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1. INTRODUCTION

The problem of classification into several populations or groups has applications in al-
most all branches of science and engineering. In a general framework, the problem
of classification consists in classifying a new observation, say x into one of the several
populations/groups, say Π1, Π2, . . . , Πk , using the information available for x and cer-
tain methodologies. For example, let’s consider a newly launched electronic/electrical/
mechanical product in the market that needs to be classified into several categories in
terms of its performance or quality: poor, average, good or excellent. Another example
lays in medical diagnosis, where blood samples are collected to classify them into sev-
eral groups: A, B, AB+, A+, etc. Moreover, in military surveillance, the aircrafts are
recognized and identified basing on flight characteristics and moving patterns. The clas-
sification technique is also used in intelligent video surveillance applications, in pattern
recognition, in the study of psychopathology, in the analysis of lifetime data, etc. One
may refer to Webb (2003) for some applications of classification problems in pattern
recognition for real-life situations.

In this article, we consider the classification rules for classifying a new observation
or a group of observations into one of the two exponential populations Exp(µ,σ1) and
Exp(µ,σ2)when the samples are type-II right censored, with a common location param-
eter µ and possibly different scale parameters σ1 and σ2, respectively. Here, Exp(µ,σi )
denotes the exponential population Πi , i = 1,2 with a probability density function

fi (x|µ,σi ) =
1
σi

e−(
x−µ
σi
), x >µ, µ ∈R, σi > 0, i = 1,2. (1)
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The problem of classification using a complete sample has been studied under various
statistical models. The exponential distribution is very useful in the study of survival
analysis, life testing experiments, queuing theory, reliability theory, and related areas.
Suppose two brands of electronic devices are put for a life testing experiment. Due to
some constraints (maybe time or cost), the experimenter could observe only the first
few observations from each of the two groups or populations. It is assumed that the
lifetimes of each unit are random and follow exponential distributions with the same
minimum guarantee time (location parameter). Based on the observed lifetimes of the
new devices from one of these two brands, we want to classify this new device into one of
these brands using classification rules. For more details on exponential distribution and
classification using exponential distributions one may refer to Jana and Kumar (2016),
Lawless (2003) and Basu and Gupta (1976).

The problem of classification and related parameter estimation using normal popu-
lations has been well investigated by many researchers in the past. We refer to Anderson
(1951), Rueda et al. (1997), Long and Gupta (1998), Fernández et al. (2006), Conde et al.
(2012), Jana and Kumar (2017) and to the references cited therein for details of classifica-
tion and related estimation problems using several normal populations.

The classification problem using two or more exponential populations was first con-
sidered by Basu and Gupta (1971), then by Basu and Gupta (1976). The authors pre-
sented the classification rules by plugging the maximum likelihood estimators of the
unknown parameters in the classification function and proved the consistency of the
proposed rule. They also introduced the predictive classification rules by considering
the conjugate prior distribution of the unknown parameters of the concerned popula-
tions. Furthermore, they proposed the classification rules based on the type-II censored
samples. Adegboye (1993) discussed the optimal classification rule for one-parameter
exponential populations. They obtained the expressions for the probabilities of mis-
classification and proved that it depends upon the ratio of the scale parameters. Conde
et al. (2005) studied the classification problem for one-parameter exponential distribu-
tion with a restriction that the mean of the second population is greater than the mean of
the first population and also obtained the improved classification rules. Recently, Jana
and Kumar (2016) studied the classification problem for two two-parameter exponential
distributions based on the mixed estimators of the associated parameters. However, the
problem of classification based on censored samples has not gained much attention from
researchers.

Interestingly, the classification rules obtained in this article are based on some esti-
mators of the common location parameter under the type-II censoring scheme, which
has been studied fairly in the literature of statistical inference. Chiou and Cohen (1984)
dealt with the problem of estimating the common location parameter of two exponen-
tial populations using type-II censored samples. They proposed the Maximum Like-
lihood Estimator (MLE) and the Uniformly Minimum Variance Unbiased Estimator
(UMVUE) for µ, when the scale parameters are unknown and different. Elfessi and
Pal (1991) considered the estimation of common scale and different location parameters
of several exponential populations using type-II censored samples. Recently, Tripathy
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(2016) dealt with the problem of estimating the common location parameter of two ex-
ponential populations from a decision-theoretic viewpoint. He considered the affine
equivariant class of estimators, which contains the MLE, a modification to the MLE,
and the UMVUE of µ. He further obtained a sufficient condition for improving es-
timators in this class and proposed the improved estimators of MLE and UMVUE. It
will be interesting to construct classification rules using these nice estimators under the
type-II censoring scheme and compare their performances in terms of probabilities of
correct classification.

When complete samples are available from two exponential populations, the prob-
lem of estimating common location parameter µ has been well investigated by several
researchers in the recent past. For a detailed review and some recent updates on esti-
mating µ using complete sample, we refer to Tripathy et al. (2014) and to the references
cited therein. Jana and Kumar (2016) considered the classification problem for two ex-
ponential populations. The authors constructed several classification rules using some
of the estimators ofµ and studied their performances numerically. The problem of clas-
sification under complete sample from two or more exponential populations has been
investigated by Basu and Gupta (1976), Adegboye (1993) and Conde et al. (2005).

The rest of our work is organized as follows. In Section 2, we discuss various estima-
tors of the associated model parameters. In particular, we derive the UMVUEs of the
scale parameters and sufficient conditions for improving equivariant estimators of the
scale parameters. Section 3 discusses the classification rule for the two exponential pop-
ulations with a common location parameter and different scale parameters using type-II
censored samples and shows these rules are consistent. In Section 4, utilizing the MLE,
the modified MLE, the UMVUE, and the improved estimators of the common location
parameter proposed by Tripathy (2016), several classification rules are constructed. In
Section 5, we numerically compare the performances of all the proposed classification
rules in terms of probabilities of correct classification and expected probability of cor-
rect classification using the Monte-Carlo simulation method. In Section 6, we discuss a
real-life example to show the potential application of our model problem.

2. CERTAIN RESULTS ON ESTIMATING THE ASSOCIATED PARAMETERS

We note that Tripathy (2016) considered the same model problem and derived certain
estimators of µ (when the scale parameters are unknown) that improve upon the MLE
and UMVUE. In this Section, we consider a certain class of equivariant estimators for
the two scale parameters σ1 and σ2, and derive sufficient conditions for improving es-
timators in the class using the orbit-by-orbit improvement technique of Brewster and
Zidek (1974).

Suppose Πi is the i t h shifted exponential population Exp(µ,σi ) having probability
density function

fi (x|µ,σi ) =
1
σi

e−
�

x−µ
σi

�

, x >µ, µ ∈R, σi > 0, i = 1,2, (2)
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whereµ is known as the common minimum guarantee time and σi the residual life after
minimum guarantee period.

Let X(1) ≤ X(2) ≤ · · · ≤ X(r ), 2 ≤ r ≤ m, be the type-II right censored samples
taken from a random sample of size m having the probability density function f1 (that
is population Π1). Similarly, let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s), 2 ≤ s ≤ n be the type-II
right censored sample taken from a random sample of size n having the probability
density function f2 (that is population Π2). Here, r and s are known prefixed numbers.
Note that, a complete and sufficient statistic for this model is (Z ,V1,V2). The random
variables are defined as

Z =min(X(1),Y(1)), V1 =U1−Z , V2 =U2−Z , (3)

where

U1 =
1
m

�

r
∑

i=1

X(i)+(m− r )X(r )

�

, U2 =
1
n

�

s
∑

i=1

Y(i)+(n− s)Y(s)

�

. (4)

Based on the type-II right censored samples, the MLEs of µ, σ1 and σ2 are, respec-
tively, given by

µML =min
�

X(1),Y(1)
�

= Z , σ1ML =
m
r

V1 and σ2ML =
n
s

V2. (5)

Furthermore, a modification to the MLE of µ is obtained as

µMM = Z − 1
p̂

, (6)

where p̂ = m/σ1ML+ n/σ2ML (see Tripathy, 2016).
The UMVUE of µwas obtained by Chiou and Cohen (1984) for equal sample sizes,

however for unequal sample sizes, it was obtained by Tripathy (2016) under type-II right
censoring scheme. The UMVUE of µ is given by

µMV = Z −
V1V2

(r − 1)V2+(s − 1)V1
. (7)

In the following Theorem, the UMVUEs of σ1 and σ2 are derived.

THEOREM 1. The UMVUEs of σ1 and σ2 are given respectively as

σ1MV =
m

r (r − 1)

�

rV1−
(s − 1)V 2

1

(s − 1)V1+(r − 1)V2

�

(8)

and

σ2MV =
n

s(s − 1)

�

sV2−
(r − 1)V 2

2

(s − 1)V1+(r − 1)V2

�

. (9)
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PROOF. In order to prove the result, recall that the statistic (U1, U2,Z) is sufficient.
Further the statistic (Z ,V1,V2) is complete and sufficient. Let us define the new random
variables T1 and T2 respectively as

T1 =
r
∑

i=1

(X(i)−X(1))+ (m− r )(X(r )−X(1)), (10)

and

T2 =
s
∑

j=1

(Y( j )−Y(1))+ (n− s)(Y(s)−Y(1)). (11)

Note that the the random variables 2T1/σ1 and 2T2/σ2 are independent and follow
χ 2 distributions with degrees of freedom 2(r−1) and 2(s−1), respectively. The random
variables X(1) and Y(1) follow exponential distributions Exp(µ,σ1/m) and Exp(µ,σ2/n),
respectively, and are also independent. The random variables T1 and T2 follow gamma
distributions with shape parameters r − 1 and s − 1 and scale parameters σ1 and σ2,
respectively. Thus, an unbiased estimator of σ1 is given by T1/(r − 1).

The UMVUE of σ1 is thus given by

1
r − 1

E {T1|(U1−Z , U2−Z ,Z)} = m
r − 1

E
�

(U1−X(1))|(U1−Z , U2−Z ,Z)
�

=
m

r − 1
E
�

(V1+Z −X(1))|(U1, U2,Z)
�

=
m

r − 1

�

V1+Z − E
¦

X(1)|(U1, U2,Z)
©�

. (12)

The conditional expectation E
¦

X(1)|(U1, U2,Z)
©

has been evaluated in Chiou and
Cohen (1984), which is given by

E
¦

X(1)|(U1, U2,Z)
©

= Z +
V 2

1

r (r − 1)W
, (13)

where W = V1
r−1 +

V2
s−1 .

Substituting Eq. (13) in Eq. (12), we get

1
r − 1

E {T1|(U1−Z , U2−Z ,Z)} = m
r − 1

�

V1−
V 2

1

r (r − 1)W

�

=
m

r (r − 1)

�

rV1−
(s − 1)V 2

1

(s − 1)V1+(r − 1)V2

�

.(14)

In a similar manner, the UMVUE of σ2 can be derived, by considering T2/(s −1) as
an unbiased estimator. Thus, we have

1
s − 1

E {T2|(U1−Z , U2−Z ,Z)} = n
s − 1

�

V2+Z − E
¦

Y(1)|(U1, U2,Z)
©�

. (15)
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The conditional expectation is

E
¦

Y(1)|(U1, U2,Z)
©

= Z +
V 2

2

s(s − 1)W
. (16)

Substituting Eq. (16) in Eq. (15), we get

1
s − 1

E {T2|(U1−Z , U2−Z ,Z)} = n
s − 1

�

V2−
V 2

2

s(s − 1)W

�

=
n

s(s − 1)

�

sV2−
(r − 1)V 2

2

(s − 1)V1+(r − 1)V2

�

.(17)

This completes the proof of the Theorem. 2

Tripathy (2016) proposed some estimators for µ under type-II censoring. These
estimators, which improve upon the MLE and the UMVUE, are respectively given by

µ̂ML =
¨

Z − V2
r+s , if V1 >V2,

Z − V1
r+s , if V1 ≤V2,

(18)

and

µ̂MV =
�

Z − V1
r+s max(V , 1), if − V

(r−1)V+s <−
1

r+s max(V , 1),
µMV, otherwise,

(19)

where V =V2/V1.
Next, we propose a class of equivariant estimators for σi , i = 1,2, and derive suf-

ficient conditions for improving estimators in this class. In order to estimate the scale
parameters, we use the loss function

L(di ,σi ) =
�

di −σi

σi

�2

, (20)

where di is an estimate for σi , i = 1,2.
Consider the affine group of transformations GA= {ga,b : ga,b (x) = ax+b , a > 0 and

b ∈R}. Under the group of transformations ga,b , σi → aσi ,µ→ aµ+b . The sufficient
statistics are transfered as Z → aZ + b , Vi → aVi , i = 1,2. Under this transformation,
the problem remains invariant if we take the loss function as given in Eq. (20). Based
on the complete and sufficient statistic (Z ,V1,V2), the form of an affine equivariant
estimator for σi is obtained as

dφi
=Viφi (V ), (21)

where V = V2/V1 and φi is any function of V such that φi : (0,∞)→ (0,∞). Let us
define the following functions φ0

i (v) for the equivariant estimators dφi
, i = 1,2, as

φ0
1(v) =
§ m

r+s , if φ1(v)<
m

r+s
φ1(v), otherwise

(22)
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and

φ0
2(v) =
§ nv

r+s , if φ2(v)<
nv
r+s

φ2(v), otherwise.
(23)

The following Theorem is immediate and gives a sufficient condition for improving
the class of estimators dφ1

for estimating the scale parameter σ1.

THEOREM 2. Let dφ1
be the class of equivariant estimators of the form in Eq. (21) for

estimating the scale parameter σ1. Let the loss function be the one given in Eq. (20). The
equivariant estimator dφ1

is inadmissible and is improved by dφ0
1
, if there exists some values

of parameters (µ,σ1,σ2), such that P
�

φ1(V ) ̸=φ0
1(V )
�

> 0.

PROOF. The Theorem can be proved by applying the orbit-by-orbit improvement
technique of Brewster and Zidek (1974). Let us consider the conditional risk function
of dφ1

given V

R
�

(dφ1
,σ1)|V
�

=
1
σ2

1

E
�

(V1φ1(V )−σ1)
2|V = v
�

. (24)

Observe that the above risk function is convex in φ1, hence its minimizing choice is
obtained as

φ1(v,τ) =
σ1E(V1|V = v)
E(V 2

1 |V = v)
, (25)

where τ = σ2/σ1 > 0. The conditional expectations E(V1|V ) and E(V 2
1 |V ) have been

evaluated in Tripathy (2016). Utilizing those values and simplifying, we obtain the min-
imizing choice of φ1 as

φ1(v,τ) =
1

r + s
[m+ nτv]. (26)

In order to apply the Brewster and Zidek (1974) technique, we need the supremum
and infimum of φ1 with respect to τ for fixed V = v. It is easy to observe that the
function φ1 is increasing for τ ∈ (0,∞). Hence, we have

inf
τ∈(0,∞)

φ1(τ, v) =
m

r + s
and sup

τ∈(0,∞)
φ1(τ, v) =∞. (27)

Utilizing these values, we define the function φ0
1 as given in Eq. (22). As an application

of Theorem 3.1.1 of Brewster and Zidek (1974), we have R(dφ1
,σ1)≥ R(dφ0

1
,σ1), hence

the Theorem is proved. 2

The following Theorem gives the sufficient condition for improving upon an equiv-
ariant estimator of σ2.
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THEOREM 3. Let dφ2
be an equivariant estimator of the form in Eq. (21) for estimating

the scale parameter σ2. Let the loss function be the one given in Eq. (20). The equivariant
estimator dφ2

is inadmissible and is improved by dφ0
2
, if there exist some values of parameters

(µ,σ1,σ2), such that P
�

φ2(V ) ̸=φ0
2(V )
�

> 0.

PROOF. The proof is similar to the proof of the Theorem 2 and hence is omitted.
2

REMARK 4. Note that, in order to improve the MLEs and UMVUEs of σ1 and σ2 using
Theorems 2 and 3, the sufficient conditions must hold for some choices of parameters. It is
easy to see that, the MLEs of σ1 and σ2 are in the form of Eq. (21), that is dφ1ML

=V1φ1ML,
where φ1ML = m/r and dφ2ML

= V1φ2ML, where φ2ML = nV /s . The conditions for im-
proving the MLEs do not hold true, hence could not be improved by using Theorem 2.
Similarly, one can check that, the sufficient condition for improving the MLE of σ2 does
not satisfy, hence could not be improved by applying Theorem 3. Further, observe that, the
UMVUE of σi , i = 1,2, is in the form of Eq. (21), that is we can write σ1MV =V1φ1MV(V ),
where φ1MV(V ) =

m
r (r−1) [r −

s−1
(s−1)+(r−1)V ]. In order to improve this estimator, the condi-

tion φ1MV(V ) <
m

r+s must hold true. Similarly, the UMVUE σ2MV = V1φ2MV(V ), where

φ2MV(V ) =
n

s(s−1) [sV − (r−1)V 2

(s−1)+(r−1)V ]. In order to improve the estimator σ2MV, the condi-

tion φ2MV(V ) <
nV
r+s must hold true. It has been seen, from our simulation study, that the

conditions hold true for a small range of parameters and v. The amount of risk improve-
ment over the UMVUEs of σ1 and σ2 is insignificant. However, the Theorems 2 and 3 give
two complete class results for estimating the scale parameters using censored samples.

3. CLASSIFICATION RULE BASED ON CENSORED SAMPLES

In this Section, we will discuss a classification rule to classify a new observation, say t ,
into one of the populations Π1 and Π2, when the rule has been constructed using the
type-II right censored samples from these two populations.

Suppose we have type-II right censored samples from the two populations Π1 and
Π2, as discussed in Section 2. A new observation t is classified into the populationΠ1 if

log
�

f1(t )
f2(t )

�

≥ log
�

C (2|1)q2

C (1|2)q1

�

(28)

and into the population Π2 if

log
�

f1(t )
f2(t )

�

< log
�

C (2|1)q2

C (1|2)q1

�

, (29)

where C (i | j ) is the cost of misclassification when an observation is from the population
Π j and is misclassified into the populationΠi , i ̸= j , i , j = 1,2; qi is the prior probability
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that the observation belongs to the population Πi . We assume that the populations are
equally likely and the costs of misclassification remain the same, that is q1 = q2 and
C (1|2) = C (2|1). The details of this classification functions as well as the rules can be
seen in Anderson (1951).

Using the results from Eq. (28) to Eq. (29), we obtain the classification function in
our model to classify the new observation t as

W (t ) = (t −µ)
�

1
σ1
− 1
σ2

�

− log
�

σ1

σ2

�

. (30)

Using this classification function W , the classification rule, say R, is given by:

R: classify t into Π1 if W (t )≤ 0, and
classify t into Π2 if W (t )> 0. (31)

When the training samples are incomplete or censored (in our case it is type-II right
censored), it is important to classify a group of observations rather a single observation,
as it gives more information about the population. Here, we discuss a rule for classifying
the group of observations which is also censored. Suppose we have to classify the ordered
sample t(1) ≤ t(2) ≤ · · · ≤ t(l ) taken from a random sample of size k, 2≤ l ≤ k, from the
population, say Π0 (Exp(µ0,σ0)), having density f0, into one of the populations Π1 or
Π2. It is known that (µ0,σ0) = (µ,σi ), for exactly one i , with i = 1 or 2. In order to
classify the population Π0 into one of the populations Π1 or Π2, we follow the method
proposed by Basu and Gupta (1976).

Let us define the statistics Ui k as

Ui k = (k − i + 1)(t(i)− t(i−1)), i = 1,2, . . . l and t(0) =µ0. (32)

These statistics are independent and identically distributed and have the same prob-
ability density function f0 with µ0 = 0. Thus, the classification rule to classify Π0
�

t(1) ≤ t(2) · · · ≤ t(l )
�

into Π1 or Π2 is based on a random sample (U1k , U2k , . . . , Ul k ) of
size l . Thus, we define the modified classification function as

W (U ) = (Ū −µ)
�

1
σ1
− 1
σ2

�

− log
�

σ1

σ2

�

, (33)

where Ū = 1
l

∑l
i=1 Ui k . Utilizing this classification function, we propose the classifica-

tion rule, say R1, for our model as

R1:classify Π0 into Π1 if W (U )≤ 0, t(1) >µ, and

classify Π0 into Π2 if W (U )> 0, t(1) >µ. (34)

Let us denote P (i | j ) as the probability that the observation actually from the popu-
lation Π j but is misclassified into the population Πi , using the rule R1, i ̸= j . In this
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case, the Expected Probability of Misclassification (EPM) of the rule R1 is given by
EPM(R1) = (P (1|2, R1)+ P (2|1, R1))/2. The unknown parameters (µ,σ1,σ2), involved
in the classification statistic, will be replaced by their corresponding estimators, which
are obtained in Section 2.

THEOREM 5. The classification rule R1 is consistent, that is EPM(R1) tends to zero as
the sample size k tends to∞.

PROOF. The proof is along the same line as of Theorem 2 of Basu and Gupta (1976)
and hence is omitted. 2

4. CLASSIFICATION RULES USING ESTIMATORS OF ASSOCIATED PARAMETERS

In this Section, we propose certain classification rules for classifying a single observation
and a group of observations into one of the exponential populations. These classification
rules will be formed using some popular estimators of µ as well as the scale parameters
σ1 and σ2 under the type-II right censoring scheme.

4.1. Classification rule based on the MLE

Recall that the MLEs of the parameters µ, σ1 and σ2 have been obtained as µML, σ1ML
and σ2ML, respectively. Utilizing these MLEs of the parameters, we define the classifica-
tion function for classifying an observation t as

WML(t ) = (t −µML)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (35)

Utilizing this classification function, we define the rule RML as: classify t into Π1 if
WML(t ) ≤ 0, else classify t into the population Π2. Similarly, a group of new obser-
vations, say (t(1) ≤ t(2) ≤ · · · ≤ t(l )) from Π0 will be classified using the classification
function

WML(Ū ) = (Ū −µML)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (36)

Utilizing this function, we define the classification rule RML as: classify Π0 into Π1
if WML(Ū ) ≤ 0, t(1) > µML, and classify Π0 into the population Π2 if WML(Ū ) > 0,
t(1) >µML.

Utilizing the modified MLE µMM for µ, we construct the classification function for
classifying a single observation t , as

WMM(t ) = (t −µMM)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (37)
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Using this function, we define a classification rule, say RMM as: classify t into Π1 if
WMM(t )≤ 0, else classify t into the population Π2. Similarly, for classifying the sample
(t(1) ≤ t(2) ≤ · · · ≤ t(l )), we define the classification function

WMM(Ū ) = (Ū −µMM)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (38)

Using this classification function, we define the rule RMM as: classify Π0 into Π1 if
WMM(Ū ) ≤ 0, t(1) > µMM, and classify Π0 into the population Π2 if WMM(Ū ) > 0,
t(1) >µMM.

Next, using the improved estimator µ̂ML for µ along with MLEs of σ1 and σ2, we
construct the classification function in order to classify an observation t as

ŴML(t ) = (t − µ̂ML)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (39)

Using this classification function, we define a classification rule, say R̂ML as: classify t
into Π1 if ŴML(t ) ≤ 0, else classify t into the population Π2. Similarly, for classifying
the sample (t(1) ≤ t(2) ≤ · · · ≤ t(l )) from Π0, we define the classification function as

ŴML(Ū ) = (Ū − µ̂ML)
�

1
σ1ML
− 1
σ2ML

�

− log
�

σ2ML

σ1ML

�

. (40)

Using this classification function, we define the rule R̂ML as: classify Π0 into Π1 if
ŴML(Ū ) ≤ 0, t(1) > µ̂ML, and classify Π0 into the population Π2 if ŴML(Ū ) > 0,
t(1) > µ̂ML.

4.2. Classification rule based on the UMVUE

In this Section, we propose the classification rules for classifying censored samples from
Π0 into eitherΠ1 orΠ2, using the UMVUEs of the model parameters derived in Section
2.

Using the UMVUEs of the model parameters, we define a classification function,
say WMV(t ), for classifying a single observation t from Π0 as

WMV(t ) = (t −µMV)
�

1
σ1MV
− 1
σ2MV

�

− log
�

σ2MV

σ1MV

�

. (41)

Utilizing this function, we define a rule, say RMV, for classifying the single observation
t as: classify t into Π1 if WMV(t ) ≤ 0, else classify t into the population Π2. Similarly,
we define the classification function for classifying a sample (t(1) ≤ t(2) ≤ · · · ≤ t(l )) from
Π0 as

WMV(Ū ) = (Ū −µMV)
�

1
σ1MV
− 1
σ2MV

�

− log
�

σ2MV

σ1MV

�

. (42)
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Using this classification function, we define the rule RMV as: classify Π0 into Π1 if
WMV(Ū ) ≤ 0, t(1) > µMV, and classify Π0 into the population Π2 if WMV(Ū ) > 0,
t(1) >µMV.

Using the improved estimator µ̂MV for the UMVUE of µ proposed by Tripathy
(2016) along with the UMVUEs of σ1 and σ2, we define a new classification function for
classifying a single observation t as

ŴMV(t ) = (t − µ̂MV)
�

1
σ1MV
− 1
σ2MV

�

− log
�

σ2MV

σ1MV

�

. (43)

Using this classification function we define the classification rule R̂MV as: classify t into
Π1 if ŴMV(t ) ≤ 0, else classify t into Π2. Similarly, we define a classification function
for classifying a sample (t(1) ≤ t(2) ≤ · · · ≤ t(l )) as

ŴMV(Ū ) = (Ū − µ̂MV)
�

1
σ1MV
− 1
σ2MV

�

− log
�

σ2MV

σ1MV

�

. (44)

Utilizing this classification function, we define the rule R̂MV as: classify Π0 into Π1 if
ŴMV ≤ 0, t(1) > µ̂MV, and classify Π0 into Π2 if ŴMV > 0, t(1) > µ̂MV.

5. A SIMULATION STUDY FOR COMPARING THE CLASSIFICATION RULES

In this Section, we compare all the proposed classification rules, such as RML, RMM, RMV,
R̂ML and R̂MV as given in the Section 4. Though we have derived the classification rules
for classifying a single observation t and a group of observations, we only present the
simulation results for classifying the latter one. The simulation results for classifying a
single observation can also be obtained in a very similar manner.

To compare the classification rules using type-II censored samples from the two ex-
ponential populations, we consider the following steps.

1. Generate training sample, that is, a type-II censored sample of size r from the ex-
ponential populationΠ1 with scale parameter σ1 and location parameterµ. Here,
we first generate a random sample of size m from the population Π1, then, after
sorting in increasing order, we collect the first r observations, which is the type-
II right censored sample. In a very similar manner, we also generate a sample of
size n from the population Π2 with scale parameter σ2 and location parameter µ,
then, after ordering, we collect type-II right censored sample of size s .

2. Using these training samples, the unknown parameters σ1, σ2 and µ, which are
involved in the classification rules, are estimated and consequently used in the
classification rules.
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3. Next, we generate a type-II censored sample from the population Π1 with same r
and m and estimate the value of the statistic Ū ; then, using it in the classification
rules we check whether it belongs to the population Π1.

4. Similarly, we generate a type-II censored sample from the populationΠ2 with same
s and n and estimate the value of the statistic Ū ; then, using it in the classification
rules we check whether it belongs to the population Π2.

The above procedure is carried out using the well known Monte-Carlo simulation
method to compare the probabilities of correct classification P (1|1), P (2|2) and the ex-
pected probability of correct classification (EPC) for all the proposed classification rules.
The number of replications is 20,000. We assume that the costs of misclassification and
the prior probabilities are equal, that is C (1|2) = C (2|1) and q1 = q2 = 0.5 for the sim-
ulation study. A high level of accuracy is achieved and the standard error is checked (it
is of the order 10−3). Here, the accuracy of simulation means the sample generation,
construction of estimators and consequently the construction of classification rules are
accurate with an error of the order 10−3. We also note that the probabilities of misclas-
sification and correct classification are a function of τ = σ2/σ1 > 0 only.

The expected probability of correct classification (EPC) for a given rule, say R is
calculated as

EP (R) =
1
2
(P (1|1, R)+ P (2|2, R)) . (45)

We further compute the percentage of relative improvements in EPC values for all
the proposed rules with respect to the benchmark rule RML as

EP1=
�

EP (R̂ML)
EP (RML)

− 1

�

× 100, EP2=
�

EP (RMV)
EP (RML)

− 1
�

× 100

EP3=
�

EP (R̂MV)
EP (RML)

− 1

�

× 100, EP4=
�

EP (RMM)
EP (RML)

− 1
�

× 100. (46)

Further, we define the censoring factors CF1 and CF2 for both the populations as
the ratio of number of observed samples to total number of samples. It is CF1 = r/m
for first population and CF2 = s/n for the second population. Note that the values of
CF1 and CF2 are between 0 and 1.

A comprehensive simulation study is carried out by considering various combina-
tions of sample sizes, censoring factors and τ. However, for illustration purpose, we
present in Tables 1 to 3 the percentage of relative improvements in expected proba-
bility of correct classification of rules R̂ML, RMV, R̂MV and RMM over RML for some
specific choices of sample sizes, censoring factors and τ. Specifically, in Table 1, we
present the percentage of relative improvements in EPC for sample sizes (16,16) and
(24,24). The first column gives the values of τ. Each value of τ corresponds to four
values of the relative percentage of improvement. These four values are obtained for
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CF1=CF2= 0.25,0.50,0.75,1.0, respectively. Similarly, in Tables 2 and 3 the percent-
age of relative improvement in EPC are presented for unequal sample sizes.

We compute the probabilities of correct classification P (1|1) and P (2|2) for all the
proposed classification rules with various censoring factors and parameter choices. For
illustration purposes, we plot the graphs of P (1|1) and P (2|2) for all the classification
rules with sample sizes (16,16) and censoring factors CF1=CF2= 0.25,0.50,0.75,1 in
Figures 1 and 2. Specifically, in Figure 1 the values of P (1|1), (a) and (b ), are given for
censoring factors 0.25 and 0.75, respectively. In Figure 1 the values of P (2|2), (c) and
(d ), are presented for all the rules with censoring factors 0.25 and 0.75, respectively. In
a similar manner, we plot in Figure 2 the values of P (1|1) and P (2|2), (a) to (d ), against
τ for all the rules with censoring factors 0.50 and 1. The notations ML, MM, MLI, MV
and MVI are used for the probabilities of correct classifications P (1|1) and P (2|2) for the
classification rules RML, RMM, R̂ML, RMV and R̂MV, respectively.
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Figure 1 – Comparison of probability of correct classification for several classification rules: CF1=
CF2= 0.25,0.75.
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TABLE 1
Percentage of relative improvement in EPC for all the proposed rules:

CF1=CF2= 0.25,0.50,0.75,1.00.

τ (m,n)=(16,16) (m,n)=(24,24)

R̂ML RMM RMV R̂MV R̂ML RMM RMV R̂MV

0.25 16.34 22.11 28.63 28.45 18.07 24.24 28.62 28.60
18.48 25.02 28.24 28.24 19.02 25.85 27.92 27.92
19.19 25.88 27.82 27.82 19.55 26.73 27.79 27.79
19.58 26.34 27.68 27.68 19.88 27.00 27.82 27.82

0.50 19.73 24.44 30.54 29.86 21.87 26.57 30.44 30.18
22.09 26.87 29.94 29.84 23.46 28.37 30.56 30.53
23.42 28.12 30.29 30.27 23.98 28.56 30.13 30.12
23.95 28.43 29.99 29.97 24.05 28.75 29.79 29.78

0.75 21.15 25.09 29.69 28.70 23.80 27.43 31.45 30.87
24.84 28.66 31.01 30.69 25.83 28.95 31.00 30.83
25.94 29.34 30.98 30.86 26.38 29.10 30.69 30.60
26.99 30.06 30.79 30.73 27.18 29.72 30.75 30.71

1.00 21.71 25.51 30.15 29.02 24.41 27.81 30.45 29.78
24.53 27.29 29.64 29.26 26.58 29.03 31.35 31.18
26.25 28.92 30.90 30.68 27.94 30.08 31.45 31.30
28.06 30.50 31.26 31.13 28.84 31.02 31.59 31.50

1.25 21.09 25.03 29.84 28.55 23.62 27.04 29.69 29.13
25.77 29.13 31.86 31.48 26.48 29.44 31.05 30.88
25.76 28.70 30.40 30.21 28.04 30.87 32.09 32.00
26.45 29.02 30.48 30.33 29.01 31.26 32.01 31.95

1.50 20.24 24.74 30.02 29.03 23.63 27.50 31.20 30.72
24.83 28.70 31.38 31.14 25.55 29.26 31.34 31.15
25.11 28.62 30.55 30.38 26.51 29.94 31.42 31.40
25.47 28.96 30.60 30.52 27.35 30.66 31.70 31.68

1.75 20.30 24.69 29.92 29.13 22.43 26.75 30.84 30.49
23.39 27.62 30.52 30.32 23.82 28.13 30.55 30.50
24.42 28.67 31.19 31.11 25.60 29.90 31.25 31.23
24.86 29.04 30.87 30.83 26.17 30.33 31.34 31.32

2.00 19.19 23.83 29.48 28.88 21.49 26.43 30.68 30.32
22.08 26.81 29.85 29.75 24.06 28.91 31.21 31.14
23.46 27.91 30.29 30.26 23.71 28.34 29.82 29.81
24.22 28.72 30.20 30.20 24.13 28.84 29.99 29.99

2.25 18.70 23.66 29.15 28.68 20.96 26.15 29.97 29.77
22.23 27.67 31.14 31.04 23.22 28.25 30.30 30.25
22.52 27.70 29.91 29.88 23.85 29.14 30.76 30.75
23.32 28.58 30.19 30.18 24.05 29.24 30.52 30.52

2.50 18.31 23.52 28.82 28.46 20.78 25.88 30.27 30.13
20.69 25.99 29.19 29.10 22.16 27.46 29.81 29.80
21.70 27.10 29.48 29.47 22.45 28.14 29.43 29.42
22.45 27.83 29.52 29.52 22.54 28.16 29.25 29.25

2.75 18.03 23.62 29.25 28.89 19.70 25.30 29.64 29.52
20.63 26.25 29.61 29.53 20.47 25.97 28.39 28.38
21.09 26.94 28.97 28.96 21.84 27.77 29.14 29.14
21.51 27.28 28.99 28.99 22.03 28.14 29.13 29.13

3.00 17.58 23.13 29.33 28.98 19.60 25.48 29.70 29.59
20.32 26.05 29.26 29.22 20.84 27.24 29.59 29.59
20.87 26.86 28.93 28.92 21.26 27.61 29.09 29.09
21.37 27.36 29.00 29.00 21.50 28.05 28.93 28.93
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TABLE 2
Percentage of relative improvement in EPC for all the proposed rules:

CF1=CF2= 0.25,0.50,0.75,1.00.

τ ↓ (m,n)=(12,16) (m,n)=(16,24)

R̂ML RMM RMV R̂MV R̂ML RMM RMV R̂MV

0.25 15.07 22.09 30.63 30.37 16.20 24.20 31.06 30.95
17.37 24.66 29.12 29.09 17.49 25.80 28.96 28.95
18.13 26.06 28.87 28.87 19.51 27.44 29.51 29.51
18.56 26.81 28.72 28.72 18.84 27.97 29.29 29.29

0.50 18.92 24.61 31.66 30.74 19.83 26.12 31.01 30.46
21.73 27.39 31.49 31.24 22.42 28.48 31.42 31.31
22.55 28.17 31.24 31.14 24.60 29.70 32.04 31.98
23.74 28.94 31.09 31.08 23.78 29.76 31.51 31.49

0.75 20.11 24.93 31.56 30.24 21.92 26.82 31.53 30.67
23.66 27.50 30.82 30.25 25.25 29.37 31.09 30.90
26.25 30.10 31.96 31.69 27.41 30.35 31.73 31.54
27.13 30.62 32.19 32.06 27.22 30.65 31.83 31.77

1.00 20.41 24.12 29.88 28.48 23.12 26.78 30.34 29.48
24.30 27.52 31.17 30.61 26.40 29.43 31.23 30.90
26.17 29.12 30.59 30.28 28.48 30.86 32.12 31.86
26.78 29.41 30.66 30.48 29.21 31.26 32.43 32.30

1.25 19.93 23.93 29.03 27.79 22.27 25.75 29.94 29.28
24.58 27.76 30.58 30.17 26.44 29.28 30.73 30.52
25.51 28.40 30.15 29.86 26.36 29.27 30.42 30.32
26.82 29.47 30.96 30.78 27.91 30.15 31.30 31.24

1.50 20.17 23.80 29.22 28.13 22.43 26.01 29.90 29.36
23.35 26.36 29.59 29.26 24.98 27.95 29.79 29.66
25.33 28.41 30.48 30.32 24.53 28.01 29.30 29.29
26.48 29.37 30.83 30.75 25.89 28.40 29.59 29.55

1.75 19.21 22.97 28.70 27.77 20.69 24.10 27.79 27.41
23.12 26.82 29.77 29.46 24.00 27.07 29.18 29.05
23.75 27.17 29.03 28.94 24.17 28.06 29.28 29.29
23.90 27.35 29.23 29.18 25.67 28.71 29.73 29.73

2.00 19.37 23.58 29.32 28.61 20.60 24.24 27.76 27.55
22.10 25.92 28.86 28.67 22.58 26.48 28.52 28.47
23.68 27.47 29.57 29.51 23.02 27.60 29.09 29.08
23.81 27.70 29.21 29.18 24.34 28.05 29.21 29.20

2.25 18.16 22.28 27.98 27.32 20.43 24.32 28.09 27.72
21.57 25.80 29.12 28.97 21.90 25.35 27.61 27.57
22.24 26.18 28.59 28.54 22.08 26.65 28.16 28.15
22.93 26.97 28.65 28.64 23.43 27.19 28.43 28.42

2.50 18.06 22.40 27.76 27.30 20.22 23.88 27.78 27.53
21.52 25.63 28.84 28.77 21.68 25.65 27.73 27.71
21.83 26.15 28.38 28.37 22.24 26.99 28.45 28.45
22.17 26.81 28.30 28.29 23.31 27.45 28.46 28.46

2.75 17.17 21.10 26.65 26.31 19.55 23.40 27.87 27.70
20.75 25.22 28.57 28.51 21.35 25.63 27.68 27.66
21.73 26.16 28.44 28.44 21.07 26.08 27.49 27.49
22.04 26.81 28.36 28.35 22.07 26.56 27.43 27.43

3.00 17.65 22.00 27.80 27.40 19.23 23.35 27.36 27.24
20.19 25.05 28.10 28.05 20.85 25.09 27.10 27.09
20.51 25.18 27.30 27.25 20.08 25.37 26.84 26.84
21.07 25.73 27.26 27.26 21.31 26.12 26.91 26.91
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TABLE 3
Percentage of relative improvement in EPC for all the proposed rules:

CF1=CF2= 0.25,0.50,0.75,1.00.

τ ↓ (m,n)=(16,12) (m,n)=(24,16)

R̂ML RMM RMV R̂MV R̂ML RMM RMV R̂MV
0.25 16.27 20.88 26.74 26.51 17.94 22.36 26.32 26.27

18.53 23.71 26.83 26.82 19.42 24.07 25.87 25.87
19.32 24.83 26.83 26.83 19.60 24.59 25.73 25.73
19.53 25.12 26.55 26.54 20.14 25.26 26.06 26.06

0.50 19.26 23.23 29.28 28.58 21.07 24.52 28.80 28.45
22.90 26.64 29.46 29.24 23.33 27.00 29.31 29.27
23.31 26.64 28.91 28.86 23.77 27.23 28.38 28.36
23.35 26.98 28.76 28.75 24.34 27.87 28.95 28.95

0.75 19.77 23.43 28.71 27.57 22.75 26.23 30.05 29.30
23.72 26.92 29.07 28.66 25.74 28.58 30.40 30.12
25.49 28.22 29.63 29.36 26.79 29.08 30.32 30.21
25.87 28.15 29.59 29.49 27.59 29.84 30.70 30.66

1.00 20.48 24.91 30.04 28.69 22.78 26.65 31.27 30.36
24.32 27.63 30.42 29.94 26.83 29.91 31.84 31.49
26.35 29.18 31.05 30.83 26.96 29.69 31.45 31.29
27.84 30.31 31.10 30.81 28.89 31.08 32.07 31.90

1.25 20.03 24.50 30.85 29.48 23.35 28.15 32.51 31.46
24.52 28.54 31.77 31.34 26.54 30.46 32.71 32.49
25.31 28.76 30.83 30.64 26.58 29.97 31.72 31.61
27.36 30.62 32.19 32.01 28.82 32.11 33.35 33.29

1.50 19.34 24.08 30.49 29.14 21.81 26.99 32.38 31.47
22.75 27.38 30.90 30.61 24.75 29.62 31.95 31.67
23.90 28.14 31.17 30.95 26.15 30.92 32.38 32.29
24.67 28.94 30.89 30.74 26.26 30.54 32.11 32.06

1.75 18.61 23.87 31.01 29.93 21.34 27.25 32.73 32.18
22.42 27.84 31.40 31.09 24.48 30.22 33.27 33.09
23.37 28.63 31.10 31.00 24.81 30.17 32.28 32.22
23.98 28.79 31.05 30.99 25.83 31.36 32.95 32.92

2.00 18.24 23.77 31.31 30.25 20.56 26.87 32.63 32.27
21.60 27.06 31.54 31.29 23.08 29.20 32.48 32.39
22.57 28.47 31.00 30.93 23.76 30.09 32.27 32.24
22.99 28.54 30.74 30.70 24.29 30.19 32.09 32.07

2.25 17.49 23.17 30.88 30.09 19.61 25.94 31.80 31.30
20.97 26.84 30.55 30.43 21.72 28.42 31.66 31.60
21.85 27.81 30.69 30.65 22.37 28.86 31.14 31.13
22.15 28.32 30.81 30.79 22.73 29.43 31.17 31.17

2.50 17.25 23.12 31.23 30.56 19.50 26.37 32.49 32.16
20.61 26.95 31.42 31.29 21.48 28.58 32.03 32.00
21.80 28.38 31.30 31.28 21.50 28.23 30.46 30.44
22.39 28.84 31.06 31.05 22.48 29.63 31.32 31.32

2.75 16.59 22.66 31.15 30.59 18.27 25.25 31.48 31.23
19.56 26.21 30.72 30.64 19.97 27.36 30.58 30.56
20.43 27.44 30.29 30.28 20.99 28.78 31.15 31.14
20.61 27.70 29.89 29.89 20.67 28.39 29.96 29.96

3.00 16.50 22.93 31.43 30.84 18.16 25.83 32.66 32.47
19.24 26.44 31.08 30.98 20.39 28.12 31.67 31.65
20.36 27.52 30.60 30.58 20.42 28.41 30.65 30.65
20.48 27.90 30.25 30.24 20.93 29.14 30.70 30.70
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Figure 2 – Comparison of probability of correct classification for several classification rules: CF1=
CF2= 0.50,1.

The following observations are made from our simulation study as well as Tables 1
to 3 and Figures 1 to 2.

• As the values of τ increase, the probabilities of correct classification for all the
rules first decrease and attain their minimum, then increase and finally converge
to some values between 0 and 1 (see Figures 1 and 2). The maximum probability
of correct classification P (1|1) is obtained for the rules RMM and RMV, whereas
the maximum probability of correct classification P (2|2) is noticed for the rules
RMV and RMM.

• The expected probabilities of correct classification for the rules R̂ML, RMM, RMV

and R̂MV are always higher than the expected probability of correct classification
of the rule RML.
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• The relative percentage of improvement in EPC values for all the rules with re-
spect to RML varies between 16% and 33%. The maximum percentage of improve-
ment in EPC values is observed in the case of RMV.

• A similar pattern is noticed in terms of probabilities of correct classification and
expected probabilities of correct classification for other combinations of sample
sizes, censoring factors, and parameters for all the proposed rules.

• Based on our computational results, it is recommended to use the rule RMV for
classifying a type-II censored sample (t(1) ≤ t(2) ≤ · · · ≤ t(l )) into one of the popu-
lations Π1 or Π2.

REMARK 6. We present the simulation results by considering the test sample size and the
training sample size as equal; however, the overall conclusion regarding the performances of
the various proposed rules remains the same if one chooses the test sample size different from
the training sample size. This is verified by the simulation study.

6. A REAL LIFE EXAMPLE

In this Section, we consider a real-life situation that can be modeled using the two-
parameter exponential distributions and satisfy the equality of location parameters. Us-
ing these data sets, we compute the various classification rules and illustrate the method-
ologies proposed in the article.

Lawless (2003) considered survival data on 40 advanced lung cancer patients. This
data set was previously examined by Prentice (1973). Their purpose was to compare
the effects of two chemotherapy treatments, namely standard and test, in prolonging
the survival times of the patients, who can have four different types of tumors, namely
Squamous, Small, Adeno, and Large. For our purpose, we consider the data on large
tumors of two different types of test, such as standard and test. The data sets are given
as:

Standard, Large: 177, 50, 66, 16, 12, 40, 68, 12, 200, 80, 41, 12, 250, 70, 53, 8, 100, 60,
37, 13;

Test, Large: 164, 70, 68, 15, 19, 30, 39, 4, 43, 60, 49, 11, 340, 80, 64, 10, 231, 70, 67, 18.

Using the goodness of fit chi-square test, we find that the two-parameter exponential
distribution fits these two data sets well with p-values 0.25 and 0.30, respectively. Fur-
ther, we perform the test proposed by Hsieh (1986) to check the equality of the location
parameters. The equality of the location parameters can not be rejected with the level
of significance 0.05. This is a situation where our model fits well.

In order to illustrate the classification rules, we focus on the following cases. Let
us first consider the test observation t = 49 from the training population Π2, i.e., Test,
Large. Utilizing the proposed classification rules, we check which rules classify the test
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observation correctly. For this purpose, we collect the type-II censored data from these
two training data with r = 5 and s = 5 and, then, we compute the values of classification
statistics. The various values of classification statistics are obtained as WML =−0.04522,
ŴML = −0.03639, WMV = 0.000962, ŴMV = 0.00086, WMM = −0.037991. This shows
that the classification rules RML, R̂ML and RMM classify t = 49 incorrectly into the first
population (Standard, Large), whereas the rules RMV and R̂MV classify it into the second
population correctly. Similarly, we consider the other data points and classify using
the proposed rules. In this case, the percentage of correct classification for the rules
RMV and R̂MV is 52.5%. The percentage of correct classification for the rest of the rules
is 50%. We also compute the percentages of correct classification for all the rules by
considering some other choices of censoring factors. For example, when r = 18 and
s = 12, the percentage of correct classification for the rules RMV and R̂MV is 50%, whereas
for the rules RML, R̂ML and RMM it is 47%. In another case, when r = 16 and s = 4, the
percentage of correct classification for the rules RMV and R̂MV is 55%, whereas the rules
RML, R̂ML and RMM have percentage of correct classification equal to 45%.

Next, we classify a group of observations into one of the two data sets. Let us con-
sider that the test observation isΠ0 = (4,10,11,15,18) from the training populationΠ2.
Using the proposed classification rules we will classify this data set into one of the pop-
ulations and check which rules identify the Π0 correctly. The values of classification
statistics are computed as WML = −0.04522, ŴML = −0.000007, WMV = 0.0004022,
ŴMV = 0.000384, WMM = −0.0000085. This shows that the classification rules RML,
R̂ML and RMM classifyΠ0 incorrectly into the first population (Standard, Large), whereas
the rule RMV and R̂MV classify Π0 into the second population correctly.

Finally, we use the proposed classification rules to classify a new observation into
one of the two data sets. Suppose, a new observation, say t = 65, is given and we want
to classify it into one of the two populations. Assuming the original data as training
sample, we collect the type-II right censored samples with r = 14 and s = 14 and we
use them compute the classification statistics as WML = −0.000367, ŴML = −0.00011,
WMV = 0.0002981, ŴMV = 0.00028, WMM = −0.00011. Thus, the classification rules
RML, R̂ML and RMM classify t = 65 into the first population (Standard, Large), whereas
the rules RMV and R̂MV classify t = 65 into the second population (Test, Large).

7. DISCUSSION AND CONCLUSIONS

It is worth mentioning that a fair amount of research work has been done on classifi-
cation under the same model set-up using the whole samples from two or more shifted
exponential populations. However, when censored samples are available, not much at-
tention has been paid in this direction to the best of our knowledge. This article con-
sider the problem of classification into one of the two exponential populations with a
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common location parameter and different scale parameters using type-II right censored
samples. Tripathy (2016) considered the same model set-up and estimated the common
location parameter using the decision-theoretic approach. The author notably proposed
improved estimators for the MLE and the UMVUE and a modification to the MLE.
Moreover, we derive the MLEs and the UMVUEs for the associated scale parameters
and obtain sufficient conditions for improving these estimators. Utilizing all these esti-
mators for the associated model parameters, we construct several classification rules to
classify a single observation and a group of observations into one of the two exponential
populations. Performances of all the classification rules are evaluated through probabil-
ities of correct classification and the EPC numerically. Our simulation study establish
that the rules based on the UMVUE and its improved version for the common location
parameter have the best performance in terms of EPC values.

The problem we consider in this article can be generalized to the case of k(≥ 2) expo-
nential populations. Suppose we have type-II right censored samples from k exponential
populations Π1, Π2, . . ., Πk having density functions f1, f2, . . ., fk , respectively, where
fi ∼ Exp(µ,σi ), i = 1,2, . . . , k. Utilizing the estimators of the associated parameters,
we can construct classification rules to classify an observation t or a group of observa-
tions (t(1) ≤ t(2) ≤ . . . ≤ t(ri )

) (type-II right censored sample) from the population Πi

into one of the k populations as follows: classify t into the population Πi if fi/ f j ≥ 0,
j = 1,2, . . . , k, i ̸= j . The details of the classification problem for k populations will be
considered separately. In this article we only consider the case for k = 2 populations and
derive all the results related to k = 2 only. Moreover, the case of classification problem
using multivariate exponential distribution will be more challenging and interesting.
We hope that the present study will shed some light on the classification problems using
certain censoring schemes from other probabilistic models, that may arise in practice.
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SUMMARY

The problem of classification into two exponential populations with a common location param-
eter and different scale parameters under the type-II censoring scheme is considered. First, we
consider classes of equivariant estimators for the scale parameters and derive sufficient conditions
for improving estimators in these classes. Utilizing the maximum likelihood estimators (MLEs)
and the uniformly minimum variance unbiased estimators (UMVUEs) for the associated param-
eters, various classification rules are constructed for classifying an observation and a group of
observations into one of the two exponential populations. More importantly, a detailed and in-
depth simulation study has been done to numerically compare the probabilities of correct clas-
sification and the expected probability of correct classification for all the proposed classification
rules. Finally, a real-life example has been presented to illustrate the applicability of the proposed
classification rules under the type-II censoring scheme.

Keywords: Classification using censored sample; Equivariant estimators; Maximum likelihood
estimator (MLE); Probability of correct classification; Simulation study; Type-II censoring; Uni-
formly minimum variance unbiased estimator (UMVUE).
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