESF and ECDF for the counts of cysts of kidneys data.
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Based on Table 10 and Figure 8, the DGBH provides the best fits against all compet-
itive models with P[V ] = 0.322. For bπ = 0.993 and bβ = 2.276, we have E(Z) = 2.647,
V(Z) = 6.784, S(Z) = 2.192,K (Z) = 8.318 and D(Z) = 2.563> 1.

8. CONCLUSIONS

A new discrete distribution which includes the discrete Burr-Hatke distribution is de-
fined and studied. The probability mass function of the new model can be "right skewed"
with different shapes, bimodal and "uniformed". The hazard rate function of the new
model can be "monotonically decreasing", "upside down", "monotonically increasing",
"upside down increasing", and "upside down-constant-increasing". Relevant statistical
properties, such as the probability generating function, ordinary moments, index of dis-
persion and order statistics are derived. Based on a numerical analysis for the mean, vari-
ance, skewness, kurtosis and the index of dispersion of the discrete extended Burr-Hatke
(DGBH) and discrete Burr-Hatke (DBH) distributions, it is noted that the mean of the
DGBH distribution increases as the parameterπ increases. The skewness of the DGBH
distribution is positive and can range in the interval (2.0× 10−4, 158220.3) whereas the
skewness of the DBH distribution can only range in the interval (3.208,106.612), the
spread for kurtosis of the DGBH distribution ranges from 1 to≈∞, whereas kurtosis of
the DBH distribution ranges from 17.94759 to 20159.06. The index of dispersion of the
DGBH distribution belongs to the interval (0.5,80680.57). So, the index of dispersion
of the DGBH distribution can be in (0,1) or be greater than 1. Thus, the new DGBH
distribution could be useful in modeling "under-dispersed" or "over-dispersed" count
data, whereas index of dispersion of the DBH distribution can onlyrange in the interval
(1,2424.225). We presented certain characterizations of the DGBH distribution. These
characterizations are based on: (i) the conditional expectation of certain function of the
RV and (i i) in terms of the hazard rate function. Bayesian (under the squared error loss
function) and non-Bayesian estimation methods (maximum likelihood estimation, ordi-
nary least squares and weighted least squares) are considered. Numerical simulations for
comparing Bayesian and non-Bayesian estimation methods are performed. Moreover,
the DGBH model is applied for modeling the carious teeth data and counts of cysts of
kidneys data. The DGBH model provides the best fits against many well-known com-
petitive models. We hope that the new distribution will attract wider applications in
reliability, engineering and other areas of research.
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SUMMARY

In this work, a new discrete distribution which includes the discrete Burr-Hatke distribution is
defined and studied. Relevant statistical properties are derived. The probability mass function
of the new distribution can be "right skewed" with different shapes, bimodal and "uniformed".
Also, the corresponding hazard rate function can be "monotonically decreasing", "upside down",
"monotonically increasing", "upside down increasing", and "upside down-constant-increasing".
A numerical analysis for the mean, variance, skewness, kurtosis and the index of dispersion is
presented. The new distribution could be useful in the modeling of "under-dispersed" or "over-
dispersed" count data. Certain characterizations of the new distribution are presented. These
characterizations are based on the conditional expectation of a certain function of the random
variable and in terms of the hazard rate function. Bayesian and non-Bayesian estimation meth-
ods are considered. Numerical simulations for comparing Bayesian and non-Bayesian estimation
methods are performed. The new model is applied for modeling carious teeth data and counts of
cysts of kidneys data.

Keywords: Discretization; Characterizations; Discrete Burr-Hatke distribution; Bayesian esti-
mation; Metropolis Hastings; Markov Chain Monte Carlo; Maximum likelihood; Cramér-von-
Mises.
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