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SUMMARY

In this paper we propose a discrete analogue of New Generalized Pareto distribution as a new
discrete model using general approach of discretization of continuous distribution. The structural
properties of the new distribution are discussed. The shape properties, moments, median, infinite
divisibility and stress-strength properties are derived. Estimation of parameters are done using
maximum likelihood method. An application of real data set shows the suitability of the proposed
model.
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1. INTRODUCTION

Pareto distribution is well known in the literature for modelling heavy tailed data and
is used to model data from various fields such as Economics, Physics, Social Science,
Medicine etc. (see Arnold, 2008; Jayakumar et al., 2020, for details). Due to the applica-
tion of Pareto distribution to set more flexibility in data modelling, a number of general-
izations of Pareto distribution are developed in the literature. During the recent decade,
several discrete versions of Pareto distributions have been developed owing to the devel-
opment of new methodologies for generating new families of distributions. Examples
include a new discrete Pareto type IV distribution developed by Ghosh (2020). Para
and Jan (2016) introduced discrete three parameter Burr type XII and discrete Lomax to
model count data of cysts of kidney using steriods, a data from medical science. Prieto
et al. (2014) introduced and studied discrete generalized Pareto distribution, as a discrete
analogue of continuous generalized Pareto distribution, used to model the number of
road crashes on blackspots. Buddana and Kozubowski (2014) studied another version
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of discrete Pareto distribution. Krishna and Pundir (2009) used the discrete Burr and
discrete Pareto distribution to model reliability estimation in series system.

The discrete distribution are useful when count data occurs. Discretizing a con-
tinuous model is an interesting technique began with the work of Nakagawa and Os-
aki (1975). Kemp (1997) studied discrete normal dstribution and Nakagawa and Osaki
(1975) derived discrete Weibull distribution. A second type of discrete Weibull (DW)
distributon was proposed by Stein and Dattero (1984) and third type by Padgett and
Spurrier (1985). A discrete exponential distribution was examined by Sato et al. (1999).
Roy (2003) studied another version of the discrete normal distribution. Discrete ana-
logues of Laplace and skew Laplace was analysed by Inusah and Kozubowski (2006)
and Kozubowski and Inusah (2006) respectively. Kemp (2008) examined discrete half
normal distribution and Chakraborty and Chakravarty (2012, 2014, 2015) analysed the
discrete versions of gamma, Gumbel and power distributions. Jayakumar et al. (2020)
introduced and studied a new generalizations of Pareto distribution, using the concept
of random minimum. In this paper, we introduce a discrete version of the New Gen-
eralized Pareto (NGP), distribution studied in Jayakumar et al. (2020). Note that the
NGP distribution is a generalization of Pareto type III distribution and it is heavy tailed.
Moreover, the NGP distribution is subexponential, has dominated variation property
and is a member of class L . Also if X1,X2, ...,Xn are independent and identically dis-
tributed (iid) random variables having NGP distribution and if Sn =X1+X2+ ...+Xn ,
then P (Sn > x) ∼ P (Yn > x) where Yn =max(X1,X2, ...,Xn). That is, the exceedances
of high thresholds by the sum Sn is due to the exceedances of these thresholds by the
largest value in the sample, which is of very use in insurance and risk modelling. For
the application of subexponential distributions in various fields see Klüppelberg (1988).

In many real life situations where the variable under investigation is modelled by
continuous distribution, it has been observed that often the variable is recorded as an
integer valued one instead of real-valued, either because of its inherent nature or because
of the limitation of measuring instruments which warrants the introduction of a discrete
version of the existing continuous distributions. With this background, the primary
goal is to provide a discrete analogue of new generalized Pareto distribuion, a competent
model when compared with all other existing discrete Pareto models. From the study of
newly proposed distribution, it is clear that the existing discrete Pareto models derived
by Ghosh (2020), Para and Jan (2016), Prieto et al. (2014), Buddana and Kozubowski
(2014) and Krishna and Pundir (2009) are special cases of Discrete New Generalized
Pareto (DNGP) distribution. So our proposed model has a wider range of applications
in various fields such as medical science, reliability, accident analysis etc. Also, from the
Section of real data application, the proposed distribution showed better performance
in terms of model selection and goodness of fit criterion.

The rest of the paper is organized as follows. In Section 2 we discussed the method
of discretization used in the paper. DNGP distribution is introduced in Section 3. In
Section 4 structural properties of DNGP distribution are studied. Here, the cumulative
distribution, hazard rate function, moments, quantile function, and random variate gen-
eration of DNGP random variables are discussed. In Section 5 the parameters of DNGP
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are estimated using the method of maximum likelihood. Also, a simulation study is car-
ried out to assess the performance of the estimates. In Section 6 we consider a real data
set and it is showed that for modelling this data, the DNGP is more appropriate as com-
pared to geometric, discrete Pareto, discrete generalized Pareto, discrete Pareto type IV,
discrete Burr, exponential discrete Weibull and generalized discrete Weibull distribu-
tions. Conclusions are presented in Section 7.

2. DISCRETIZATION OF A CONTINUOUS DISTRIBUTION

Deriving discrete analogues of continuous distribution by means of preserving one or
more important traits of continuous distribution has received much attention in recent
years. In literature, there are several ways proposed to derive discrete distributions from
continuous distributions.These were discussed in detail by Chakraborty (2015).

In this paper, we discretize New Generalized Pareto (NGP) distribution introduced
in Jayakumar et al. (2020) having probability density function (pdf)

g (x;α,β,γ ,θ) =
αβαθ(1− γ )γ θ

1− γ θ
xαθ− 1

(γ xα+(1− γ )βα)θ+1
, x >β and α,β,γ ,θ > 0. (1)

Let X be a continuous random variable. Then, the discrete analogue Y of X can
be derived by using the survival function as follows. S(·) is the survival function of the
random variable X , then

P (Y = y) = P (X ≥ y)− P (X ≥ y + 1) = S(y)− S(y + 1), y = 0,1,2,3, . . . , (2)

where Y = bX c is the largest integer less than or equal to X . The first and easiest using
this approach is the geometric distribution with probability mass function (pmf)

p(x) = θx −θx+1, x = 0,1,2, . . . ,

which is derived by discretizing exponential distribution with survival function
S(x) = e−λx with λ, x > 0, θ= e−λ and (0<θ < 1).

3. DISCRETE NEW GENERALIZED PARETO DISTRIBUTION

Jayakumar and Sankaran (2016) defined Generalized Uniform distribution with pdf,

g (y;γ ,θ) =
(1− γ )θγ θ

(1− γ θ)(y(1− γ )+ γ )θ+1
; 0< y < 1,γ > 0,θ > 0 (3)

and using the transformation X = β
Y 1/α , Jayakumar et al. (2020) obtained New General-

ized Pareto (NGP) distribution with four parameters and pdf given in Eq.(1).
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The survival and hazard rate functions of NGP are:

S(x;α,β,γ ,θ) =
1

1− γ θ
−

γ θ

1− γ θ

�

xαθ

[γ xα+(1− γ )βα]θ

�

, x ≥β (4)

and

h(x;α,β,γ ,θ) =
( 1−γγ )

θαβα

xα+1

�

( 1−γγ )(
β
x )α+ 1

�

h

�

( 1−γγ )(
β
x )α+ 1

�θ
− 1

i
, x >β. (5)

The pmf of the discrete version of Y of the New Generalized Pareto distribution
using the method in Eq.(2) is derived as,

PY (y;α,β,γ ,θ) =P (Y = y) = Sx (y)− Sx (y + 1)

=
γ θ

1− γ θ

�

(y + 1)αθ

(γ (y + 1)α+(1− γ )βα)θ
−

yαθ

(γ yα+(1− γ )βα)θ

�

,
(6)

where y = [β] , [[β+ 1] , [[β+ 2] , . . . ,α,β,θ > 0 and 0< γ < 1. We call this distribu-
tion as Discrete New Generalized Pareto distribution with parameters α,β,γ and θ and
is denoted by DNGP(α,β,γ ,θ).

When θ= 1 and γ → 1,the pmf becomes

PY (y;α,β) =
�

β

y

�α

−
�

β

y + 1

�α

, (7)

which is the pmf of discrete Pareto distribution.
The pmf of DNGP is plotted in Figure 1. In particular, some representative plots of

DNGP pmf for various parametric values are shown.
By fixing the parameters β and γ , the pmf of DNGP is plotted for different values

of α and θ. From Figure 1, it appears that the distribution is rightly skewed. As the
values of the parameter α increases, the distribution becomes more leptokurtic and the
tail stretches more to the right. As the value of θ increases, the peakedness and skewness
decreases as well. The set of plots shows that DNGP is flexible for modelling life time
data as it has decreasing and increasing followed by decreasing shapes.

4. STRUCTURAL PROPERTIES OF DNGP(α,β,γ ,θ)

In this Section we study some distribution properties of DNGP(α,β,γ ,θ). Here we
obatin the expression for cumulative distribution function, survival and hazard rate
function and then plot the hazard rates to identify their behaviour for different para-
metric values. The moments are numerically obtained and checked whether DNGP is
better for both over and under dispersed data through the measure of dispersion index.
A new method for generating random samples from DNGP distribution is presented.
Finally we study the infinite divisibility and stress-strength reliability of DNGP distri-
bution.
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Figure 1 – PMF plot of DNGP(α,β,γ ,θ) for different values of α,β,γ ,θ.
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4.1. Cumulative distribution function

The cumulative distribution function (cdf) of DNGP(y;α,β,γ ,θ) is obtained as

F (y) =P (Y ≤ y) = 1− Sx (y)+ P (Y = y)

=1− 1
1− γ θ

+
γ θ

1− γ θ
(y + 1)αθ

(γ (y + 1)α+(1− γ )βα)θ
(8)

where y = [β], [β+ 1], [β+ 2], . . .. Here, note that

F (0) = 1− 1
1− γ θ

+
γ θ

(1− γ θ)(γ +(1− γ )βα)θ
.

The proportion of positive values is

1− F (0) =
1

1− γ θ
−

γ θ

(1− γ θ)(γ +(1− γ )βα)θ
.

Also,

P (a < Y ≤ b ) =
γ θ

1− γ θ

�

(b + 1)αθ

(γ (b + 1)α+(1− γ )βα)θ
−

(a+ 1)αθ

(γ (a+ 1)α+(1− γ )βα)θ

�

.

4.2. Survival and hazard rate functions

The survival function of DNGP(α,β,γ ,θ) is given by,

S(y) =P (Y > y) = 1− P (Y ≤ y)

=
1

1− γ θ
−

γ θ

1− γ θ

�

(y + 1)αθ

(γ (y + 1)α+(1− γ )βα)θ

�

.
(9)

The hazard rate function of DNGP(α,β,γ ,θ) is given by

h(y) =P (Y = y/Y ≥ y) =
P (Y = y)
P (Y ≥ y)

=
γ θ

1− γ θ

�

1−
yαθ(γ (y + 1)α+(1− γ )βα)θ

(y + 1)αθ(γ (yα+(1− γ )βα)θ

�

.
(10)

The reverse hazard rate and second rate of failure are respectively

h∗(x;α,β,γ ,θ) =P (Y = y/Y ≤ y) =
P (Y = y)
P (Y ≤ y)

=
(y + 1)αθ(γ (yα+(1− γ )βα)θ− yαθ(γ (y + 1)α+(1− γ )βα)θ

[(y + 1)αθ− (γ (y + 1)α+(1− γ )βα)θ] [γ (yα+(1− γ )βα]θ

(11)
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and

h∗∗(x;α,β,γ ,θ) = log
�

S(y)
S(y + 1)

�

=

�

(γ (y + 2)α+(1− γ )βα)θ
��

(γ (y + 1)α+(1− γ )βα)θ− γ θ(y + 1)αθ
�

[(γ (y + 1)α+(1− γ )βα)θ] [(γ (y + 2)α+(1− γ )βα)θ− γ θ(y + 2)αθ]
.

(12)

The accumulated hazard function, H (y) is given by,

H (y) =
y
∑

k=0

γ θ

1− γ θ

�

1−
kαθ(γ (k + 1)α+(1− γ )βα)θ

(k + 1)αθ(γ (kα+(1− γ )βα)θ

�

. (13)

Figure 2 represents hazard plots of DNGP for various values of α,β,γ and θ. From the
plots, it is clear that hazard rate can be decreasing and increasing followed by decreasing
shapes.
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Figure 2 – Hazard rate of DNGP(α,β,γ ,θ) for different values of α,β,γ ,θ.
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4.3. Moments

The r th moment about origin is given by

µ
′

r =
∞
∑

y=[β]

y r γ θ

1− γ θ

�

(y + 1)αθ

(γ (y + 1)α+(1− γ )βα)θ
−

yαθ

(γ yα+(1− γ )βα)θ

�

. (14)

The moments are numerically obtained by using R programming for given values of
α,β,γ ,θ. The index of dispersion of DNGP for different values of the parameters are
given in Table 1. From Table 1, it can be seen that for two sets of values for beta and
gamma (β =0.5 and 1.0, γ = 0.1) and for fixed θ, the index of dispersion
(E(X 2)− [E(X )]2)/E(X ) decreases as α increases. Also for fixed α, the index of dis-
persion increases as well as decreases as θ increases. Depending upon the parametric
values, it can be found that index of dispersion can be greater than 1 as well as less than
1. Therefore DNGP models are better for both under and over dispersed data.

TABLE 1
Index of dispersion for DNGP(α,β,γ ,θ) for different values of α and θ for

β= 0.5,γ = 0.1 and β= 1.0,γ = 0.1.

α↓ θ→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5 4.200 4.294 4.391 4.491 4.593 4.697 4.803 4.909 5.015 5.121
β - 0.5 1.0 3.164 3.183 3.204 3.228 3.254 3.284 3.318 3.355 3.396 3.442
γ - 0.1 2.0 2.058 2.046 2.032 2.017 2.000 1.983 1.964 1.945 1.925 1.906

3.0 1.293 1.276 1.258 1.240 1.221 1.202 1.182 1.163 1.144 1.125
5.0 0.975 0.963 0.951 0.938 0.925 0.912 0.898 0.883 0.869 0.854

0.5 4.173 4.309 4.446 4.582 4.717 4.851 4.983 5.111 5.237 5.359
β - 1.0 1.0 2.900 3.004 3.112 3.223 3.338 3.455 3.576 3.700 3.825 3.953
γ - 0.1 2.0 1.571 1.609 1.641 1.670 1.695 1.717 1.736 1.752 1.766 1.779

3.0 0.797 0.831 0.862 0.890 0.915 0.937 0.956 0.973 0.987 0.998
5.0 0.168 0.181 0.195 0.208 0.222 0.235 0.247 0.259 0.271 0.282

In Table 2, we present raw moments about origin, central moments, skewness and
kurtosis based on moments of DNGP(α,β,γ ,θ) for given values of α,β,γ ,θ. From
Table 2, it is clear that DNGP is positively skewed since the sign of µ3 is positive for all
the parametric values and DNGP is leptokurtic since the measure of kurtosis is greater
than 3 for all given values of the parameters.
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TABLE 2
Moments, Skewness and Kurtosis for β = 0.9, γ= 0.9 and various values

of α and θ.

Parameter Raw moments Central Moments Skewness Kurtosis

α= 0.5 µ1
′ = 1.908

θ= 0.5 µ2
′ = 9.416 µ2 = 5.776

µ3
′ = 62.221 µ3 = 22.218 2.559 4.932

µ4
′ = 473.521 µ4 = 164.623

α= 2.0 µ1
′ = 1.227

θ= 0.5 µ2
′ = 2.980 µ2 = 1.475

µ3
′ = 12.596 µ3 = 5.320 8.814 15.960

µ4
′ = 76.432 µ4 = 34.740

α= 3.0 µ1
′ = 0.902

θ= 1.0 µ2
′ = 1.415 µ2 = 0.602

µ3
′ = 3.642 µ3 = 1.280 7.524 21.616

µ4
′ = 16.043 µ4 = 7.824

α= 5.0 µ1
′ = 0.653

θ= 2.0 µ2
′ = 0.715 µ2 = 0.288

µ3
′ = 0.888 µ3 = 0.044 0.081 5.413

µ4
′ = 1.486 µ4 = 0.450

α= 2.0 µ1
′ = 1.345

θ= 5.0 µ2
′ = 3.495 µ2 = 1.685

µ3
′ = 15.379 µ3 = 6.146 7.890 14.086

µ4
′ = 94.639 µ4= 40.007
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4.4. Quantile function and random number generation

The quantile function of the random variable Y having DNGP(α,β,γ ,θ) distribution
is,

φ(m) = F −1(m) = [ym] =β
�

1− γ
γ

1
((m− 1)(1− γ θ)+ 1)−1/θ− 1

�1/α

− 1, 0≤ m ≤ 1,

(15)
where [ym] is the smallest integer greater than or equal to ym . In particular, the median
is given by

Median=φ(0.5) =β







1− γ
γ

1
h

1−
�

1−γθ
2

�−1/θi

− 1







1/α

− 1, 0≤ m ≤ 1. (16)

Here we use usual inverse transformation method for generating samples from proposed
model. Let M be a random number taken from U (0,1). Then, a random number Y ,
following DNGP, is sampled using the Eq.(15).

4.5. Infinite Divisibility

The structural property of infinite divisibility of the distribution is a characteristic that
has close relation to the Central Limit Theorem and waiting time distributions. In
modeling, it is desirable to know whether a given distribution is infinitely divisible or
not. Therefore, according to Steutel and van Harn (2003), Proposition 9.2, page 56, if
px , x ∈ N0 is infinitely divisible, then px ≤ e−1 for all x ∈ N. Also from Theoreom
3.2 of Steutel and van Harn (2003), if for atleast one case for which px is greater than
1/e , then pmf cannot be compound Poisson and hence it cannot be infinitely divisible.
Here, DNGP(2,2,0.9,5) distribution, we can see p2 = 0.4770173> e−1 = 0.367. So, in
general, DNGP(α,β,γ ,θ) distributions are not infinitely divisible. In addition, since
the class of self decomposable and stable distributions, in their discrete concept, are sub-
class of infinitely divisible distributions, we can conclude that DNGP distribution can
be neither self decomposable nor stable, in general.

4.6. Stress-strength reliability

Stress-strength reliability analysis is widely used in reliability engineering. Suppose Y
denotes the strength of a component subject to a component Z . Then R = P (Y > Z)
is a measure of system performance called stress-strength parameter. In literature, the
estimation of R has been considered when Y and Z are independently and identically
distributed. The stress-strength model is defined in discrete case by
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P (Y > Z) =
∑∞

y=0 PY (y)FZ (y),

where PY (y) and FZ (y) denotes pmf and cdf of the discrete random variable Y and Z
respectively.

Let Y ∼ DNGP(α1,β1,γ1,θ1) and Z ∼ DNGP(α2,β2,γ2,θ2). Denote
λ1 = (α1,β1,γ1,θ1)

T and λ2 = (α2,β2,γ2,θ2)
T . Let (y1, y2, . . . , yn) and (z1, z2, . . . , zm)

be n and m independent observations taken from DNGP(λ1) and DNGP(λ2), respec-
tively. Then,

R= P (Y > Z) =
∞
∑

y=[β]

γ θ1
1 γ

θ2
2

(1− γ θ1
1 )(1− γ

θ2
2 )

�

(y + 1)α1θ1

(γ1(y + 1)α1 +(1− γ1)β
α1
1 )

θ1
+

−
yα1θ1

(γ1yα1 +(1− γ1)β
α1
1 )

θ1

��

(y + 1)α2θ2

(γ2(y + 1)α2 +(1− γ2)β
α2
2 )

θ2
− 1

�

.

(17)

The total likelihood function of R is given by LR(λ
∗) = Ln(λ1)Lm(λ2) , where

λ∗ = (λ1,λ2). The score vector of R is given by

TR(λ
∗) =

�

∂ LR
∂ α1

, ∂ LR
∂ β1

, ∂ LR
∂ γ1

, ∂ LR
∂ θ1

, ∂ LR
∂ α2

, ∂ LR
∂ β2

, ∂ LR
∂ γ2

, ∂ LR
∂ θ2

�

.

The maximum likelihood estimate (mle) λ̂ of λ∗ can be obtained by solving
TR(λ

∗) = 0. Then, we substitute the mle λ̂ in Eq.(17). Thus, we can obtain the
stress-strength parameter R.

5. ESTIMATION AND SIMULATION STUDY

Here, we consider the method of maximum likelihood for estimating the parameters of
DNGP. Consider a random sample (y1, y2, . . . , yn) of size n, drawn from DNGP(α,β,γ ,θ)
with unknown parameter vector λ = (α,β,γ ,θ)T . Then, the likelihood function is
given by

L(y;α,β,γ ,θ) =
γ θn

(1− γ θ)n
n
∏

j=1





(y j + 1)αθ

(γ (y j + 1)α+(1− γ )βα)θ
−

yαθj

(γ yαj +(1− γ )βα)θ





(18)
and log-likelihood becomes

log L(y;α,β,γ ,θ) =nθ logγ − n log(1− γ θ)+
n
∑

j=1

log
h

(y j + 1)αθ(γ (y j + 1)α+

+(1− γ )βα)−θ− yαθj (γ yαj +(1− γ )β
α)−θ

i

.

(19)



384 K.P. Jayakumar and J. Jose

The corresponding likelihood equations are (by taking partial derivatives of LogL w.r.t
α,β,γ and θ respectively)

∂ log L
∂ α

=
n
∑

j=1

θ

¨





log(1+y j )(1+y j )
αθA−θ2 −log(y j )y

αθ
j A−θ1 +(1+y j )

αθA−1−θ
2 (−βαθ log(β)βαγ log(β)−γ log(1+y j )(1+y j )

α)

(1+ y j )αθA−θ2 − yαθj A−θ1 )





−





yαθj A−1−θ
1 (−βαθ log(β)βαγ log(β)− γ log(y j )y

α
j )

(1+ y j )αθA−θ2 − yαθj A−θ1 )





«

,

(20)

∂ log L
∂ β

=
n
∑

j=1

αβα−1θ(γ − 1)((1+ y j )
αθA−1−θ

2 − yαθj A−1−θ
1 )

(1+ y j )αθA−θ2 − yαθj A−θ1 )
, (21)

∂ log L
∂ γ

=
nθ
γ
+

nθγ θ−1

1− γ θ
+

+
n
∑

j=1

(1+y j )
αθ(βαθA−1−θ

2 −θ(1+y j )
αA−1−θ

2 )−yαθj (βαθA−1−θ
1 −θyαj A−1−θ

1 )

(1+ y j )αθA−θ2 − yαθj A−θ1 )
,

(22)

∂ log L
∂ θ

=n logγ +
nγ θ logγ

1− γ θ
+

+
n
∑

j=1

A−θ1 yαθj

�

logA1−α log(y j )
�

−A−θ2 (1+ y)αθj
�

logA2−α log(1+ y j )
�

(1+ y j )αθA−θ2 − yαθj A−θ1

,

(23)

where A1 =β
α(1−γ )+γ yαj and A2 =β

α(1−γ )+γ (1+y j )
α. The mle(s) of α,β,γ and θ

can be obtained by setting Eq. (20) to Eq. (23) equal to zero and solving simultaneously
with the help of statistical packages like optim or nlm in R programming.

Here, we perform simulation studies to find out the performance of mle of α,β,γ ,
and θ of the proposed DNGP model for different sample sizes. The different sample
sizes taken here are n = 100,250,500 and 1000. We repeat the process 2000 times and
report the average estimates of the parameters using nlm function of stats package in
R programming (R Core Team (2013)). In Table 3, we present the mle of α,β,γ , and
θ of DNGP(α,β,γ ,θ) distribution together with their mean square errors for different
values of n. From Table 3, it is clear that as sample size increases, the estimates are close
to the parameter values and mean squared errors of the estimates are also decreases.
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TABLE 3
mle of α, β , γ and θ.

Parameter n α̂ (MSE(α̂)) β̂ (MSE(β̂)) γ̂ (MSE(γ̂ )) θ̂ (MSE(θ̂))
α = 1.0 100 0.91(0.424) 1.10(0.522) 0.20(0.508) 0.99(0.003)
β = 1.0 250 0.98(0.034) 1.07(0.215) 0.17(0.250) 0.99(0.003)
γ = 0.1 500 1.03(0.029) 1.02(0.031) 0.16(0.184) 0.99(0.000)
θ = 1.0 1000 1.02(0.024) 1.03(0.025) 0.15(0.133) 1.02(0.000)
α =2.0 100 2.10(0.473) 1.19(1.771) 0.25(0.140) 3.20(2.043)
β = 1.0 250 2.09(0.733) 1.18(1.567) 0.243(0.092) 3.18(1.603)
γ = 0.2 500 2.03(0.043) 1.13(0.064) 0.233(0.054) 3.09(0.404)
θ =3.0 1000 2.01(0.000) 1.01(0.008) 0.203(0.000) 3.09(0.386)
α = 2.0 100 2.02(0.025) 3.12(1.317) 0.590(0.472) 1.02(0.046)
β = 3.0 250 2.02(0.023) 3.11(1.132) 0.493(0.257) 1.02(0.042)
γ = 0.5 500 2.01(0.019) 3.10(1.321) 0.543(0.257) 1.02(0.055)
θ = 1.0 1000 2.02(0.012) 3.01(0.658) 0.508(0.072) 1.02(0.022)
α = 2.0 100 2.03(0.030) 2.70(2.073) 0.594(0.418) 2.08(0.344)
β = 2.5 250 2.04(0.099) 2.59(0.358) 0.574(0.274) 1.94(0.195)
γ = 0.5 500 1.92(0.343) 2.46(0.083) 0.554(0.146) 2.06(0.175)
θ = 2.0 1000 2.02(0.015) 2.46(0.081) 0.514(0.007) 2.05(0.175)

6. APPLICATION

In this Section, we consider a real data set for illustrating the method we discussed in
Section 5. The data consist of the 72 exceedances for the years 1958-1984 (rounded to one
decimal place) of flood peaks (in m3/s ) of the Wheaton River near Carcross in Yukon
Territory, Canada (Choulakian and Stephens, 2001). The data are reported in Table 4.

TABLE 4
Data on the 72 exceedances for the years 1958-1984 of flood peaks (in m3/s ) of the

Wheaton River.

1.7 1.4 0.6 9.0 5.6 1.5 2.2 18.7 2.2 1.7 30.8 2.5
14.4 8.5 39.0 7.0 13.3 27.4 1.1 25.0 0.32 0.1 4.2 1.0
0.4 11.6 15.0 0.4 25.0 27.1 20.6 14.1 11.0 2.8 3.4 20.2
5.3 22.1 7.3 14.1 11.9 16.8 0.7 1.1 22.9 9.9 21.5 5.3
1.9 2.5 1.7 10.4 27.6 9.7 13.0 14.4 0.1 10.7 36.4 27.5
12.0 1.7 1.1 30.0 2.7 2.5 9.3 37.6 0.6 3.6 64.0 27.0

Since the data set is continuous, here first we discretize the data. The parameters are
estimated by using the method of maximum likelihood (using R software). We compare
the fit of the DNGP distribution with the following discrete lifetime distributions:
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a Geometric (G) distribution having pmf

P (Y = y) = (1− p)y p ; 0< p < 1, y = 0,1,2, . . ..

b Discrete Pareto (DP) (see Krishna and Pundir, 2009) distribution having pmf

P (Y = y) = θlog(1+y)−θlog(2+y); 0<θ < 1, y = 0,1,2 . . ..

c Discrete Generalized Pareto (DGP) (see Prieto et al., 2014) distribution having pmf

P (Y = y) = (1+λ(y −µ))−α− (1+λ(y −µ+ 1))−α;λ > 0,µ> 0,α > 0,
y =µ,µ+ 1, . . ..

d Exponentiated Discrete Weibull (EDW) distribution (see Nekoukhou and Bidram,
2015) having pmf

P (Y = y) = (1− p (y+1)α )γ − (1− pyα )γ ; α > 0, γ > 0, 0< p < 1,
y = 0,1,2, . . ..

e Generalized Discrete Weibull (GDW) distribution (see Jayakumar and Sankaran, 2018)
having pmf

P (y = y) =
θ
h

(1−p (y+1)β )α−(1−pyβ )α
i

¦

1−θ̄[1−(1−pyβ )α]
©¦

1−θ̄[1−(1−p (y+1)β )α]
© ; 0< p < 1, α > 0,β> 0,θ > 0,

y = 0,1,2, . . ..

f Discrete Burr XII (DBD XII) distribution (see Para and Jan, 2016) having pmf

P (Y = y) =βlog(1+( y
γ )

c )−βlog(1+( y+1
γ )

c ) ; 0<β< 1, γ > 0, c > 0, y=0,1,2,. . . .

g Discrete Burr (DB) (see Krishna and Pundir, 2009) distribution having pmf

P (Y = y) = θlog(1+yα)−θlog(1+(1+yα)) ;0<θ < 1, α > 0 , y = 0,1,2, . . ..

h Discrete Pareto type IV (DP IV) (see Ghosh, 2020) distribution having pmf

P (Y = y) = θlog(1+( y
σ )
(1/γ ))−θlog(1+( (y+1)

σ )
(1/γ )); 0<θ < 1,σ > 0,γ > 0,

y = 0,1,2,3, . . ..
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TABLE 5
Parameter estimates and goodness of fit for various models fitted for the dataset.

Model MLEs(SE) -LogL AIC BIC AICc HQIC K-S p-value

DP p̂ = 0.643(0.03) 294.06 590.12 592.39 590.17 591.02 0.38 0.00

DB α̂= 170.666(0.00) 270.24 544.47 549.02 544.64 546.28 0.30 0.00

θ̂= 0.997(0.00)

G p̂ = 0.073(0.01) 257.50 517.00 519.28 517.06 517.91 0.14 0.11

DGP λ̂= 4.459(1.22) 257.14 520.27 527.10 520.68 522.99 0.38 0.00

µ̂= 1.218(1.44)

α̂= 0.304(3.06)

DP IV θ̂= 1.109× 10−5(0.00) 257.25 520.48 527.31 520.84 523.20 0.15 0.09

σ̂ = 108.728(5.95)

γ̂ = 0.884(0.08)

DB XII β̂= 6.106× 10−5(0.00) 257.27 520.53 527.36 520.89 523.25 0.11 0.30

γ̂ = 92.001(0.23)

ĉ = 1.143(0.07)

EDW p̂ = 0.695(0.39) 256.65 519.30 526.13 519.65 522.01 0.11 0.35

α̂= 0.648(0.36)

γ̂ = 2.73(3.29)

GDW α̂ = 3.381(1.15) 256.64 521.29 530.39 521.88 524.91 0.11 0.35

β̂= 0.588(0.78)

θ̂= 1.160(0.02)

p̂ = 0.605(1.93)

DNGP α̂= 2.028(0.25) 242.33 492.65 501.76 493.25 496.28 0.09 0.54

β̂ = 1.808(0.03)

γ̂ = 0.002(0.00)

θ̂ = 6.627×10−6(0.09)
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Figure 3 – Empirical and fitted cdfs for the dataset.

The values of estimates, standard error (SE), the log-likelihood function (-LogL),
the Kolmogrov-Smirnov (K-S) statistic, Akaike Information Criterion (AIC), Akaike
Information Criterion with correction (AICc), Bayesian Information Criterion (BIC)
and Hannon-Quinn Information Criterion (HQIC) are calculated for the nine distribu-
tions in order to verify which distribution fits better to the data and presented in Table
5. The better distribution corresponds to smaller -LogL, K-S, AIC, AICc, BIC, and
HQIC values and larger p value. Here, AIC= -2LogL+ 2k, AICc= -2LogL+ ( 2kn

n−k−1 ),
BIC = -2LogL + klog(n), HQIC = -2LogL + 2klog(log(n)), where L is the likelihood
function evaluated at the mle(s), k is the number of parameters, and n is the sample
size. The K-S distance, Dn = supy |F (y)− Fn(y)|, where Fn(y) is the empirical distribu-
tion function. From Table 5, we can see that -LogL, K-S, AIC, AICc, BIC, and HQIC
values are smallest for DNGP with -LogL = 242.33, AIC = 492.65, AICc = 493.25,
BIC = 501.76, HQIC = 496.28 and K-S statistic value is 0.09. Also DNGP has high-
est p− value (i.e., 0.54). Therefore, the DNGP distribution gives better fit to the data
compared to the other eight models.

Figure 3 shows the plot of the cdf of nine models in comparison with empirical
distribution function of the given data. This figure indicates DNGP is superior to other
models in terms of model fitting.
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7. CONCLUSION

In this paper, we have introduced and studied Discrete New Generalized Pareto distri-
bution (DNGP) as a discrete analogue of New Generalized Pareto (NGP) and derived
different structural properties of DNGP. Estimation of the parameters of DNGP dis-
tribution are carried out using the method of maximum likelihood. The proposed dis-
tribution DNGP has wide range of applications in various fields and is a competitor of
existing discrete Pareto models. Analysis of a real data set is presented to show that the
flexibility and application of the distribution.
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