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1. INTRODUCTION

The problem of classification into several populations or groups has applications in al-
most all branches of science and engineering. In a general framework, the problem
of classification consists in classifying a new observation, say x into one of the several
populations/groups, say I, IL,, ..., I, using the information available for x and cer-
tain methodologies. For example, let’s consider a newly launched electronic/electrical /
mechanical product in the market that needs to be classified into several categories in
terms of its performance or quality: poor, average, good or excellent. Another example
lays in medical diagnosis, where blood samples are collected to classify them into sev-
eral groups: A, B, AB*, A*, etc. Moreover, in military surveillance, the aircrafts are
recognized and identified basing on flight characteristics and moving patterns. The clas-
sification technique is also used in intelligent video surveillance applications, in pattern
recognition, in the study of psychopathology, in the analysis of lifetime data, etc. One
may refer to Webb (2003) for some applications of classification problems in pattern
recognition for real-life situations.

In this article, we consider the classification rules for classifying a new observation
or a group of observations into one of the two exponential populations Exp(u, o,) and
Exp(u, 0,) when the samples are type-II right censored, with a common location param-
eter u and possibly different scale parameters o, and o,, respectively. Here, Exp(u, 0;)
denotes the exponential population IT;, i = 1,2 with a probability density function

1 =z .
filx|u,0;)=—e (”z#), x>u, HeER, 0;,>0, 1=12 1)
o
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The problem of classification using a complete sample has been studied under various
statistical models. The exponential distribution is very useful in the study of survival
analysis, life testing experiments, queuing theory, reliability theory, and related areas.
Suppose two brands of electronic devices are put for a life testing experiment. Due to
some constraints (maybe time or cost), the experimenter could observe only the first
few observations from each of the two groups or populations. It is assumed that the
lifetimes of each unit are random and follow exponential distributions with the same
minimum guarantee time (location parameter). Based on the observed lifetimes of the
new devices from one of these two brands, we want to classify this new device into one of
these brands using classification rules. For more details on exponential distribution and
classification using exponential distributions one may refer to Jana and Kumar (2016),
Lawless (2003) and Basu and Gupta (1976).

The problem of classification and related parameter estimation using normal popu-
lations has been well investigated by many researchers in the past. We refer to Anderson
(1951), Rueda et al. (1997), Long and Gupta (1998), Fernandez ez al. (2006), Conde et al.
(2012), Jana and Kumar (2017) and to the references cited therein for details of classifica-
tion and related estimation problems using several normal populations.

The classification problem using two or more exponential populations was first con-
sidered by Basu and Gupta (1971), then by Basu and Gupta (1976). The authors pre-
sented the classification rules by plugging the maximum likelihood estimators of the
unknown parameters in the classification function and proved the consistency of the
proposed rule. They also introduced the predictive classification rules by considering
the conjugate prior distribution of the unknown parameters of the concerned popula-
tions. Furthermore, they proposed the classification rules based on the type-II censored
samples. Adegboye (1993) discussed the optimal classification rule for one-parameter
exponential populations. They obtained the expressions for the probabilities of mis-
classification and proved that it depends upon the ratio of the scale parameters. Conde
et al. (2005) studied the classification problem for one-parameter exponential distribu-
tion with a restriction that the mean of the second population is greater than the mean of
the first population and also obtained the improved classification rules. Recently, Jana
and Kumar (2016) studied the classification problem for two two-parameter exponential
distributions based on the mixed estimators of the associated parameters. However, the
problem of classification based on censored samples has not gained much attention from
researchers.

Interestingly, the classification rules obtained in this article are based on some esti-
mators of the common location parameter under the type-II censoring scheme, which
has been studied fairly in the literature of statistical inference. Chiou and Cohen (1984)
dealt with the problem of estimating the common location parameter of two exponen-
tial populations using type-II censored samples. They proposed the Maximum Like-
lihood Estimator (MLE) and the Uniformly Minimum Variance Unbiased Estimator
(UMVUE) for u, when the scale parameters are unknown and different. Elfessi and
Pal (1991) considered the estimation of common scale and different location parameters
of several exponential populations using type-II censored samples. Recently, Tripathy
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(2016) dealt with the problem of estimating the common location parameter of two ex-
ponential populations from a decision-theoretic viewpoint. He considered the affine
equivariant class of estimators, which contains the MLE, a modification to the MLE,
and the UMVUE of u. He further obtained a sufficient condition for improving es-
timators in this class and proposed the improved estimators of MLE and UMVUE. It
will be interesting to construct classification rules using these nice estimators under the
type-II censoring scheme and compare their performances in terms of probabilities of
correct classification.

When complete samples are available from two exponential populations, the prob-
lem of estimating common location parameter u has been well investigated by several
researchers in the recent past. For a detailed review and some recent updates on esti-
mating u using complete sample, we refer to Tripathy et al. (2014) and to the references
cited therein. Jana and Kumar (2016) considered the classification problem for two ex-
ponential populations. The authors constructed several classification rules using some
of the estimators of ¢ and studied their performances numerically. The problem of clas-
sification under complete sample from two or more exponential populations has been
investigated by Basu and Gupta (1976), Adegboye (1993) and Conde ez al. (2005).

The rest of our work is organized as follows. In Section 2, we discuss various estima-
tors of the associated model parameters. In particular, we derive the UMVUEs of the
scale parameters and sufficient conditions for improving equivariant estimators of the
scale parameters. Section 3 discusses the classification rule for the two exponential pop-
ulations with a common location parameter and different scale parameters using type-II
censored samples and shows these rules are consistent. In Section 4, utilizing the MLE,
the modified MLE, the UMVUE, and the improved estimators of the common location
parameter proposed by Tripathy (2016), several classification rules are constructed. In
Section 5, we numerically compare the performances of all the proposed classification
rules in terms of probabilities of correct classification and expected probability of cor-
rect classification using the Monte-Carlo simulation method. In Section 6, we discuss a
real-life example to show the potential application of our model problem.

2. CERTAIN RESULTS ON ESTIMATING THE ASSOCIATED PARAMETERS

We note that Tripathy (2016) considered the same model problem and derived certain
estimators of u (when the scale parameters are unknown) that improve upon the MLE
and UMVUE. In this Section, we consider a certain class of equivariant estimators for
the two scale parameters o and 0,, and derive sufficient conditions for improving es-
timators in the class using the orbit-by-orbit improvement technique of Brewster and
Zidek (1974).
Suppose IT, is the i*” shifted exponential population Exp(u, o;) having probability
density function
_ 1 (=)
fl-(x|Iu,al-)_U—e iy x>u, ueR, 0;>0, 1=1,2, )
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where y is known as the common minimum guarantee time and o; the residual life after
minimum guarantee period.

Let X(l) < X(2> < ... < X(,), 2 < r < m, be the type-I right censored samples
taken from a random sample of size 7 having the probability density function f] (that
is population II,). Similarly, let Y;) < Y5) < -+ < Y(), 2 < s < n be the type-Il
right censored sample taken from a random sample of size 7 having the probability
density function £, (that is population II,). Here, r and s are known prefixed numbers.
Note that, a complete and sufficient statistic for this model is (Z, V}, V,). The random
variables are defined as

7= min(X(l),Y(l)), vi=U-2, V,=U,—-Z, (3)

where

1L 1<
UF;[Z;XUW('”—?)X@)} UF;[Z;Y(W(”—S)Y(:)} *)

Based on the type-II right censored samples, the MLEs of y, o, and o, are, respec-
tively, given by

. m n
Uy, = min <X(1), Y(l)> =Z, opL= 7V1 and oy = ?Vz. 6)
Furthermore, a modification to the MLE of u is obtained as
1
pvn =Z— 75 ©)
p

where p =m /oy +n/ony (see Tripathy, 2016).
The UMVUE of u was obtained by Chiou and Cohen (1984) for equal sample sizes,
however for unequal sample sizes, it was obtained by Tripathy (2016) under type-II right
censoring scheme. The UMVUE of u is given by
vy =Z— s .
(r=DV,+(s =1V,

In the following Theorem, the UMVUE:s of o, and o, are derived.

“)

THEOREM 1. The UMVUE:s of o, and o, are given respectively as

_ m (s—DVY
0’1MV—M[”Vl_(s—l)vl-i-(rl—mvz] @

and

o —L[sv— (r—Vy ] 9)
M=) 7 =)V +(r—1V, ]
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PROOF. In order to prove the result, recall that the statistic (U,, U,, Z) is sufficient.
Further the statistic (Z, V, V,) is complete and sufficient. Let us define the new random
variables 7| and 7, respectively as

I, = Z(X(i)_X(l))+<m_r)(X(r)_X(1)>’ (10)
i=1
and
I, = Z(Y(j)—Y(1))+(”—S)(Y(g)—Y(1))- (11)
=

Note that the the random variables 27, /o, and 27, /0, are independent and follow
x? distributions with degrees of freedom 2(» —1) and 2(s —1), respectively. The random
variables X(;) and Y follow exponential distributions Exp(u, 0 /m) and Exp(u, 0,/n),
respectively, and are also independent. The random variables 7; and 7, follow gamma
distributions with shape parameters » — 1 and s — 1 and scale parameters o, and o,

respectively. Thus, an unbiased estimator of o, is given by 7} /(r —1).
The UMVUE of o, is thus given by

m

1
— EATI(U,~2,U,=2,2)} CE[(U=X )0 = 2,0, 2,7)

r —

m
= —E[(Vi+Z=X)I(U;, U Z)]

r —

— r’fl[v1+Z—E{X(1)|(U1,U2,Z)}]. (12)

The conditional expectation E {X(1)|(U1, U, Z )} has been evaluated in Chiou and
Cohen (1984), which is given by

VZ

_ 1
E{XulUn U D)} =2+ o, (13)
where W:%+S%.
Substituting Eq. (13) in Eq. (12), we get
1 m Vi
——E{T|(U,—2,U,—Z,2)} = V,——1
ez = e
—1)V?
S VRS G\ (14)
r(r—1) (s—1DV,+(r—1)V,

In a similar manner, the UMVUE of o, can be derived, by considering 7, /(s — 1) as
an unbiased estimator. Thus, we have

1 n
LU =2,0,-2,2)) = —[V,+Z—E{Y, (U0 2)}]. (15)
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The conditional expectation is

V3
E{Y(1)|(U1,UZ,Z)}:Z+W. (16)
Substituting Eq. (16) in Eq. (15), we get
L rnw—zu-z2) = |V
s—1 AT Tos—1 2 s(s—1)W
—1)V;
S (A (r=1)V; .(17)
s(s—1) (s—1DV,+(r—1)V,
This completes the proof of the Theorem. a

Tripathy (2016) proposed some estimators for ¢ under type-II censoring. These
estimators, which improve upon the MLE and the UMVUE, are respectively given by

\ Z—2 iV, >V,
= A 18
H“mL {Z_y_J:S, fv,<v, (18)
and v ” 1
IQMV: Z—y—_;smax(V,l), if —m <—7—+5 max(V,l), (19)
UMy otherwise,

where V=V, /V,.

Next, we propose a class of equivariant estimators for o;, i = 1,2, and derive suf-
ficient conditions for improving estimators in this class. In order to estimate the scale
parameters, we use the loss function

2
M%JJZ<¢_%>, 20)

0;

where d; is an estimate for 0;, i = 1,2.

Consider the affine group of transformations G, = {g, , : g, ,(x) =ax+b,a > 0and
b € R}. Under the group of transformations g, ,, 0; — a0, 4 — ap+b. The sufficient
statistics are transfered as Z — aZ + b, V;, — aV,, i = 1,2. Under this transformation,
the problem remains invariant if we take the loss function as given in Eq. (20). Based
on the complete and sufficient statistic (Z, V},V,), the form of an affine equivariant
estimator for ¢; is obtained as

dy =V;$;(V), 1)

where V = V,/V, and ¢, is any function of V such that ¢, : (0,00) — (0, 00). Let us
define the following functions ¢%(v) for the equivariant estimators d¢i, 1=1,2,as

s@={ 7, ShO< @)

&)
! ((v), otherwise



Classification Rules For Two Exponential Populations 285

and
0 _ 1’71_-:5’ lf ¢2(7}) < :l__:;
$a(v) = { ¢,(v), otherwise. @3)
The following Theorem is immediate and gives a sufficient condition for improving
the class of estimators d; for estimating the scale parameter .

THEOREM 2. Let dy be the class of equivariant estimators of the form in Eq. (21) for
estimating the scale pammeter oy. Let the loss function be the one given in Eq. (20). The
equivariant estimator d, is inadmissible and is improved by d, 40 if there exists some values

of parameters (u, 0y, 0,), such that P (¢ (V) # ¢3(V)) >0

PROOF. The Theorem can be proved by applying the orbit-by-orbit improvement
technique of Brewster and Zidek (1974). Let us consider the conditional risk function
ofd, given V

R((dy,, 01)|V> [v¢ —a |V =2]. 24)

Observe that the above risk function is convex in ¢, hence its minimizing choice is
obtained as

o E(Vi|V =92)

Y= Ay =)

where 7 = 0,/0; > 0. The conditional expectations E(V;|V') and E(V?|V) have been
evaluated in Tripathy (2016). Utilizing those values and simplifying, we obtain the min-
imizing choice of ¢, as

; (25)

¢1(7)’T>: [m+nto]. (26)

r+s
In order to apply the Brewster and Zidek (1974) technique, we need the supremum
and infimum of ¢, with respect to 7 for fixed V = v. It is easy to observe that the
function @, is increasing for = € (0, 00). Hence, we have

inf ¢ T,v) and sup &, (7,v)=o0. (27)

7€(0,00) 7 +s 7€(0,00)

Utilizing these values, we define the function ¢ as given in Eq. (22). As an application
of Theorem 3.1.1 of Brewster and Zidek (1974), we have R(d,;, , o) > R(d¢?, o,), hence

the Theorem is proved. O

The following Theorem gives the sufficient condition for improving upon an equiv-
ariant estimator of o,.
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THEOREM 3. Letdy bean equivariant estimator of the form in Eq. (21) for estimating

the scale parameter o,. Let the loss function be the one given in Eq. (20). The equivariant
estimator dy, 1s inadmissible and is improved by d o, if there exist some values of parameters
2

(14, 0,07), such that P (¢,(V) # $5(V)) > 0.

PROOF. The proof is similar to the proof of the Theorem 2 and hence is omitted.
O

REMARK 4. Note that, in order to improve the MLEs and UMVUEs of 0, and o, using
Theorems 2 and 3, the sufficient conditions must hold for some choices of parameters. It is
easy to sce that, the MLEs of oy and 0, are in the form of Eq. (21), that isdy =V ¢y,

where ¢y = m[rand dy =V $yy, where yyy = nV [s. The conditions for im-

proving the MLEs do not hold true, hence could not be improved by using Theorem 2.
Similarly, one can check that, the sufficient condition for improving the MLE of o, does
not satisfy, hence could not be improved by applying Theorem 3. Further, observe that, the
UMVUE of o;, 1 = 1,2, is in the form of Eq. (21), that is we can write 015, = Vb n A V),
where ¢ V) = T(Tm_l)[r - (5_1)_?3_1)‘/ . In order to improve this estimator, the condi-
tion ¢y V) < 7 must hold true. Similarly, the UMVUE 03, = V¢ up V'), where

G V)= - (5"_1) [sV— (s—(;):-z)y‘izl)v | In order to improve the estimator 0y, the condi-

tion ¢y V) < :Z—J‘F/S must hold true. It has been seen, from our simulation study, that the
conditions hold true for a small range of parameters and v. The amount of risk improve-
ment over the UMVUE;s of o, and o, is insignificant. However, the Theorems 2 and 3 give

two complete class results for estimating the scale parameters using censored samples.

3. CLASSIFICATION RULE BASED ON CENSORED SAMPLES

In this Section, we will discuss a classification rule to classify a new observation, say ¢,
into one of the populations II; and II,, when the rule has been constructed using the
type-II right censored samples from these two populations.

Suppose we have type-II right censored samples from the two populations II; and
IT,, as discussed in Section 2. A new observation ¢ is classified into the population IT; if

(i) 2 i) e

and into the population II, if
fl(t)> <C(2|1)6]z>
log(24) ) <tog( G ) @)
LA/ P\ Cg,

where C(i|7) is the cost of misclassification when an observation is from the population
IT; and is misclassified into the population IT;, i # /, i, j = 1,2; g; is the prior probability
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that the observation belongs to the population IT;. We assume that the populations are
equally likely and the costs of misclassification remain the same, that is ¢, = ¢, and
C(1]2) = C(2|1). The details of this classification functions as well as the rules can be
seen in Anderson (1951).

Using the results from Eq. (28) to Eq. (29), we obtain the classification function in
our model to classify the new observation ¢ as

W) == ) = ) —log( 2 ). 60)

01 0 02
Using this classification function W, the classification rule, say R, is given by:

R: classify ¢ into II; if W (z) <0, and
classify ¢ into I, if W(z)> 0. (31)

When the training samples are incomplete or censored (in our case it is type-II right
censored), it is important to classify a group of observations rather a single observation,
as it gives more information about the population. Here, we discuss a rule for classifying
the group of observations which is also censored. Suppose we have to classify the ordered
sample ty Sty <<ty taken from a random sample of size k, 2 < [ < k, from the
population, say II (Exp(uq, 0y)), having density f;, into one of the populations II; or
IL,. It is known that (g, 04) = (u,0;), for exactly one 7, with = 1 or 2. In order to
classify the population II, into one of the populations II, or IT,, we follow the method
proposed by Basu and Gupta (1976).

Let us define the statistics Uj;, as

Z]i :<k_l+1)(t(l)_t(l—1))’ l = 1,2,...[ and t(o):[uo. (32)
These statistics are independent and identically distributed and have the same prob-
ability density function f; with uy = 0. Thus, the classification rule to classify II,
(t(1) <tpr < t(1)> into I, or II, is based on a random sample (U, Uy, ..., Uy,) of
size [. Thus, we define the modified classification function as
- 1 1
W<g>=<U—u><———>—log<ﬂ>, 63)

0 0y 0,

- 1 e . . . . .
where U = ; 3!_, U,. Utilizing this classification function, we propose the classifica-
tion rule, say R, for our model as

R:classify I, into IT; if W(U) <0, 4> 4, and
classify I into II, if W(U) >0, > . (34)

Let us denote P(z]7) as the probability that the observation actually from the popu-
lation IT; but is misclassified into the population IT;, using the rule R, 7 # ;. In this
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case, the Expected Probability of Misclassification (EPM) of the rule R, is given by
EPM(R,)=(P(1]2,R,)+ P(2|]1,R,)) /2. The unknown parameters (u, o, 0,), involved
in the classification statistic, will be replaced by their corresponding estimators, which
are obtained in Section 2.

THEOREM 5. The classification rule R, is consistent, that is EPM(R,) tends to zero as
the sample size k tends to oo.

PROOF. The proof is along the same line as of Theorem 2 of Basu and Gupta (1976)
and hence is omitted. O

4. CLASSIFICATION RULES USING ESTIMATORS OF ASSOCIATED PARAMETERS

In this Section, we propose certain classification rules for classifying a single observation
and a group of observations into one of the exponential populations. These classification
rules will be formed using some popular estimators of u as well as the scale parameters
0, and o, under the type-II right censoring scheme.

4.1.  Classification rule based on the MLE

Recall that the MLEs of the parameters u, o, and o, have been obtained as uy;, oy
and o,y , respectively. Utilizing these MLEs of the parameters, we define the classifica-
tion function for classifying an observation ¢ as

Wi () =0 = o) 2 = = ) log 22 ). 65)

oML 9aML 01ML

Utilizing this classification function, we define the rule Ry, as: classify ¢ into IT; if
Wi (2) <0, else classify ¢ into the population II,. Similarly, a group of new obser-
vations, say () < t,) < -+ < ¢)) from II; will be classified using the classification
function

Wi (0)=(0 = ) 2= ) —log( 28 ), 66)

oML %ML O1ML

Utilizing this function, we define the classification rule Ry, as: classify II, into II,
if Wy (U) <0, ty > > and classify Il into the population II, if Wi (U) > 0,
L1y > M-

Utilizing the modified MLE pyy for u, we construct the classification function for
classifying a single observation ¢, as

W) = (0= ) - =~ ) —log( 2L ). 7)

oL 9aML O1ML
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Using this function, we define a classification rule, say Ryy as: classify ¢ into II; if
Winn(t) <0, else classify ¢ into the population II,. Similarly, for classifying the sample
(t(1> St <<y Z)>’ we define the classification function

WD) =(0 = ) - =~ ) —log( 228 ), 69)

oL 9oML O1ML

Using this classification function, we define the rule Ry, as: classify II; into II, if
Wanm(U) < 0, tqy > s and classify I into the population II, if WMM(U) >0,
Ly > Hvme

Next, using the improved estimator (1) for u along with MLEs of ¢, and o,, we
construct the classification function in order to classify an observation ¢ as

Wi () = (0= o) (= 2 )—log (221, 69

oML OaMmL J1ML

A
Using this classification function, we define a classification rule, say Ry as: classify ¢

into I, if VAVML( t) <0, else classify ¢ into the population IT,. Similarly, for classifying
the sample (ty <ty < -+ < tgy) from I, we define the cla331ﬁcat10n function as

WML<0>=<U—ﬁML>< L)l 20, “0)

oML %ML O1ML

Using this classification function, we define the rule IAQML as: classify II, into II; if
WML(U) < 0, ty4) > fyys and classify IT, into the population II, if WML( J) > 0,
ty > -

4.2, Classification rule based on the UMVUE

In this Section, we propose the classification rules for classifying censored samples from
IT, into either IT; or IT,, using the UMVUE:s of the model parameters derived in Section
2.

Using the UMVUE:s of the model parameters, we define a classification function,
say Wy (t), for classifying a single observation ¢ from II, as

Wiar(6)= (¢ =) 1= = = ) —log( 222 ). @)

ommv - 9omv Oimv

Utilizing this function, we define a rule, say Ry, for classifying the single observation
t as: classify ¢ into IT; if Wy (2) <0, else classify ¢ into the population HZ. Similarly,

we define the 013331ﬁcat10n function for classifying a sample (¢ <t <--- < ¢;)) from
II, as
- - 1 1 o
WMV(U>:<U_/UMV)< - >—10g<ﬂ>- 42)
ommv - %amv 91mv
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Using this classification function, we define the rule Ry as: classify II, into II, if
Wav(U) <0, t4) > yy, and classify I, into the population II, if Wy (U) > 0,
Ly > M-

Using the improved estimator (y;, for the UMVUE of u proposed by Tripathy
(2016) along with the UMVUE:s of ¢, and 0,, we define a new classification function for

classifying a single observation ¢ as

Wias(6)= (¢ = ) - = ) —log( 22 ). )

oMV 9omv J1mv

. . . . . . . A . .
Using this classification function we define the classification rule Ry as: classify ¢ into

IT, if V?/MV(I) <0, else classify ¢ into IT,. Similarly, we define a classification function
for classifying a sample (t(l) St << t(l)) as

Wiar(0) = (0 ) - =~ )~ log 2214 4)

oMV 9oMv O1mv

Utilizing this classification function, we define the rule ﬁMV as: classify II, into II; if
Wity <0, 24y > Iy, and classify IT into IT, if Wyry >0, #4) > fyry-

5. A SIMULATION STUDY FOR COMPARING THE CLASSIFICATION RULES

In this Section, we compare all the proposed classification rules, such as Ry;; , Ry Ryry s

IAQML and ]AQMV as given in the Section 4. Though we have derived the classification rules
for classifying a single observation ¢ and a group of observations, we only present the
simulation results for classifying the latter one. The simulation results for classifying a
single observation can also be obtained in a very similar manner.

To compare the classification rules using type-II censored samples from the two ex-
ponential populations, we consider the following steps.

1. Generate training sample, that is, a type-II censored sample of size 7 from the ex-
ponential population IT; with scale parameter o, and location parameter u. Here,
we first generate a random sample of size m from the population II,, then, after
sorting in increasing order, we collect the first » observations, which is the type-
IT right censored sample. In a very similar manner, we also generate a sample of
size n from the population II, with scale parameter o, and location parameter y,
then, after ordering, we collect type-II right censored sample of size s.

2. Using these training samples, the unknown parameters o, 0, and y, which are
involved in the classification rules, are estimated and consequently used in the
classification rules.
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3. Next, we generate a type-II censored sample from the population IT; with same »
and m and estimate the value of the statistic U; then, using it in the classification
rules we check whether it belongs to the population I,

4. Similarly, we generate a type-II censored sample from the population IT, with same
s and 7 and estimate the value of the statistic U; then, using it in the classification
rules we check whether it belongs to the population IT,.

The above procedure is carried out using the well known Monte-Carlo simulation
method to compare the probabilities of correct classification P(1|1), P(2|2) and the ex-
pected probability of correct classification (EPC) for all the proposed classification rules.
The number of replications is 20,000. We assume that the costs of misclassification and
the prior probabilities are equal, that is C(1|2) = C(2|1) and g, = g, = 0.5 for the sim-
ulation study. A high level of accuracy is achieved and the standard error is checked (it
is of the order 107%). Here, the accuracy of simulation means the sample generation,
construction of estimators and consequently the construction of classification rules are
accurate with an error of the order 107>. We also note that the probabilities of misclas-
sification and correct classification are a function of v = ¢,/0; > 0 only.

The expected probability of correct classification (EPC) for a given rule, say R is
calculated as

EP(R)= %(P(1|1,R) +P(2]2,R)). (45)

We further compute the percentage of relative improvements in EPC values for all
the proposed rules with respect to the benchmark rule Ry as

>>< 100, EP2:< <RMV; 1> x 100

_ ( ML)
Em‘( EP(Ryy) PRy
EP3:< P(Ryy) 1>><1oo, EP4:< EP(Ry) 1>><100. (46)
(RML) (RML)

Further, we define the censoring factors CF1 and CF2 for both the populations as
the ratio of number of observed samples to total number of samples. It is CF1 = r/m
for first population and CF2 = s/n for the second population. Note that the values of
CF1 and CF2 are between 0 and 1.

A comprehensive simulation study is carried out by considering various combina-
tions of sample sizes, censoring factors and 7. However, for illustration purpose, we
present in Tables 1 to 3 the percentage of relative improvements in expected proba-
bility of correct classification of rules ﬁML, Ryys ﬁMV and Ry over Ry for some
specific choices of sample sizes, censoring factors and 7. Specifically, in Table 1, we
present the percentage of relative improvements in EPC for sample sizes (16,16) and
(24,24). The first column gives the values of 7. Each value of 7 corresponds to four
values of the relative percentage of improvement. These four values are obtained for
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CF1=CF2=0.25,0.50,0.75, 1.0, respectively. Similarly, in Tables 2 and 3 the percent-
age of relative improvement in EPC are presented for unequal sample sizes.

We compute the probabilities of correct classification P(1|1) and P(2|2) for all the
proposed classification rules with various censoring factors and parameter choices. For
illustration purposes, we plot the graphs of P(1|1) and P(2|2) for all the classification
rules with sample sizes (16, 16) and censoring factors CF1 = CF2 = 0.25,0.50,0.75,1 in
Figures 1 and 2. Specifically, in Figure 1 the values of P(1|1), () and (%), are given for
censoring factors 0.25 and 0.75, respectively. In Figure 1 the values of P(2|2), (¢) and
(d), are presented for all the rules with censoring factors 0.25 and 0.75, respectively. In
a similar manner, we plot in Figure 2 the values of P(1|1) and P(2|2), () to (d), against
7 for all the rules with censoring factors 0.50 and 1. The notations ML, MM, MLI, MV
and MVI are used for the probabilities of correct classifications P(1|1) and P(2|2) for the

A A
classification rules Ryy , Ryvp> Ry > Ry and Ry, respectively.

0.804

0.754

0801 e ML
0.70] 075 oMM

= 0654 i ——MLI

= = 070 MV

& 0607 0659

5 0557 S 0601

% 0.50 g 0.554

=} =3

5 0459 2 0509

> > 045

T T T T T T T T T T T T T T T T
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> 4404 > 0454
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Figure 1 - Comparison of probability of correct classification for several classification rules: CF1 =
CF2=0.25,0.75.
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Percentage of relative improvement in EPC for all the proposed rules:

TABLE 1

CF1 = CF2=0.25,0.50,0.75,1.00.

(m,n)=(16,16)

(m,n)=(24,24)

RML RMM RMV RMV RML RMM RMV RMV
0.25 1634 2211  28.63  28.45 18.07 2424  28.62  28.60
18.48  25.02 28.24 2824 19.02 2585 2792 27.92
19.19 2588  27.82  27.82 19.55 2673 27.79  27.79
19.58 2634 27.68 27.68 1988 27.00 27.82  27.82
050  19.73 2444  30.54 29.86  21.87 26,57 30.44  30.18
22.09 26.87 2994 29.84 2346 2837 30.56  30.53
2342 2812 3029 3027 2398 2856  30.13  30.12
2395 2843 29.99 2997 2405 2875 29.79  29.78
075 2115 25.09 29.69 2870 2380 2743 3145 30.87
2484  28.66  31.01 3069 2583 2895 31.00 30.83
2594 2934 3098 30.86 2638 29.10 30.69  30.60
2699  30.06 3079 3073 2718 2972 30.75 3071
1.00 2171 2551 30.15 29.02 2441 2781 3045 29.78
2453 2729 29.64 2926 2658  29.03 31.35 31.18
2625 2892 3090 3068 2794 30.08 3145 3130
28.06 30,50  31.26  31.13  28.84  31.02 31.59  31.50
125 21.09 25.03 29.84 2855 2362 27.04 29.69 29.13
2577 2913 3186 31.48 2648 2944  31.05  30.88
2576 2870  30.40  30.21 28.04  30.87  32.09  32.00
2645 29.02 30.48 3033 29.01 31.26  32.01 31.95
1.50 2024 2474 30.02 29.03 2363 2750 31.20 30.72
2483 2870 31.38  31.14 2555  29.26  31.34  31.15
25.11  28.62  30.55 30.38 26,51  29.94 3142 3140
2547 2896  30.60 30.52 2735 30,66 31.70  31.68
1.75 2030 2469 2992 29.13 2243 2675 30.84 3049
2339 27.62 30,52 3032 23.82 28.13  30.55  30.50
2442 28,67 31.19 3111 2560 2990 31.25 3123
2486  29.04 30.87 30.83 26.17 3033  31.34 3132
200 19.19 23.83 29.48 28.88 2149 2643 30.68 3032
22.08 26.81 29.85 29.75 2406 2891 31.21 31.14
2346 2791 3029 3026 2371 2834  29.82 2981
2422 2872 30.20 30.20 2413 28.84 2999  29.99
225 1870  23.66  29.15 28.68 2096  26.15 29.97 29.77
2223 27.67  31.14  31.04 2322 2825 3030 3025
2252 27.70 2991 2988 2385 29.14 30.76  30.75
2332 2858  30.19  30.18  24.05 29.24  30.52 3052
2.50 18.31 2352 28.82 2846 2078  25.88  30.27  30.13
2069 2599 29.19  29.10 2216 2746  29.81 29.80
21.70 2710 29.48 2947 2245  28.14 2943 2942
2245 2783 29.52 29.52 2254 2816  29.25 29.25
275 18.03  23.62  29.25  28.89 19.70 2530  29.64  29.52
2063 2625  29.61  29.53 2047 2597  28.39  28.38
21.09 2694 2897 2896  21.84 27.77 29.14 29.14
2151 2728 28,99 2899 2203 2814 29.13  29.13
3.00 1758  23.13  29.33  28.98 19.60 2548  29.70  29.59
2032 26.05 29.26  29.22  20.84 27.24  29.59  29.59
20.87 2686  28.93 2892 2126 27.61  29.09  29.09
21.37 2736 29.00 29.00 2150 28.05 2893 28.93
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TABLE 2
Percentage of relative improvement in EPC for all the proposed rules:
CF1 = CF2=0.25,0.50,0.75,1.00.

T (m,n)=(12,16) (m,n)=(16,24)

0.25 15.07  22.09 30.63 30.37 16.20 2420  31.06 3095

050 1892  24.61 31.66 30.74 19.83 2612 31.01 30.46

0.75 20.11 2493 31.56 3024 2192  26.82 31.53  30.67

1.00 2041 24.12 29.88 28.48  23.12 2678  30.34 2948

1.25 19.93 23.93 29.03 27.79 2227 2575  29.94 29.28
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TABLE 3
Percentage of relative improvement in EPC for all the proposed rules:
CF1 = CF2 =0.25,0.50,0.75,1.00.

7] (m,n)=(16,12) (m,n)=(24,16)
RML RMM RMV RMV RML RMM RMV RMV
0.25 1627 20.88 2674 26,51  17.94 2236  26.32 26.27
18.53 2371  26.83 2682 1942 2407 25.87  25.87
19.32  24.83  26.83 2683 19.60 2459 2573  25.73
19.53 2512 26,55 2654 2014 2526  26.06  26.06
0.50 19.26 2323  29.28  28.58  21.07 2452  28.80 28.45
2290  26.64 29.46 2924 2333  27.00  29.31 29.27
23.31  26.64 2891 2886 2377 27.23  28.38 28.36
23.35 2698 28.76 2875 2434 27.87  28.95 28.95
075 1977 2343 2871 2757 2275 2623  30.05 29.30
23.72 2692 29.07  28.66 2574  28.58  30.40 30.12
2549 2822 29.63 2936 2679  29.08  30.32 30.21
2587  28.15 29.59 2949 2759  29.84  30.70 30.66
1.00 2048 2491  30.04 2869 2278 2665 3127  30.36
2432 2763 3042 2994 2683 2991  31.84  31.49
2635 29.18  31.05  30.83 2696 29.69  31.45 31.29
27.84 3031 31,10  30.81  28.89 31.08 32.07  31.90
1.25 2003 2450 30.85 29.48 2335 28.15  32.51 31.46
2452 2854  31.77 3134 2654 3046  32.71 32.49
2531 2876  30.83  30.64 2658 29.97  31.72 31.61
27.36  30.62 32,19 3201  28.82 3211  33.35 33.29
150  19.34 2408 3049  29.14  21.81 2699  32.38 31.47
2275 2738 3090  30.61 2475 29.62  31.95 31.67
2390 28.14 3117 3095 2615 3092  32.38 32.29
24.67 2894 30.89 3074 2626 3054  32.11 32.06
1.75 18.61  23.87 31.01 2993 2134 2725  32.73 32.18
2242 2784 3140  31.09 2448 3022 3327  33.09
23.37 2863 31.10  31.00 2481 30.17  32.28 32.22
2398 2879 31.05 3099 2583 3136  32.95 32.92
200 1824 2377 3131 3025 2056 2687  32.63 32.27
21.60  27.06 31.54 3129  23.08 29.20  32.48 32.39
2257 2847  31.00 3093 2376 30.09 3227 3224
2299 2854 3074 3070 2429  30.19  32.09 32.07
225 1749 2317  30.88  30.09 19.61 2594  31.80  31.30
2097 26.84 30.55 3043 2172 2842  31.66  31.60
21.85 27.81  30.69  30.65 2237 2886 31.14  31.13
2215 2832 30.81 3079 2273 2943 3117 3117
250 1725 2312 31.23 3056 1950 2637 32.49 32.16
20.61 2695 31.42 3129 2148 2858  32.03 32.00
21.80 2838  31.30  31.28 2150 28.23  30.46  30.44
2239 2884 31.06 31.05 2248 29.63  31.32  31.32
275 1659 22,66  31.15 3059 1827 2525  31.48 31.23
19.56 2621 3072  30.64 1997 2736  30.58 30.56
2043 2744 3029 3028 2099 2878  31.15 31.14
20.61 2770 29.89  29.89  20.67 2839  29.96  29.96
3.00 1650 2293  31.43 3084 18.16 2583  32.66  32.47
19.24 2644  31.08 3098 2039 2812  31.67  31.65
2036 2752 30.60  30.58 2042 2841  30.65  30.65
20.48 2790 30.25 3024 2093 29.14  30.70  30.70
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Figure 2 - Comparison of probability of correct classification for several classification rules: CF1 =
CF2=0.50,1.

The following observations are made from our simulation study as well as Tables 1
to 3 and Figures 1 to 2.

o As the values of 7 increase, the probabilities of correct classification for all the
rules first decrease and attain their minimum, then increase and finally converge
to some values between 0 and 1 (see Figures 1 and 2). The maximum probability
of correct classification P(1|1) is obtained for the rules Ryp and Rypy, whereas
the maximum probability of correct classification P(2|2) is noticed for the rules
Ryv and Ry

R . . A
e The expected probabilities of correct classification for the rules Ry , Ry, Ry

and ]AQMV are always higher than the expected probability of correct classification
of the rule Ry .



Classification Rules For Two Exponential Populations 297

o The relative percentage of improvement in EPC values for all the rules with re-
spect to Ry varies between 16% and 33%. The maximum percentage of improve-
ment in EPC values is observed in the case of Ryy.

e A similar pattern is noticed in terms of probabilities of correct classification and
expected probabilities of correct classification for other combinations of sample
sizes, censoring factors, and parameters for all the proposed rules.

e Based on our computational results, it is recommended to use the rule Ry, for
classifying a type-I censored sample (#;) < ¢, < -+ < ¢;)) into one of the popu-
lations IT; or I,

REMARK 6. We present the simulation results by considering the test sample size and the
training sample size as equal; however, the overall conclusion regarding the performances of
the various proposed rules remains the same if one chooses the test sample size different from
the training sample size. This is verified by the simulation study.

6. A REAL LIFE EXAMPLE

In this Section, we consider a real-life situation that can be modeled using the two-
parameter exponential distributions and satisfy the equality of location parameters. Us-
ing these data sets, we compute the various classification rules and illustrate the method-
ologies proposed in the article.

Lawless (2003) considered survival data on 40 advanced lung cancer patients. This
data set was previously examined by Prentice (1973). Their purpose was to compare
the effects of two chemotherapy treatments, namely standard and test, in prolonging
the survival times of the patients, who can have four different types of tumors, namely
Squamous, Small, Adeno, and Large. For our purpose, we consider the data on large
tumors of two different types of test, such as standard and test. The data sets are given
as:

Standard, Large: 177, 50, 66, 16, 12, 40, 68, 12, 200, 80, 41, 12, 250, 70, 53, 8, 100, 60,
37, 13;

Test, Large: 164, 70, 68, 15, 19, 30, 39, 4, 43, 60, 49, 11, 340, 80, 64, 10, 231, 70, 67, 18.

Using the goodness of fit chi-square test, we find that the two-parameter exponential
distribution fits these two data sets well with p-values 0.25 and 0.30, respectively. Fur-
ther, we perform the test proposed by Hsieh (1986) to check the equality of the location
parameters. The equality of the location parameters can not be rejected with the level
of significance 0.05. This is a situation where our model fits well.

In order to illustrate the classification rules, we focus on the following cases. Let
us first consider the test observation ¢ = 49 from the training population IL,, i.e., Test,
Large. Utilizing the proposed classification rules, we check which rules classify the test
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observation correctly. For this purpose, we collect the type-II censored data from these
two training data with » = 5 and s = 5 and, then, we compute the values of classification
statistics. The various values of classification statistics are obtained as W},;; =—0.04522,
Wiy = —0.03639, W}y = 0.000962, Wiy, = 0.00086, Wy, = —0.037991. This shows
that the classification rules Ry , ]A{ML and Ry, classify ¢ =49 incorrectly into the first
population (Standard, Large), whereas the rules Ry and ﬁMV classify it into the second
population correctly. Similarly, we consider the other data points and classify using
the proposed rules. In this case, the percentage of correct classification for the rules
Ryy and ﬁMV is 52.5%. The percentage of correct classification for the rest of the rules
is 50%. We also compute the percentages of correct classification for all the rules by
considering some other choices of censoring factors. For example, when » = 18 and
s =12, the percentage of correct classification for the rules Ry, and I%MV 1s 50%, whereas
for the rules Ry , ]AQML and Ry, it is 47%. In another case, when » = 16 and s =4, the
percentage of correct classification for the rules Ry, and IAZMV is 55%, whereas the rules
Rys IAQML and Ry, have percentage of correct classification equal to 45%.

Next, we classify a group of observations into one of the two data sets. Let us con-
sider that the test observation is IT, = (4, 10, 11, 15, 18) from the training population IL,.
Using the proposed classification rules we will classify this data set into one of the pop-
ulations and check which rules identify the I, correctly. The values of classification
statistics are computed as Wy = —0.04522, VAVML = —0.000007, W,y = 0.0004022,
\/AVMV = 0.000384, Wy = —0.0000085. This shows that the classification rules Ry,
Ry and Ry classify I, incorrectly into the first population (Standard, Large), whereas
the rule Ry;y and IAQMV classify I1, into the second population correctly.

Finally, we use the proposed classification rules to classify a new observation into
one of the two data sets. Suppose, a new observation, say ¢ = 65, is given and we want
to classify it into one of the two populations. Assuming the original data as training
sample, we collect the type-II right censored samples with » = 14 and s = 14 and we
use them compute the classification statistics as Wy, = —0.000367, VAVML = —0.00011,
Wy = 0.0002981, V?/MV = 0.00028, Wy = —0.00011. Thus, the classification rules
Ry ]AQML and Ry classify ¢t = 65 into the first population (Standard, Large), whereas
the rules Ry and I%MV classify £ = 65 into the second population (Test, Large).

7. DISCUSSION AND CONCLUSIONS

It is worth mentioning that a fair amount of research work has been done on classifi-
cation under the same model set-up using the whole samples from two or more shifted
exponential populations. However, when censored samples are available, not much at-
tention has been paid in this direction to the best of our knowledge. This article con-
sider the problem of classification into one of the two exponential populations with a
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common location parameter and different scale parameters using type-II right censored
samples. Tripathy (2016) considered the same model set-up and estimated the common
location parameter using the decision-theoretic approach. The author notably proposed
improved estimators for the MLE and the UMVUE and a modification to the MLE.
Moreover, we derive the MLEs and the UMVUEs for the associated scale parameters
and obtain sufficient conditions for improving these estimators. Utilizing all these esti-
mators for the associated model parameters, we construct several classification rules to
classify a single observation and a group of observations into one of the two exponential
populations. Performances of all the classification rules are evaluated through probabil-
ities of correct classification and the EPC numerically. Our simulation study establish
that the rules based on the UMVUE and its improved version for the common location
parameter have the best performance in terms of EPC values.

The problem we consider in this article can be generalized to the case of (> 2) expo-
nential populations. Suppose we have type-II right censored samples from & exponential
populations IT;, II,, ..., IT, having density functions fi, £, ..., f,, respectively, where
f; ~Exp(u,0;), 1 = 1,2,...,k. Utilizing the estimators of the associated parameters,
we can construct classification rules to classify an observation ¢ or a group of observa-
tions () < f) < ... < ¢, (type-Il right censored sample) from the population II;
into one of the £ populations as follows: classify ¢ into the population IT, if £;/f; >0,
j=12,...,k, i #j. The details of the classification problem for k populations will be
considered separately. In this article we only consider the case for £ = 2 populations and
derive all the results related to £ = 2 only. Moreover, the case of classification problem
using multivariate exponential distribution will be more challenging and interesting.
We hope that the present study will shed some light on the classification problems using
certain censoring schemes from other probabilistic models, that may arise in practice.
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SUMMARY

The problem of classification into two exponential populations with a common location param-
eter and different scale parameters under the type-II censoring scheme is considered. First, we
consider classes of equivariant estimators for the scale parameters and derive sufficient conditions
for improving estimators in these classes. Utilizing the maximum likelihood estimators (MLEs)
and the uniformly minimum variance unbiased estimators (UMVUZEs) for the associated param-
eters, various classification rules are constructed for classifying an observation and a group of
observations into one of the two exponential populations. More importantly, a detailed and in-
depth simulation study has been done to numerically compare the probabilities of correct clas-
sification and the expected probability of correct classification for all the proposed classification
rules. Finally, a real-life example has been presented to illustrate the applicability of the proposed
classification rules under the type-II censoring scheme.

Keywords: Classification using censored sample; Equivariant estimators; Maximum likelihood
estimator (MLE); Probability of correct classification; Simulation study; Type-II censoring; Uni-
formly minimum variance unbiased estimator (UMVUE).
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