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1. INTRODUCTION

In many situations, the complexity of real-world phenomena calls in for non-linear mod-
elling. The class of threshold models has been recognized to be a flexible tool to describe
non-linear features such us jumps, limit cycles, time irreversibility, chaos, etc. Indeed,
threshold non-linearity offers a quite simple easy-to-face approximation of general com-
plex non-linear dynamics while retaining a good interpretability. Threshold models
were introduced by Tong (1978) and are based on the threshold principle: when the phe-
nomenon crosses a certain threshold then it changes qualitatively. In a seminal work,
Tong and Lim (1980) presented the threshold autoregressive moving-average (TARMA)
model defined by the following difference equation:
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φ2,0+
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i=1φ2,i Xt−i + ε2,t +
∑q

j=1θ2, jε2,t− j if r1 <Xt−d ≤ r2
...

...
φl ,0+

∑p
i=1φl ,i Xt−i + εl ,t +

∑q
j=1θl , jεl ,t− j if Xt−d > rl−1,

(1)

where (i) l is the number of regimes; (i i) p and q are the autoregressive and moving-
average order, respectively; (i i i) φk ,i and θk , j with k = 1, . . . , l , i = 1, . . . , p, and j =
1, . . . , q are the autoregressive and moving-average parameters, respectively; (i v) d ∈N
is the delay parameter; (v) r1 < r2 < . . .< rl−1 are the threshold parameters; (vi) {εk ,t }
with k = 1, . . . , l are the error processes (innovations). Clearly, both the orders p and
q and the innovation processes can be the same across regimes. Furthermore, note that
the threshold variable can be either endogenous, such as Xt−d or a transformation of
the process e.g. (Xt−d − Xt−d−1), or even exogenous. The class of TARMA models
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subsumes two families of models that are of independent interest: threshold autoregres-
sive models (TAR) and threshold moving-average models (TMA). From Eq. (1), TAR,
TMA and TARMA models are an extension of the corresponding well known AR, MA,
ARMA models, allowing the parameters to change across regimes. TAR models have
been widely analysed from both a probabilistic and a statistical point of view. For re-
sults concerning the long-run probabilistic behaviour of TAR models see, among others,
Chan and Tong (1985); Guo and Petruccelli (1991); Tong (1990); Cline (2009); An and
Chen (1997); Chen and Tsay (1991); Liu and Li (1997); Li and Ling (2012); whereas for
results on the estimation see, for instance, Chan (1993),Chan and Tsay (1998) and Qian
(1998). The TAR framework has been widely used to develop statistical tests to detect
the presence of non-linearity and/or the presence of non-stationarity. See, among oth-
ers, Chan (1990); Kapetanios and Shin (2006); Bec et al. (2008); Giordano et al. (2017).
See Hansen (2011) and Chen et al. (2011) for a review of the threshold models in eco-
nomics and finance, respectively. Moreover, see also Tong (2007, 2011, 2017) for more
recent reviews and discussions. The investigation of TMA and TARMA models is un-
derdeveloped and presents several gaps. Indeed, contrary to the TAR case, both the
TMA and the TARMA model have a non-linear parameterization conditionally on the
threshold. The presence of the moving-average component in a non-linear setting pro-
duces a very complex dynamics and the theory developed for the TAR case cannot be
adapted straightforwardly. As concerns TMA models, Ling et al. (2007) and Chan and
Tong (2010) provided some results on invertibility and ergodicity. The estimation for
TMA models has been faced by Gooijer (1998) that focused upon the maximum likeli-
hood estimation under the assumption of Gaussian innovations, whereas Li et al. (2013)
proposed the least squares estimation for general TMA models. Moreover, Ling and
Tong (2005) developed a test for the presence of threshold non-linearity in MA models.
The TARMA framework is the most challenging to handle and few results are avail-
able. Recently, Chan and Goracci (2019) derived the long-run probabilistic structure of
the TARMA(1,1) process by solving the long-standing open problem of finding an irre-
ducible Markovian representation for TARMA models. The theory regarding the esti-
mation for TARMA models is underdeveloped in that the only result concerns the least
squares estimation derived by Li et al. (2011). To the best of our knowledge, there are
no results on the maximum likelihood estimation for TARMA models. The TARMA
framework has been used to design tests for non-linearity (Goracci and Giannerini, 2020;
Li and Li, 2011) and threshold regularization (Chan et al., 2019).

As proved in Chan and Goracci (2019), the long-run probabilistic behaviour de-
pends only on the autoregressive part of the two extreme regimes. Hence TARMA
models turn out to be very appealing to describe series that appears as random walk in
first place because they can have a unit-root in some regimes but be globally stationary.
Moreover, TARMA models can encompass a plethora of long-run behaviors, e.g. (geo-
metric) ergodicity, null recurrence and transience. Note that a TAR process naturally
turns into a TARMA process if the time series is subjected to measurement error. Since
the data are almost always corrupted my measurement error, the TARMA framework
is more appropriate than a pure AR-type setting. Also, in analogy with the AR/ARMA
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dichotomy in the linear framework, Goracci (2020) showed that TARMA(1,1) models
can provide a better approximation with respect to both TAR(p) and AR(p) models
even when p is large.

Thus, TARMA models hold an enormous potential to analyse non-linear dynamics
in different fields. For instance, Chan et al. (2020) used TARMA models to address
the purchasing power parity puzzle; Goracci (2020) analyzed the sunspot number and
the male US unemployment rate time series whereas Goracci and Giannerini (2020)
deployed them for dendrological analysis. The results show that TARMA models can
provide a better and more parsimonious fit with respect to other models presented in
literature, including TAR models.

In this work, we use the TARMA framework to revisit the analysis of the bench-
mark Canadian lynx time series and we show that TARMA models perform better than
the proposed TAR models. To this end, we compare 11 different models: 5 TAR mod-
els and 6 TARMA models. Clearly, since there is no true model but its choice should
reflects the purpose of the analysis we compare the performance of the models from
different prospectives. The rest of the paper is organized as follows: in Section 2 we de-
scribe the Canadian lynx time series; in Section 3 we apply the tests recently proposed
within the TARMA framework to detect the presence of unit-root and non-linearity;
Section 4 describes the 11 competitor models; in Section 5 we fit the models to the data
and compute the resulting information criteria AIC and BIC; the capability of the mod-
els to reproduce cycles and the multimodality of the series is compared in Section 6 and
Section 7, respectively; Section 8 focuses upon their prediction accuracy; in Section 9
we carry out the diagnostic analysis of the models; lastly we conclude in Section 10.

2. THE CANADIAN LYNX TIME SERIES AND THRESHOLD MODELS

In an ecosystem the relationships between populations can be classified into four types:
mutualism, parasitism, competition and predation. Indeed, the growth of a population
is influenced by several factors, such as the competition for resources, the amount of
available food, the presence of predators. Here our focus is upon the predator-prey in-
teraction that is characterized by a complex non-linear dynamics related to food chains
and food networks. In this respect, one of the first mathematical models was formal-
ized by Lotka and Volterra that proposed a system of first order non-linear differential
equations (see Doob, 1936; Herbert, 1959, and references therein). Several systems of
both deterministic and stochastic equations have been proposed to model a predator-
prey type population dynamics. See, among others, Rudnicki (2003); Wang et al. (2019);
Wu and Zhu (2008). The predator-prey dynamics usually has a limit cycle that can be
synthesized as follows: when the population of predators decreases, there is a resulting
increase of preys and habitat resources which leads to a new increasing phase for preda-
tors; on the other hand, when the number of predators becomes too large, the preys
reduce and hence the population of predators enters in a new decreasing phase.

The Canadian lynx data set is the annual record of the number of the Canadian
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lynx trapped in the Mackenzie River district of the North-West Canada for the period
1821-1934 inclusively. The population cycle of these animals has received wide attention
especially from biologists due to the regularity in the hunted quantities by the Hudson’s
Bay Company that has been using them for a long period to produce furs. The data
set and further useful materials for the analysis are reported in Elton and Nicholson
(1942). These data are the total fur return, or total sales, from the London archives of
the aforementioned company and is a proxy of the dynamics of the population size.
Note that there is a time lag between the year in which a lynx was trapped and the year
in which its fur was sold and this complicates the analysis. See also Kajitani et al. (2005)
for more recent discussions. This data set has attracted great attention among non-linear
time series analysts due to its asymmetric cycle, i.e. the increasing phase is slower than
the decreasing phase, that makes the investigation very challenging. Interestingly, it has
been noted that the lynx-hare interaction is not instantaneous, but presents a time lag
of about two years (see De Gooijer, 2017, Section 7.5). See Stenseth et al. (1998) and
references therein for a comprehensive analysis of the series.

A plethora of models has been proposed to describe the Canadian lynx time series;
see, for instance, Lim (1987); Lin and Pourahmadi (1998); De Gooijer (2017) for a sum-
mary of presented models. Among all the candidates, the class of TAR models turned
out to be the most appropriate (Tong, 1990, Chapter 7, Section 7.2). The reasons behind
their success are diverse. First, threshold models are able to display limit cycles, a pe-
culiar aspect of this time series. Moreover, they admit an easy biological interpretation
as each regime reflects a different phase: the lower regime and the upper regime cor-
responds to the increasing and decreasing phase, respectively (see, for instance, Tong,
1990).
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Figure 1 – Time series of the Canadian lynx time series, from 1821 to 1934. (Left) raw time series.
(Right) log-transformed series.

Let {xt } be the Canadian lynx time series and denote with {yt } its log10 transforma-
tion. In Figure 1 we show both the raw (left) and the log10 transformed series (right). The
{yt } time series clearly shows an asymmetric cycle where the increasing phase and the
decreasing phase take about 6 and 3 years, respectively. Figure 2 shows the 2-dimensional
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lag plots of yt versus yt−1 (left) and yt−2 (right), whereas in Figure 3 we present the 3-d
lag plot of (yt−1, yt−1, yt−2). These plots highlight the non-linear oscillatory nature of
the lynx time series.
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Figure 2 – Lag plot of the time series of the Canadian lynx, from 1821 to 1934. (Left) Lag 1. (Right)
Lag 2.
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Figure 3 – Three-dimensional lag plot of the time series of the Canadian lynx, from 1821 to 1934.

Figure 4 reports the spectral density of the Canadian lynx time series. As can be
seen, there are three main peaks that reveal a periodic behaviour with three main cycles.
The highest peak corresponds to a periodicity of about 9-10 years, consistently with
the underlying population dynamics that presents an asymmetric cycle. Lastly, Figure 5
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shows the histogram and the corresponding non-parametric kernel density estimation
of {yt } that point at a bimodal behaviour of the series. Hence, the main features of the
series are: (i) the presence of an asymmetric cycle where the increasing phase is faster
than the decreasing phase; (i i)multiple peaks for its spectral function; (i i i) bimodality.
In this work, we will compare the capability of models to reproduce these features as
well as their forecasting performance. We start the analysis by detecting the possible
presence of unit-roots and non-linearity in the Canadian lynx time series.
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Figure 4 – Spectral density of the Canadian lynx, from 1821 to 1934. There are three main peaks
corresponding to a period of 37.4, 9.8 and 5 respectively. The highest one is related to the under-
lying population dynamic that presents an asymmetric cycle where the increasing phase and the
decreasing take about 6 and 3 years, respectively.

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5 – Histogram and the non-parametric density estimation (blue line) of the time series of
the Canadian lynx, from 1821 to 1934.



Revisiting the Canadian Lynx Time Series Analysis through TARMA Models 363

3. STATIONARITY AND NON-LINEARITY

In this section we apply tests recently proposed within the TARMA framework to in-
vestigate the presence of unit-roots and non-linearity in the Canadian lynx time series.
Testing for the presence of a unit-root in time series has important practical implications
as it is attested by vast amount of literature devoted to the problem (see, e.g., Patterson,
2010, 2011, 2012; Choi, 2015). Indeed, the exercise presents several non-trivial theoret-
ical and practical issues (see also Haldrup and Jansson, 2006, and references therein).
Early unit-root tests are based upon the framework of ARIMA models and are affected
by power loss when the alternative is non-linear and severe size distortion in presence
of MA components. To cope with such issues, some unit-root tests have been developed
within the framework of TAR models (Enders and Granger, 1998; Caner and Hansen,
2001; Bec et al., 2004; Kapetanios and Shin, 2006; Bec et al., 2008; Seo, 2008; Park and
Shintani, 2016; de Jong et al., 2007; Giordano et al., 2017). These tests have good power
in most situations but are still affected by severe size distortion in presence of depen-
dent errors, especially of the moving-average kind (for a detailed account see Patterson,
2011, Chapters 6 and 9). Only recently, Chan et al. (2020) used TARMA models to de-
velop a novel Lagrange multiplier unit-root test with good size and power, allowing for
a wide and flexible non-linear alternative and robust against heteroskedasticity. The test
has been designed to detect the presence of regulation, a phenomenon that plays an im-
portant role in biological growth and population fluctuations. It specifies an IMA(1,1)
model as the null hypothesis and a TARMA(1,1)with a unit-root regime as the alterna-
tive. The key aspect that distinguishes this test from other proposals is that, for the first
time, the moving-average component is directly included both in the null and the alter-
native hypothesis. The associated theoretical derivations are highly non-standard and
more challenging with respect to tests based upon TAR models. Moreover, note that
the IMA(1,1) and the TARMA(1,1) models are capable of encompassing a wide range of
stationary and non-stationary linear and non-linear dynamics.

The model under the null hypothesis is

Xt =φ0+Xt−1+ εt −θεt−1,

whereas, under the alternative hypothesis we have

Xt =φ0+Xt−1+ εt −θεt−1+ {Ψ0+Ψ1Xt−1}× I (Xt−1 ≤ r ).

Hence, letting Ψ = (Ψ0,Ψ1)
ᵀ and 0 be the zero vector, the system of hypotheses reduces

to:

H0 : Ψ = 0 vs H1 : Ψ 6= 0.

The threshold parameter r is absent under the null, hence the test statistic is obtained
as the supremum Lagrange multiplier test statistic:

Tn = sup
r∈[rL,rU ]

Tn(r ),
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where Tn(r ) is the Lagrange multiplier test statistic for a fixed r . The points rL and rU
are taken to be some percentile of the data. Chan et al. (2020) proved that the test is
consistent and asymptotically similar in that its asymptotic null distribution does not
depend on the value of the MA parameter. Moreover, they introduced a wild bootstrap
version of the supLM statistic that possesses good properties in finite samples and is
robust against heteroskedasticity.

In this application we take rL and rU to be the 25th and 75th percentile of the data,
respectively. The value of the test statistic results 26.543, whereas the bootstrap p-value
is 0.001. Hence, we reject the null hypothesis of presence of unit-root and the series can
be treated as stationary.

Having ascertained the stationarity of the series we focus on testing whether it is
stationary and linear or stationary with threshold non-linearity. This kind of tests are
different from unit-root tests, not only from the practical/usage point of view, but also
from the theoretical prospective. Indeed, under the null hypothesis, the model is sta-
tionary so that the theoretical framework is different from that of unit-root tests where,
under H0, the process is not stationary. Also in the family of tests for linearity, the
threshold framework has been largely exploited. Chan (1990) developed a test for AR
models against their threshold extension, whereas Ling and Tong (2005) and Li and Li
(2008) focused on threshold non-linearity in MA models. Li and Li (2011) extended their
works for ARMA against TARMA models. All these tests are quasi-likelihood ratio tests
and require an estimated model under the alternative through the maximum likelihood
approach. As mentioned, there are no results on the maximum likelihood estimators
for TARMA models. Indeed, the test proposed by Li and Li (2011) is oversized even for
large sample sizes so that its practical application is questionable. In order to overcome
these issues, Goracci and Giannerini (2020) proposed two Lagrange multiplier tests to
compare a linear ARMA specification against its TARMA extension that only require
estimation of the null model. They showed that the tests enjoy very good finite-sample
properties, are robust against model mis-specification and their performance is not af-
fected if the order of the model tested is unknown and a consistent model selection pro-
cedure is adopted. The two tests are denoted as sLM and sLM?: in the sLM test only the
autoregressive part is tested for threshold non-linearity whereas in the sLM? test, both
the autoregressive and the moving average part are tested. Here, we assume d = 2 and
determine the autoregressive and moving-average orders through the Hannan-Rissanen
model selection procedure. The procedure selects the ARMA(2,1) as the optimal model:

Xt =φ0+φ1Xt−1+φ2Xt−2+ εt −θεt−1,

whereas under the alternative hypothesis we have:
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Xt =φ0+φ1Xt−1+φ2Xt−2+ εt −θεt−1

+
�

Ψ10+Ψ11Xt−1+Ψ12Xt−2

	

× I (Xt−2 ≤ r ), for sLM;

Xt =φ0+φ1Xt−1+φ2Xt−2+ εt −θεt−1

+
�

Ψ10+Ψ11Xt−1+Ψ12Xt−2−Ψ21εt−1

	

× I (Xt−2 ≤ r ), for sLM? .

By setting Ψ to be the vector containing all the Ψ’s and 0 the zero vector, the hypotheses
reduce to:

¨

H0 : Ψ = 0
H1 : Ψ 6= 0

As for the unit-root test, the threshold parameter r is absent under the null and hence
the test statistic is obtained as the supremum Lagrange multiplier test statistic over the
data-driven interval [rL, rU ]. Goracci and Giannerini (2020) derived the asymptotic dis-
tribution of the statistics under the null hypothesis and local contiguous alternatives
and prove the consistency of the tests. Moreover, they showed empirically their sim-
ilarity. The sLM and sLM? test statistics result 30.258 and 31.929, respectively. The
corresponding critical value are reported in Table 1. The two tests reject the null hy-
pothesis of linear ARMA also at the nominal level 99.9%. The results motivate the use
of threshold model to the Canadian lynx time series.

TABLE 1
Critical values for the asymptotic null distribution of the sLM and sLM? statistics when the

autoregressive order and moving-average order are 2 and 1, respectively. The threshold range is
[rL, rU ] with rL and rU being the 25th and 75th percentile, respectively.

sLM sLM?

AR MA 90% 95% 99% 99.9% 90% 95% 99% 99.9%

2 1 11.53 13.41 17.22 22.17 13.48 15.46 19.63 25.60

4. THE MODELS

In this section we present the panel of 11 models that we compare from different prospec-
tives. We consider 5 two-regime TAR models and 6 two-regime TARMA models. First,
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we include the following 3 TAR models presented in Tong (1983, 1990)

M1: Xt =



















0,546+ 1,032Xt−1− 0,173Xt−2

+0,171Xt−3− 0,431Xt−4+ 0,332Xt−5

−0,284Xt−6+ 0,210Xt−7+ ε1,t , if Xt−2 ≤ 3,116
2,632+ 1,492Xt−1− 1,324Xt−2+ ε2,t , if Xt−2 > 3,116.

M2: Xt =











0,768+ 1,064Xt−1− 0,200Xt−2+ 0,164Xt−3

−0,428Xt−4+ 0,181Xt−5+ ε1,t , if Xt−2 ≤ 3,05
2,254+ 1,474Xt−1− 1,202Xt−2+ ε2,t if Xt−2 > 3,05.

M3: Xt =
¨

0,62+ 1,25Xt−1− 0,43Xt−2+ ε1,t if Xt−2 ≤ 3,25
2,25+ 1,52Xt−1− 1,24Xt−2+ ε2,t if Xt−2 > 3,25.

The variances of the innovation terms are reported in Tong (1990, chapter 7). Model
M3 is the simplest and has a nice biological interpretation (see Tong, 1990; Stenseth et al.,
1998; Fan and Yao, 2003, for comments). On the other hand, as we will show, the other
models represents an improvement in terms of statistical fitting.

TABLE 2
Models used to analyse the Canadian lynx time series. The “AR lags” column indicates the subset of
lags whose parameters are fixed across regimes, whereas the “TAR lags” column refers to the subset of
lags whore parameters are regime-dependent. Moreover, d is the delay parameter and “MA ord” is the
moving-average order. The last column indicates whether the intercept is common between regimes

or it is regime-dependent.

Model AR lags TAR lags MA ord d intercept

M4 4,12 1,2,9 0 2 common
M5 1:7 0 2 regime-dependent

M6 4,12 1,2,9 1 2 common
M7 4,9,12 1,2 1 2 common
M8 1:4,6,7,10 1 2 regime-dependent
M9 4,9,12,16 1,2 1 2 common
M10 4,12,16 1,2,9 1 2 common
M11 1,2 1 2 regime-dependent

The remaining models M4 – M11 are synthesized in Table 2. The “AR lags” column
indicates the subset of lags whose parameters are fixed across regimes, whereas the “TAR
lags” column refers to the subset of lags whose parameters are regime-dependent. More-
over, d is the delay parameter and “MA ord” is the moving-average order, the moving-
average part is assumed to be fixed across regimes. The last column indicates whether
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the intercept is common between regimes or it is regime-dependent. For instance, M4
is described by the following difference equation:

Xt =φ0+φ4Xt−4+φ12Xt−12+ εt

+
¨

φ1,1Xt−1+φ1,2Xt−2+φ1,9Xt−9, if Xt−2 ≤ r
φ2,1Xt−1+φ2,2Xt−2+φ2,9Xt−9, if Xt−2 > r.

Models M4 and M5 are TAR processes whereas models M6 – M11 are TARMA. All
these models have common features consistent with the underlying biology, e.g. (i) the
delay parameter d is always 2 and this is related to the time lag between the dynamic
of the lynx population and that of the hares; (i i) there is a TAR effect at lags 1 and 2
(see Tong, 1990; Chan and Tong, 2001; Cryer and Chan, 2008; De Gooijer, 2017, and
references therein for more details).

5. PARAMETER ESTIMATION AND GOODNESS-OF-FIT

In this section we fit models M4 – M11 to the Canadian lynx time series. We adopted
the estimation procedure presented in Giannerini and Goracci (2020) that deploys the
well-tested maximum likelihood framework available for ARMA models where the like-
lihood is derived via a state-space representation of the ARMA process by means of the
Kalman filter. The idea relies on considering the autoregressive parts as regressors and,
hence, reducing the problem to estimating a regression with ARMA errors. The imple-
mentation is flexible as it is possible to have (i) an autoregressive part common among
regimes; (i i) regime dependent autoregressive orders; (i i i) specific subset of lags to be
included in each autoregressive part; (i v) arbitrary number of regimes. Note that since
the MA parameters do not change across regimes, the maximum likelihood framework
is well established and can be exploited. The estimated thresholds are reported in Ta-
ble 3, whereas Tables 4 and 5 show the estimates for the other parameters from models
M4 – M11.

TABLE 3
Estimated thresholds from models M4 – M11 of Table 2 on the Canadian lynx data.

M4 M5 M6 M7 M8 M9 M10 M11

r 3.31 3.31 3.31 3.31 3.36 3.35 3.35 3.31

First, we compare the models with respect to their goodness-of-fit by means of the
AIC and the BIC. Information criteria are based on the derivation of the likelihood func-
tion. Since, given the threshold r and the delay parameter d , TAR models have a linear
parametrization, the profile likelihood function can be factorized as the sum of the like-
lihood functions associated to the two regimes. Hence the AIC and BIC can be derived
separately for each regime of and the overall information criterion is the sum of those
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(for more details see Tong, 1990; Cryer and Chan, 2008). On the contrary, TARMA
models still present a non-linear parameterization given the threshold and hence we
derive a global likelihood function. Moreover, the estimation procedure for TARMA
models consists in estimating regression models with MA errors and, hence, it is not pos-
sible to consider each regime separately. For more details see Giannerini and Goracci
(2020). In order to achieve comparability, we compute the AIC and BIC as follows:

AIC= (n− p)(1+ log2π)+ (n− p) log
�

RSS
n− p

�

+ 4(p + 1),

BIC= (n− p)(1+ log2π)+ (n− p) log
�

RSS
n− p

�

+ 2(p + 1) log(n− p),

where RSS indicates the residual sum of squares derived from the global model.

TABLE 6
Information criteria for models M1 – M11 presented in Table 2. The corresponding parameter

estimation are reported in Table 4 and Table 5.

AIC BIC

M1 -25.53 6.54
M2 -27.58 -0.67
M3 -25.22 -6.20
M4 -54.24 -27.99
M5 -23.66 21.77
M6 -57.27 -31.02
M7 -57.70 -28.83
M8 -37.35 10.25
M9 -62.03 -33.59
M10 -60.75 -29.73
M11 -31.46 -9.71

Table 6 reports the information criteria for the eleven models M1 – M11. According
to both information criteria, the best model is the TARMA model M9. The moving-
average parameter is significantly positive and less than 1. The threshold effect involves
only the first and second lags. The values of Xt−1 and Xt−2 influence Xt in different
ways according to the phase, whereas the lagged values Xt−4, Xt−9, Xt−12 and Xt−16
seem to exert a global effect independent from the phase. The difference between the
autoregressive parameters in the two regimes reflects the so-called phase-dependence and
density-dependence (see, e.g., Fan and Yao, 2003, Chapter 4 and references therein for
more details). Note that the AIC and BIC have to be treated with great care, especially
in a non-linear setting. The crucial point is that model selection procedures based upon
AIC and BIC require the true data generating process to be among the candidates, which
is not always guaranteed.
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To cope with this issue, other information criteria have been proposed. The most
recently contribution is given by Hsu et al. (2019) that proposed a misspecification-
resistant information criterion (MRIC) to perform consistent model selection without
assuming the presence of the true model among the panel of candidates. This informa-
tion criterion relies upon the computation of the mean squared predictor error, which
has still not been derived for TARMA models and hence we cannot include it in our
analysis.

In the framework of threshold models several specific information criteria have been
developed. For instance, Kapetanios (2001) extended the theoretical results concerning
the information criteria in selecting the lag order available only for AR models to TAR
models; Galeano and Peña (2007) proposed a modified model selection criteria for the
class of TAR models. To date, it is an open issue whether such criteria can be further
extended to the general TARMA framework. See also Stone (1977) and Konishi and
Kitagawa (1996) for more references.

6. SPECTRAL ANALYSIS

The spectral density of the series is reported in Figure 4. There are three prominent
peaks; the major peak occurs at frequency 0.102 that corresponds to a period of about 9-
10 years. The other two peaks point to a shorter period of 5 years and a longer period of
37 years. We compare the capability of models M1 – M11 to reproduce cycles presented
in the series. To this end, we simulate time series of length 10000 from the fitted models
and compute their spectral density, see Figures 6 and 7. The dashed lines indicate the
prominent peaks and the corresponding periods are also reported. All the models are
able to describe the 9-10-year cycle. The TAR models M1, M2 and M4 cannot reproduce
the other two periods. All the other models capture also the peak corresponding to the
5-year period. The spectra of models M3, M5, M6, M8 and M9 also present a peak at a
period of around 30 years.

To complete the analysis, in Figures 18 – 20 of Appendix A, we show the time plots
of the simulated time series and their skeletons, obtained removing the noise terms.
All the skeletons capture the (6+3)-year asymmetric cycle. On the other hand, it is
recognized that the behaviour of a process (e.g. its stationarity) is not implied by the
behaviour of its skeleton (e.g. its stability) (see Tong, 1990). Moreover it is questionable
whether considering the skeleton of a TARMA model is meaningful since it reduces
to the skeleton of the corresponding TAR model. Hence, we consider the simulated
trajectories: they appear qualitatively similar to the observed time series and still present
the main cycle.
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Figure 6 – Spectral density of time series of length 10000 simulated from TAR models. The dashed
line indicate the prominent pikes and the corresponding periods are reported.
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Figure 7 – Spectral density of time series of length 10000 simulated from TARMA models. The
dashed line indicate the prominent pikes and the corresponding periods are reported.
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7. BIMODALITY

In this section we study the capability of models M1 – M11 to reproduce the multimodal-
ity of the series. Figures 8 – 10 exhibit the histogram of the Canadian lynx time series
and superimpose the non-parametric kernel density estimation of simulated trajectories
from models M1 – M11. TAR models capture the small peaks in the left tail of the dis-
tribution better than TARMA models. Among TAR models, model M3 seems to have
the best performance in terms of reproducing the bimodality of the time series, whereas
its TARMA counterpart, i.e. model M11 is the most representative of the bimodality
among TARMA models.
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Figure 8 – Histogram of the Canadian lynx time series and the non-parametric kernel density
estimation of 10000-length simulated trajectories from the TAR models M1 – M5.
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Figure 9 – Histogram of the Canadian lynx time series and the non-parametric kernel density
estimation of 10000-length simulated trajectories from the TARMA models M6 – M8.
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Figure 10 – Histogram of the Canadian lynx time series and the non-parametric kernel density
estimation of 10000-length simulated trajectories from the TARMA models M9 – M11.

8. FORECASTING PERFORMANCE

Giannerini and Goracci (2020) analysed the forecasting performance within the TARMA
framework and showed the asymmetric behaviour of the one-step-ahead predictor of
the TARMA(1,1) model. In this section, we exploit their implementation to com-
pare the set of 11 models in terms of their forecasting accuracy. We consider a train-
ing set, composed by the first T observations, i.e. {y1, . . . , yT } and a test set defined as
{yT+1, . . . , yT+h}, with h being the forecasting horizon. We fit models M1 – M11 on
the training set and obtain the h-step ahead prediction. The forecasting performance
depends upon both the last state of the system yT and the forecasting horizon h. In gen-
eral, besides the impact of h, we expect different performance if yT is in a trough rather
than in a peak. In this spirit, we consider 10 different training sets, identified by their
end point yT ∈ F := {y1915, . . . , y1924}. For each of the 10 training sets, we compute
the h-step-ahead prediction with h ∈ H := {1, . . . , 10} and derive the mean absolute
percentage error (MAPE), defined as follows:

MAPE=
1

#(F )
1

#(H )
∑

yT ∈F

∑

h∈H
|e(yT , h)| × 100, (2)

e(yT , h) =
ŷT+h − yT+h

yT+h

and #(A) is the cardinality of the set A. In order to investigate the dependence of the
forecasting performance upon the position of the last available observation yT and the
forecasting horizon h we consider the following two measures:

MAPE(yT ) =
1

#(H )
∑

h∈H
|e(yT , h)| × 100, (3)

MAPE(h) =
1

#(F )
∑

yT ∈F
|e(yT , h)| × 100. (4)
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Figure 11 – Plot of MAPE(h) versus h for the models M4, M6, M8 and M11. The forecasting
horizon h ranges from 1 to 10.
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Figure 13 – Plot of e(yT , h = 1) versus yT when the forecasting horizon is fixed to 1 for the models
M4, M6, M8 and M11. The black line is the observed series and each bullet represents yT , T =
1915, . . . , 1924, i.e. the end point of each training set.

Tables 7 and 8 contain the values of MAPE(h) and MAPE(yT ) computed for models
M1 – M11, respectively. For each row, we have highlighted the best and the worst fore-
casting performance in green and red, respectively. From Tables 7 model M11 results the
best of the panel as it presents the lowest MAPE in 5 out of 10 values of h, and it is not far
from the best model for the other values of h. Among TARMA models, also models M6
and M8 enjoy a good performance. Among TAR models, model M4 performs well and
turns out to be the best for h = 8,9. Table 8 clearly shows that the performance is indeed
influenced by the value of yT and it seems that this impinges more on the class of TAR
models. Also in this setting, the best models are M4, M6, M8 and M11. For these, in Fig-
ures 11 and 12, we report the plots of the MAPE(h) versus h and MAPE(yT ) versus yT ,
respectively. As expected, the prediction error does not increase monotonically with h
and this is a typical feature of non-linear prediction. If we consider the MAPE(h), M11
is the best model, except for h = 8,9,10. The only case where a TAR model performs
better that the TARMA ones, is when h = 8 with M4 enjoying the best performance.
The analysis of the MAPE(yT ), shows that the forecasting performance is better if the
end point yT belongs to the ascending phase of the cycle. This is a consequence of the
asymmetric cycle where the decreasing phase is faster and so it is generally harder to pre-
dict. Overall, TARMA models tend to attain a superior forecasting accuracy, the only
exception being when yT = y1915 for which the TAR model M4 is superior. To complete
the analysis, in Figure 13 we report the prediction error e(yT , h) as function of the end
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point yT for the forecasting horizon h fixed to 1. The error is higher when yT is at the
beginning of the descendent phase, where the best model is confirmed to be the TAR
M4, whereas models M8 and M11 that in general have the best performance, here turn
out to be the worse models. Remarkably, contrarily to the situation in Figure 12, model
M11 has the best performance only in two instances. The TAR model M4 appears to be
preferable for the one-step-ahead prediction.

9. DIAGNOSTICS

In this section, we report the diagnostics for the fits of models M4 – M11. Figures 14
and 15 show the global and partial correlograms for the residuals and these do not show
any structures. The results are reinforced by the entropy measure Sρ (Giannerini et al.,
2015) computed up to lag 12 and reported in Figures 16 and 17.

10. CONCLUSIONS

In this work, we have deployed the recent theoretical results of Chan and Goracci (2019)
on TARMA models to revisit the analysis of the benchmark Canadian lynx time series.
This data set has attracted attention since it is characterized by an asymmetric limit cycle
where the increasing phase is slower than the decreasing phase. Since threshold models
can be seen as the discrete time version of continuous time prey-predator models and are
able to capture limit cycles, they hold substantial promise to model the lynx time series.
Several TAR and TARMA models have been considered and compared from three differ-
ent prospectives: goodness-of-fit through information criteria; the ability to reproduce
both characteristic cycles and multimodality; forecasting performance. We have found
models that perform better than TAR models with respect to all these aspects. The rea-
sons behind the superiority of TARMA models can be diverse. In particular, TARMA
models can describe complex phenomena parsimoniously and allow different long-run
probabilistic behaviours, including non-stationary sub-models in some regimes. More-
over, they naturally account for measurement error. On the other hand, the theory for
TARMA models presents several gaps. The long-run probabilistic behaviour is com-
pletely characterized only for the TARMA(1,1), for which it depends only upon the
autoregressive part. It could be interesting to investigate whether this holds also for
higher-order models. A possible first direction is to assess whether the conditions for
the ergodicity of the TARMA(1,1) with general delay parameter d > 1 is the same as
those obtained in Chen and Tsay (1991). Another interesting aspect is related to the
derivation of the mean square prediction error for TARMA models and the applica-
tion of the MRIC proposed in Hsu et al. (2019) in the TARMA framework. Moreover,
there are no results on the sampling properties of maximum-likelihood estimators for
TARMA models. Another open challenge concerns bootstrap inference for threshold
models. Different bootstrap schemes have been proposed in tests within the threshold
framework, but there are no results about their validity even for the simplest TAR case.
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Figure 14 – Correlograms of the residuals from Model M4 – M7 fit for the time series of Canadian
lynx.
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Figure 15 – Correlograms of the residuals from models M8 – M11 fit for the time series of Canadian
lynx.
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Figure 16 – Entropy measure Sρ computed on the residuals from the TAR models M1 – M5 fit
for the time series of the Canadian lynx. The confidence bands at 95% (green) and 99%(blue)
correspond to the null hypothesis of serial independence.
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Figure 17 – Entropy measure Sρ computed on the residuals from the TARMA models M6 – M11
fit for the time series of the Canadian lynx. The confidence bands at 95% (green) and 99%(blue)
correspond to the null hypothesis of serial independence.
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Lastly, we mention the extension of TARMA models in the continuous time because the
available results cover only the continuous-time TAR case (e.g. Brockwell and Williams,
1997).
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APPENDIX

A. SUPPLEMENTARY RESULTS: SPECTRAL ANALYSIS

We report time plots of the simulated time series and their skeletons for TARMA models
M1 – M11.
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Figure 18 – Time plot of the simulated time series and their skeletons for TAR models M1 – M3.



Revisiting the Canadian Lynx Time Series Analysis through TARMA Models 387

Model M6

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

Model M6, skeleton

0 20 40 60 80 100

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

Model M7

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Model M7, skeleton

0 20 40 60 80 100

2.
4

2.
6

2.
8

3.
0

3.
2

3.
4

Model M8

0 20 40 60 80 100

2.
0

2.
5

3.
0

3.
5

4.
0

Model M8, skeleton

0 20 40 60 80 100

2.
6

2.
7

2.
8

2.
9

3.
0

3.
1

3.
2

3.
3

Figure 19 – Time plot of the simulated time series and their skeletons for TARMA models M6 –
M8.
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Figure 20 – Time plot of the simulated time series and their skeletons for TARMA models M9 –
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SUMMARY

The class of threshold autoregressive models has been proven to be a powerful and appropriate tool
to describe many dynamical phenomena in different fields. In this work, we deploy the thresh-
old autoregressive moving-average framework to revisit the analysis of the benchmark Canadian
lynx time series. This data set has attracted great attention among non-linear time series analysts
due to its asymmetric cycle that makes the investigation very challenging. We compare some of
the best threshold autoregressive models (TAR) proposed in literature with a selection of thresh-
old autoregressive moving-average models (TARMA). The models are compared under different
prospectives: (i) goodness-of-fit through information criteria, (i i) their ability to reproduce char-
acteristic cycles, (i v) their capability to capture multimodality and (i i i) forecasting performance.
We found TARMA models that perform better than TAR models with respect to all these aspects.

Keywords: Population dynamics; Predator-prey interaction; Canadian lynx time series; Non-
linear time series; TARMA processes; Asymmetric cycle.
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