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1. INTRODUCTION

During recent years there has been an increased interest in defining new generated classes
of univariate continuous distributions. The works of Zografos and Balakrishnan (2009)
and Ristić and Balakrishnan (2012) may be mentioned as examples. Earlier, Eugene et al.
(2002) introduced a general class of distributions generated from the logit of the beta
random variable. The so called T −X transformation introduced by Alzaatreh et al.
(2013) is another such attempt.

In a similar vein, Mazucheli et al. (2019) introduced the unit-Gompertz (UG) distri-
bution and studied some of its properties. More specifically, they considered the ran-
dom variable X = e−Y , where Y has the Gompertz distribution. They erroneously
claimed that its hazard rate function can admit all possible forms depending on the
parameter. The support of this new distribution is (0,1). It may be viewed as an al-
ternative model for reliability studies where due to physical constraints such as design
life of the system or limited power supply, distributions with a finite support might be
required. As an application, Jha et al. (2020) consider the problem of estimating mul-
ticomponent stress-strength reliability under progressive Type II censoring when stress
and strength variables follow unit Gompertz distributions with common scale parame-
ter. Jha et al. (2019) consider reliability estimation in a multicomponent stress–strength
based on unit-Gompertz distribution. Kumar et al. (2020) are concerned with inference
for the unit-Gompertz model based on record values and inter-record times.
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However, some of the results presented in Mazucheli et al. (2019) are not entirely
correct. We present counter-examples to point out these subtle errors in their work; and
subsequently correct them in Section 2. We study conditional moments in Section 3.
Other important properties of this distribution are investigated in Section 4. Reliability
associated measures are studied in Section 5. Stochastic ordering are considered next in
Section 6. Finally, Section 7 concludes the paper.

2. COUNTER-EXAMPLES AND CORRECTIONS

For convenience, we shall stick to the notation of Mazucheli et al. (2019). Let Y (α,β)
be a non-negative random variable with Gompertz distribution having density function
given by

g (y | α,β) = αβexp
�

α+βy −αeβy
�

,

where y > 0; and α > 0 and β > 0 are shape and scale parameters, respectively. Using
the transformation

X = e−Y ,

Mazucheli et al. (2019) obtained a new distribution with support on (0,1) , which they
refer to as the unit-Gompertz distribution. For completeness, we shall list down its pdf
and cdf. The pdf of the unit-Gompertz distribution is given by

f (x | α,β) =
αβexp

�

−α
�

1/xβ− 1
��

x1+β
; α > 0,β> 0, x ∈ (0,1) (1)

while its cdf is given by

F (x | α,β) = exp
�

−α
�

1/xβ− 1
��

; (2)

and hence, the survival function is given by

F̄ (x | α,β) = 1− exp
�

−α
�

1/xβ− 1
��

. (3)

2.1. Shape

Mazucheli et al. (2019) erroneously stated (in their Proposition 1) that the pdf is log
concave and unimodal over the entire support of X . As a counterexample, consider α=
0.25, and β = 1. Let us consider the sign of the second derivative of log f (x | α,β) at
x = 0.50.

Routine calculation shows that d 2

d x2 log f (x | α= 0.25,β= 1) |x=0.50> 0, contradict-
ing Proposition 1 and Equation (6) of Mazucheli et al. (2019). We correct their Proposi-
tion 1 as follows:
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THEOREM 1. The pdf of the UG distribution is log concave and unimodal for

x ∈
�

0,min
�

(αβ)
1
β , 1

�i

.

PROOF. The second derivative of log f (x | α,β) is given by

d 2

d x2
log f (x | α,β) =−

(1+β)
x2

�

αβ

xβ
− 1

�

.

Now observe that α > 0, β> 0 and 0< x < 1; hence (1+β)x2 is always > 0.

Hence, d 2

d x2 log f (x | α,β)< 0 if x ≤ (αβ)
1
β .

This means that log f (x | α,β) is concave and unimodal for α > 0, β > 0 and x ∈
�

0,min
�

(αβ)
1
β , 1

�i

. This completes the proof. 2

Figure 1 – Density functions of unit-Gompertz distribution for (α= 0.25,β= 1)& (α= 2,β= 1).

Clearly, in Figure 1 we see that the graph of f (x;α = 2;β= 1) is log-concave while
the graph of f (x;α= 0.25;β= 1) is not.

2.2. Mode

Consider the UG distribution with shape parameter α = 3 and scale parameter β = 1.
According to Equation (10) of Mazucheli et al. (2019), the modal point is

x0 =
�

αβ

1+β

�
1
β

,

which in this particular case simplifies to 1.5. However, the support of the UG distri-
bution is (0,1) . The plot of the density function is given in Figure 2 below.
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Figure 2 – Density functions of unit-Gompertz distribution for (α= 3,β= 1)& (α= 1,β= 1).

It is easy to see from Figure 2, that the mode of f (x;α= 3;β= 1) is at x = 1, while
the mode of f (x;α = 1;β = 1) is at x = 0.5. We formalize this and now correct their
result.
It is easy to see that the first derivative of log f (x | α,β) is given by

d
d x

log f (x | α,β) =−
1+β

x
+
αβ

xβ+1
.

Hence, the mode of f (x | α,β) is x?, the root of the equation

d
d x

log f (x | α,β) = 0, (4)

if x? ≤ 1; where x? =
�

αβ
1+β

�
1
β . Hence the unique modal point is given by

xmode =min (x?, 1) .

2.3. Hazard rate

Mazucheli et al. (2019) have erroneously mentioned (on page 27 of their paper) that
limx→1 h(x) = αβ; and concluded that “monotonically increasing shapes are possible
for all values of α > 1 and β ≥ 1”; and “possibly bathtub shapes of the hazard rate
function will happen when α ≤ 0.5”. Subsequently, they have used the result of Glaser
(1980) to conclude (in their Theorem 3) that the hazard rate (HR) of the UG distribution
is upside-down bathtub shaped. They have sketched the hazard rate plot for different
values of α andβ (in their Figure 2); but, it is important to note that not a single one of
these graphs seems to be upside-down bath-tub shaped. Figure 3 shows the hazard plot
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Figure 3 – Hazard rate functions of unit-Gompertz distribution for (α= 2,β= 2), (α= 1,β= 3)
& (α= 0.5,β= 1).

of for a few selected values of α and β.

We see from Figure 3 that the hazard rate is not upside-down bathtub shaped as enun-
ciated in Theorem 3 of Mazucheli et al. (2019). This means that their Theorem 3 is not
correct. In fact, the shape of the hazard rate for the UG distribution cannot be obtained
by appealing to Glaser’s results. This is because Glaser’s results are useful when the
support of the distribution is (0,∞) . However, in this case of the UG distribution, the
support is the finite interval (0,1) . Ghitany (2004) has obtained sufficient conditions to
characterize the shape of the hazard rate when the support of the distribution is finite,
say (0, b ) . But even Ghitany’s theorem cannot be applied to the UG distribution because
f (1) = αβ; whereas Ghitany’s theorem demands that f (b ) = 0, where b is the left-end
support of f .

For the UG distribution, we have the hazard rate

h(x) =
f (x)
F̄ (x)

=
αβexp

�

−α
�

1/xβ− 1
��

x1+β
�

1− exp
�

−α
�

1/xβ− 1
��	 .

Observe that limx→0+ h(x) = 0 and limx→1− h(x) =∞. Hence, there exists 0 < M < 1
such that h(x) is increasing in (M , 1) , suggesting that the hazard rate cannot be upside-
down bath-tub shaped.

3. CONDITIONAL MOMENTS

The notions of conditional expectation (moment) and independence are routinely dis-
cussed in elementary probability and statistics courses at the undergraduate level. How-
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ever, conditional moments are important in their own right, especially in probability
theory and economics. Bryc (1996) considers conditional moment representations for
dependent random variables. Domínguez and Lobato (2004) introduce simple and con-
sistent estimation procedure for economic models directly based on the definition of
conditional moments. For the UG distribution with parameters α and β, we have the
following theorem.

THEOREM 2. Let X follow the UG distribution with parameters α and β. Then the
conditional moment of X exists and is given by

E (X n |X > x) =
eααn/β

�

Γ
�

1− n
β ;α

�

− Γ
�

1− n
β ; α

xβ

��

1− exp
�

−α
�

1/xβ− 1
�� ,

where Γ (s ; x) is the upper incomplete gamma function defined by

Γ (s ; x) =
∫ ∞

x
t s−1e−t d t . (5)

PROOF. The conditional moment, E (X n |X > t ) can be written as

E (X n |X > t ) =
1

S (t )
I ∗n (t ) ,

where
S (t ) = 1− F (t )

and

I ∗n (t ) =
∫ 1

t
yn f (y)d y (6)

= αβeα
∫ 1

t
yn−1−β exp

�

− α

yβ

�

d y

= αeα
∫ 1/tβ

1

1
zn/β

e−αz d z

= eααn/β
∫ α/tβ

α

u−n/βe−u d u

= eααn/β
�

Γ

�

1− n
β

;α
�

− Γ
�

1− n
β

;
α

tβ

��

, (7)

where Γ (s , x) is the upper incomplete gamma function defined in (5) above. This com-
pletes the proof. 2

As applications of the concept of conditional moment, we may consider the evalua-
tion of the mean residual life, the mean deviations about the mean and the median and
the expected inactivity time. These are discussed in the subsequent sections.
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4. OTHER IMPORTANT PROPERTIES

We shall now look at some other distributional properties not considered in Mazucheli
et al. (2019). Specifically we shall consider the mean deviation, the entropy, the Lorenz,
Bonferroni and Zenga curves and order statistics.

4.1. Mean deviation

For empirical purposes, the shape of a distribution can be described by the so-called
first incomplete moment, defined by m1 (z) =

∫ z
0 x f (x)d x = µ− I ∗1 (z) , where I ∗n (z) is

defined in (6) above with n = 1. This plays an important role in measuring inequality
and is used to measure the dispersion and the spread in a population from the center.
We shall first state a useful lemma.

LEMMA 3. The mean deviation about any arbitrary point x0 is given by

δ (x0) = E (|X − x0|) =
∫ 1

0
| x − x0 | f (x)d x = 2x0F (x0)− x0F (0)−µ+ 2I ∗1 (x0)− x0,

where F (0) is defined as 0.

The proof is simple and hence omitted.
Then the mean deviation about the mean is given by

δ (µ) = E (|X −µ|) = 2µF (µ)− 2m1 (µ) = 2µF (µ)− 2µ+ 2I ∗1 (µ) ,

and the mean deviation about the median

δ (M ) = E (|X −M |) =µF (µ)− 2m1 (M ) = 2M F (M )−µ+ 2I ∗1 (M )−M ,

where µ = E (X ) , M = median(X ) , m1 (z) =
∫ z

0 x f (x)d x is the first incomplete mo-
ment; and I ∗1 (t ) is as defined in (6) above . The algebraic expressions for the mean and
the median have already been obtained by Mazucheli et al. (2019); and hence δ (µ) and
δ (M ) can be easily evaluated numerically.

4.2. Entropies

An entropy is a measure of uncertainty of a random variable X . A large value of en-
tropy implies greater uncertainty in the data. The concept of entropy is important in
different subjects including communication theory, economics, physics, probability and
statistics. Several measures of entropy have been studied and compared in the literature.
Two popular entropy measures are the Shannon and Rényi entropies (Shannon, 1948;
Rényi, 1961). Nanda and Chowdhury (2020) provide a useful review. Hughes et al.
(2009) use the Rényi entropy to study ultrasonic molecular imaging. Beadle et al. (2008)
make a review of the Rényi entropy and suggest several potential applications of to such
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areas as spectral estimation and pattern recognition. Fuhrman et al. (2000) apply Shan-
non entropy for the identification of putative drug targets. Gałka (2015) uses Shannon
entropy for the evaluation of diagnostic symptoms of rotating machines. Tarko (2011)
applies the Shannon entropy for similarity comparison of two molecules. Sheraz et al.
(2015) use entropy measures for assessing volatile markets. Koltcov (2018) uses Rényi
entropy for finding the optimal number of topics in topic modeling.

The Rényi entropy of a random variable X with pdf f (·) is defined as

IR (γ ) =
1

1− γ
ln
∫ ∞

−∞
f γ (x)d x,

for γ > 0 and γ 6= 1; while the Shannon entropy is given by E [− ln f (X )] . It is a par-
ticular case of the Rényi entropy for γ ↑ 1.

First, we shall calculate the Rényi entropy. Towards this end, we compute
∫ 1

0
[ f (x)]γ d x = (αβeα)γ

1
β
(αγ )

1
β [1−γ (1+β)] Γ

�

γ +
1
β
(γ − 1) ;αγ

�

,

where Γ (s ; x) represents the upper incomplete gamma function defined in (5) above.
Then, the Rényi entropy of X is given by

IR (γ ) =
1

1− γ

�

γ ln (αβeα)+ ln
�

Γ

�

γ +
1
β
(γ − 1) ;αγ

��

− lnβ+
1
β
{1− γ (1+β)} ln(αγ )

�

=
1

1− γ

�

αγ +
(1− γ )
β

lnα− (1− γ ) lnβ+ 1
β
{1− γ (1+β)} ln(γ )

+ ln
�

Γ

�

γ +
1
β
(γ − 1) ;αγ

���

. (8)

Similarly, the Shannon entropy is given by

E [− ln f (X )] = 1− ln (αβ)− (1+β) eα

β
Γ (0;α) .

The Shannon entropy can also be obtained by limiting γ ↑ 1 in the Rényi entropy
obtained above.

Song (2001) has shown that the gradient of the Rényi entropy I ′R (γ ) = (d/dγ ) IR (γ )
is related to the log-likelihood by I ′R (1) =− (1/2)Var [(log f (X ))] . This equality and the
fact that the quantity−I ′R (1) remains invariant under location and scale transformations
motivated Song to propose −2I ′R (1) as a measure of the shape of a distribution. Taking
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the first derivative of (8) and then limiting γ ↑ 1 using L’Hospital’s rule, one gets the
expression

I ′R (1) =
β+2
2β −

1
2

h

α
¦

α− 2
�

1+ 1
β

�

lnα
©

−
¦

[lnα+ eαΓ (0;α)]
�

1+ 1
β

�

−α
©2

+ eα
�

1+ 1
β

�2 ∫∞
α

e−t (ln t )2 d t
i

for the measure proposed by Song (2001). This measure plays a similar role as the kur-
tosis measure in comparing the shapes of various densities and measuring heaviness of
tails.

4.3. Lorenz, Bonferroni and Zenga curves

The Lorenz curve, introduced by Lorenz (1905), was proposed to measure the concen-
tration of wealth. However, since then it has been used in many other areas. See, for
example, Aaberge (2000), Jacobson et al. (2005) and Groves-Kirkby et al. (2009) for its
diverse use. In the field of reliability mention may be made of the works of Chandra
and Singpurwalla (1981), Klefsjö (1984) and Pham and Turkkan (1994).

Similarly, Bonferroni (1930) proposed a curve to measure wealth and income inequal-
ity. This curve also has applications in demography, insurance and medicine. Giorgi and
Crescenzi (2001) apply the Bonferroni curve to analyze life-testing and reliability.

More recently, Zenga (2007) introduced a new index of income inequality, Z(x),
based on the ratio between the lower mean and the upper mean. Z(x) can be also in-
terpreted as the difference in average age of components which has survived beyond age
x from those which has failed before attaining age x, expressed in terms of average age
of components exceeding age x. Hence, it can be viewed as a measure of proportional
change in average age while switching over from survival before and after attaining age
x. It is also related to the mean residual life function eF (x) as follows:

Z(x) =
1

F (x)

�

1−
E (X )

x + eF (x)

�

.

Nair and Sreelakshmi (2016) discuss the Zenga curve in the context of reliability analysis.
These curves are defined as

L(p) =
1
µ

∫ q

0
x f (x)d x,

B(p) =
1

pµ

∫ q

0
x f (x)d x,

and

Z(x) = 1−
µ− (x)
µ+ (x)

,
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respectively, where µ+ (x) = E (X |X > x) , µ− (x) = E (X |X ≤ x) , q = F −1(p) and
µ= E(X ). Then for the UG distribution, we have

I (q) =
∫ q

0
x
αβ

x1+β
exp

�

−α
�

1
xβ
− 1

��

d x

= α1/βeα
∫ ∞

α/qβ
e−z z1−1/β−1d z

= α1/βeαΓ
�

1− 1
β

;
α

qβ

�

,

where Γ (s ; x) is as defined in (5) above. Hence, for β> 1 we have

L(p) =
α1/βeα

µ
Γ

�

1− 1
β

;
α

qβ

�

B(p) =
α1/βeα

pµ
Γ

�

1− 1
β

;
α

qβ

�

and

Z(x) = 1−
Γ
�

1− 1
β ; α

xβ

�

�

Γ
�

1− 1
β ;α

�

− Γ
�

1− 1
β ; α

xβ

��

F̄ (x)
F (x)

Z(x) = 1−
Γ
�

1− 1
β ; α

xβ

�

�

Γ
�

1− 1
β ;α

�

− Γ
�

1− 1
β ; α

xβ

��

�

1− exp
�

−α
�

1/xβ− 1
��	

exp
�

−α
�

1/xβ− 1
�� .

4.4. Order statistics

Order statistics are useful in Bayesian analysis, sampling plans for inspection by vari-
ables, image processing to name a few. Details may be found in Balakrishnan and Rao
(1998).

It is well know that if X(1) ≤X(2) ≤ · · · ≤X(n) denotes the order statistic of a random
sample X1,X2, · · · ,Xn from a continuous population with cdf FX (x) and pdf fX (x), then
the pdf of the j−th order statistics is given by

fX( j )
(x) =

n!
( j − 1)!(n− j )!

fX (x) [FX (x)]
j−1 [1− FX (x)]

n− j ,

for j = 1,2, · · · , n. Hence, the pdf of the j−th order statistic from the UG distribution
will be given by

fX( j )
(x) =

n!
( j − 1)!(n− j )!

αβeα j e−α j/xβ

x1+β

�

1− eαe−α/xβ
�n− j

.
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The k−th moment of X( j ) is obtained next. We have

E
�

X k
( j )

�

=
∫ 1

0
xk fX( j )

(x)d x

=
∫ 1

0
xk n!
( j − 1)!(n− j )!

αβeα j e−α j/xβ

x1+β

�

1− eαe−α/xβ
�n− j

d x

=
n!

( j − 1)!(n− j )!
αeα j

∫ ∞

1
t−k/βe−α j t �1− eαe−αt �n− j d t

=
n!

( j − 1)!(n− j )!
αeα j

∫ ∞

1
t−k/βe−α j t

n− j
∑

r=0

�

n− j
r

�

�

−eαe−αt �r d t

=
n!

( j − 1)!(n− j )!
αeα j

n− j
∑

r=0

�

n− j
r

�

(−1)r e rα
∫ ∞

1
t−k/βe−αt ( j+r )d t

=
αeα j n!

( j − 1)!(n− j )!

n− j
∑

r=0

�

n− j
r

�

(−1)r e rα {α ( j + r )}
k
β−1

∫ ∞

α( j+r )
y−k/βe−y d y

=
αeα j n!

( j − 1)!(n− j )!

n− j
∑

r=0

�

n− j
r

�

(−1)r e rα {α ( j + r )}
k
β−1 Γ

�

1− k
β

;α ( j + r )
�

,

where Γ (s ; x) is the upper incomplete gamma function defined in (5) above. Note that,
the moments exists only when k <β.

5. SOME OTHER IMPORTANT RELIABILITY FUNCTIONS

We shall now discuss the mean residual life (MRL), reversed hazard rate (RHR) and
expected inactivity time (EIT) for the UG distribution. The RHR and EIT may be
looked as the dual properties of the HR and the MRL functions. We shall also investigate
the monotonicity of these duals. Finally, we shall discuss stress strength reliability for
the UG distribution.

5.1. Mean residual life

An important ageing measure of interest is the mean residual life (MRL) function. It is
defined as

eF (t ) = E (X − t |X > t ) .

Physically, it measures the expected remaining life time for a unit having already
survived up to time t . See Guess and Proschan (1988) for an exposition on the MRL
function. There are many interesting and novel applications of the MRL function. For
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example, Ramos et al. (2019) use the MRL to describe the residual lifetime of brain injury
patients. It is easy to see that eF (0) = E (X ) = µ, the mean of X . It can be calculated
using the cdf or the pdf. Specifically, we have

eF (t ) =
1

F̄ (t )

∫ ∞

t
F̄ (u)d u

=

∫∞
t u f (u)d u

F̄ (t )
− t

=
1

F̄ (t )
I ∗1 (t )− t ,

where I ∗1 (t ) can be obtained from (6) above with n = 1. The expression of the MRL
function is quite complicated. However, since the hazard rate is increasing, it follows
from Theorem 3 of Mi (1995) that the MRL function eF (t ) is decreasing. Figure 4 shows
the graph of the MRL function for some combinations of α and β.

Figure 4 – Mean residual life functions of unit-Gompertz distribution for (α = 2,β = 2), (α =
1,β= 3)& (α= 0.5,β= 1).

5.2. Expected inactivity time

The expected inactivity time (EIT) (also known as the mean past lifetime function) of
a non-negative continuous random variable X with cumulative distribution function
F (x) is defined as

I (x) = E (x −X |X ≤ x) =
1

F (x)

∫ x

0
F (y)d y.
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Hence, I (x) defines the mean waiting time for a device that failed in the interval [0, x] .
In other words, this conditional random variable shows the time elapsed from the failure
of the component given that its lifetime is less than or equal to x. The EIT is a dual prop-
erty of the MRL; and is an important characteristic in many reliability applications. It
has application in many disciplines such as survival analysis, actuarial studies and foren-
sic science, to name but a few. It is also of interest while describing different maintenance
strategies. Chandra and Roy (2001) have shown that the EIT function cannot decrease
on (0,∞) ; while Kundu and Nanda (2010) have studied some of its reliability proper-
ties. The non-parametric smooth estimation of the EIT function has been studied by
Jayasinghe and Zeephongsekul (2013).
For the UG distribution, after detailed computation we get

I (x) =
eαα1/β

βF (x)

∫ ∞

α/xβ
e−u d u

u1+1/β
=

eα/xβα1/β

β
Γ

�

−1
β

;
α

xβ

�

,

which can be evaluated numerically.

5.3. Reversed hazard rate

The reversed hazard rate (RHR) of a non-negative continuous random variable X with
pdf f (x) and cdf F (x) at time x is defined as

r (x) = lim
∆x→0

P (X > x −∆x |X ≤ x)
∆x

=
f (x)
F (x)

.

Thus, r (x) defines the conditional probability of failure of a unit in (x −∆x, x) given
that the failure had occurred in in [0, x] . The RHR is a dual property of the HR. How-
ever, it should be noted that the trend in RHR is not a direct indicator of the ageing
pattern of a unit. The RHR has many interesting applications. Shanthikumar et al.
(1991) have shown that if the service times of servers in a tandem queue with blocking
are comparable in the RHR order, then there exists an optimal allocation where the
server allocated to first stage has a larger mean service time than that assigned to the
second server. Nanda and Shaked (2001) list the usefulness of the RHR while analyzing
queuing systems. The RHR order arises naturally in economics and risk theory; see for
example Eeckhoudt and Gollier (1995) and Veres-Ferrer and Pavía (2014). It is useful in
estimating the survival function for left-censored lifetimes, see for example, Kalbfleisch
and Lawless (1989). In fact, Andersen et al. (1993) show that the reversed hazard rate
function plays the same role in the analysis of left-censored data as the hazard rate func-
tion plays in the analysis of right-censored data. Irrespective of the shape of the hazard
rate function, the RHR cannot increase on (0,∞) , as shown by Block et al. (1998). Test-
ing the behaviour of the RHR is dealt with in Kayid et al. (2011).



482 M.Z. Anis and D. De

For the UG distribution, we have

r (x) =
αβ

x1+β
.

5.4. Relationship

Chandra and Roy (2001) have proved the following:

F (x) is log-concave⇔ r (x) is decreasing⇒ I (x) is increasing.

We shall use the above result to prove the following theorem:

THEOREM 4. If X ∼U G (α,β) , then X has decreasing RHR (increasing EIT).

PROOF. We have

d 2

d x2
log F (x | α,β) =−

(1+β)αβ
x2+β

< 0

since α > 0, β> 0 and 0< x < 1. Hence, F (x | α,β) is log-concave. The theorem now
follows from the result of Chandra and Roy (2001). 2

Figures 5 and 6 show, respectively, the expected inactivity time and the reversed
hazard rate for the UG distribution with parameters α= 0.25;0.50;0.75;1.0 and β= 1.

Figure 5 – Expected inactivity time functions of unit-Gompertz distribution for (α= 0.25,β= 1),
(α= 0.50,β= 1), (α= 0.75,β= 1)& (α= 1,β= 1).
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Figure 6 – Reverse hazard rate functions of unit-Gompertz distribution for (α = 0.25,β = 1),
(α= 0.50,β= 1), (α= 0.75,β= 1)& (α= 1,β= 1).

5.5. Stress strength reliability

Next, we derive the reliability R = Prob (Y <X ) , where X ∼ U G (α1,β1) and Y ∼
U G (α2,β2) are independent random variables with distribution functions FX and GY
respectively. Notionally, we may think of X as the strength and Y as the stress. Proba-
bilities of this form have many engineering applications.

R = Prob (Y <X )

=
∫ 1

0
GY (x) fX (x)d x

=
∫ 1

0

α1β1

x1+β1
exp

�

−α1

�

1
xβ1
− 1

��

exp
�

−α2

�

1
xβ2
− 1

��

d x

= α1β1eα1+α2

∫ 1

0

1
x1+β1

exp
h

−
� α1

xβ1
+
α2

xβ2

�i

d x,

which can be evaluated numerically. However, if the strength and stress distributions
are independent random variables with common scale parameter β, then we get a neat
expression for R as

α1

α1+α2
.

6. STOCHASTIC ORDERINGS

Stochastic orderings have many applications. Tepedelenlioglu et al. (2011) apply the the
stochastic Laplace transform order to wireless communications. See Mosler and Scarsini
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(1993) for a classified bibliography on stochastic orders and applications. Bäuerle and
Bayraktar (2014) comment on applications of stochastic ordering to control problems
in insurance and finance.

Comparison of random variables based on their means, medians or variances is not
very informative. The need to provide a more detailed comparison of two random quan-
tities has been the origin of the theory of stochastic orders that has grown significantly
during the last forty years. We shall begin by recalling some basic definitions.

Let X and Y be random variables with distribution functions FX and FY , and sur-
vival functions F̄X and F̄Y , respectively. Denote F −1

X (u) = sup{x : FX (x)≤ u} and
F −1

Y (u) = sup{x : FY (x)≤ u} for u ∈ [0,1] the right continuous inverses of FX and
FY .

DEFINITION 5. A random variable X is said to be smaller than a random variable Y
in the

(i) usual stochastic order (denoted by X ≤s t Y ) if FX (t )≥ FY (t ) for all real t ;

(ii) hazard rate order (denoted by X ≤h r Y ) if F̄X (t )/F̄Y (t ) decreases in t ;

(iii) reversed hazard rate order (denoted by X ≤r h Y ) if FX (t )/FY (t ) decreases in t ;

(iv) mean residual life order (denoted by X ≤m r l Y ) if µX (t )≤µY (t ) ;

(v) expected inactivity time order (denoted by X ≤e i t Y ) if IX (t )≥ IY (t ) ;

(vi) likelihood ratio order (denoted by X ≤l r Y ) if fX (t )/ fY (t ) decreases in t ;

(vii) increasing convex order (denoted by X ≤i c x Y ) if
∫+∞

x F̄X (t )d t ≤
∫+∞

x F̄Y (t )d t , for all x, provided the two integrals exist;

(viii) increasing concave order (denoted by X ≤i cv Y ) if
∫ x
−∞ FX (t )d t ≥

∫ x
−∞ FY (t )d t , for all x, provided the two integrals exist;

(ix) dispersive order (denoted by X ≤d i s p Y ) if
F −1

X (β)− F −1
X (α)≤ F −1

Y (β)− F −1
Y (α) whenever 0<α≤β< 1;

(x) stochastic-variability order (denoted as X ≤s t :i c x Y ) if X ≤s t Y and
Var [h (X )]≤Var [h (Y )] for any increasing convex function h, provided the two
variances exist;

(xi) harmonic mean residual life order (denoted by X ≤h m r l Y ) if

�

1
x

∫ x

0

1
m (u)

d u
�−1

≤
�

1
x

∫ x

0

1
l (u)

d u
�−1

for all x > 0
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where m(u) and l (u) are the mrl functions of the random variables X and Y respec-
tively;

(xii) star-shaped order (denoted by X ≤s s Y ) if E [φ (X )] ≤ E [φ (Y )] for all star-shaped
functions φ : [0,∞)−→φ : [0,∞) , provided the expectations exist;

(xiii) total time on test order (denoted by X ≤t t t Y ) if and only if

∫ F −1
X (p)

0
F̄X (x)d x ≤

∫ F −1
Y (p)

0
F̄Y (x)d x, p ∈ (0,1).

The following implications are well known:

X ≤e i t Y
(e)
⇐=X ≤r h Y

(c)
⇐=X ≤l r Y

(a)
⇒X ≤h r Y

(b )
⇒X ≤m r l Y

(d )
⇒X ≤h m r l Y

X ≤h r Y
( f )
⇒X ≤s t Y

(g )
⇒X ≤s s Y

(h)
⇒X ≤i c x Y

X ≤s t Y
(i)
⇒X ≤t t t Y

( j )
⇒X ≤i cv Y.

The implications (a), (b) and (c) are given in Shaked and Shanthikumar (2007) (page
43); implication (d) is in Shaked and Shanthikumar (2007) (page 95) and implication (e)
is given in Finkelstein (2002). The implications (f) is given in Shaked and Shanthikumar
(2007) (page 18) while the implications (g) and (h) can be found in Shaked and Shan-
thikumar (2007) (page 205). The implications (i) and (j) can be found in Shaked and
Shanthikumar (2007) (page 224 and 225, respectively).

The UG distributions are ordered with respect to the strongest likelihood ratio or-
dering as shown in the following theorem.

THEOREM 6. Let X ∼U G (α1,β) and Y ∼U G (α2,β) . If α1 <α2, then

X µl r Y (X µh r Y ;X µr h Y ;X µm r l Y ;X µe i t Y ) .

PROOF. Let the corresponding pdfs be denoted by fX (x | α1,β) and fY (x | α2,β) ,
where 0 < α1 < α2 are the respective shape parameters and β > 0 is the common scale
parameter.
Now observe that

fX (x | α1,β)
fY (x | α2,β)

=
α1

α2
exp (α1−α2) · exp

�

−x−β (α1−α2)
�

, α1 <α2.

Hence, for α1 <α2, we have

d
d x

�

fX (x | α1,β)
fY (x | α2,β)

�

=
α1

α2

exp (α1−α2) ·β (α1−α2) x
−β−1 exp

�

−x−β (α1−α2)
�

< 0.
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This means fX (x | α1,β)/ fY (x | α2,β) is decreasing in x. Hence, X ≤l r Y. The remain-
ing statements follow from the implications given above. This proves the theorem. 2

7. CONCLUSION

This paper may be considered as an essential follow-up paper of Mazucheli et al. (2019).
It corrects some of the errors of the earlier paper. Some other important properties have
been discussed. Since the proposed distribution can be used for modelling lifetime data,
properties associated with lifetime distributions have been studied in the present work.
It is hoped that this work will be a necessary complement to Mazucheli et al. (2019).

ACKNOWLEDGEMENTS

Thanks are due to the learned Reviewer whose suggestions lead to an improvement.

REFERENCES

R. AABERGE (2000). Characterizations of Lorenz curves and income distributions. Social
Choice and Welfare, 17, pp. 639–653.

A. ALZAATREH, F. FAMOYE, C. LEE (2013). A new method for generating families of
continuous distributions. Metron, 71, pp. 63–79.

P. K. ANDERSEN, O. BORGAN, R. D. GILL, N. KEIDING (1993). Statistical Methods
Based on Counting Processes. Springer Verlag, New York.

N. BALAKRISHNAN, C. RAO (1998). Order Statistics: Applications. Elsevier, New York.

N. BÄUERLE, E. BAYRAKTAR (2014). A note on applications of stochastic ordering to
control problems in insurance and finance. Stochastics: An International Journal of
Probability and Stochastic Processes, 86, no. 2, pp. 330–340.

E. BEADLE, J. SCHROEDER, B. MORAN, S. SUVOROVA (2008). An overview of Rényi
Entropy and some potential applications. Proceedings of the 42nd Asilomar Conference
on Signals, Systems and Computers, 42, pp. 1698–1704.

H. BLOCK, T. H. SAVITS, H. SINGH (1998). The reversed hazard rate function. Proba-
bility in the Engineering and Informational Sciences, 12, pp. 69–90.

E. BONFERRONI (1930). Elementi di Statistica Generale. Libreria Seber, Firenze.

W. BRYC (1996). Conditional moment representations for dependent random variables.
Electronic Journal of Probability, 1, no. 7, p. 14.



An Expository Note on Unit-Gompertz Distribution with Applications 487

M. CHANDRA, N. SINGPURWALLA (1981). Relationships between some notions which
are common to reliability theory and economics. Mathematics of Operations Research,
5, pp. 113–121.

N. K. CHANDRA, D. ROY (2001). The reversed hazard rate function. Probability in the
Engineering and Informational Sciences, 15, pp. 95–102.

M. A. DOMÍNGUEZ, I. LOBATO (2004). Consistent estimation of models defined by con-
ditional moment restrictions. Econometrica, 72, pp. 1601–1615.

L. EECKHOUDT, C. GOLLIER (1995). Demand for risky assets and the monotone proba-
bility ratio order. Journal of Risk and Uncertainty, 11, pp. 113–122.

N. EUGENE, C. LEE, F. FAMOYE (2002). Beta-normal distributiona and its applications.
Communications in Statistics - Theory and Methods, 31, no. 4, pp. 497–512.

M. FINKELSTEIN (2002). On the reversed hazard rate. Reliability Engineering & System
Safety, 78, pp. 71–75.

S. FUHRMAN, M. J. CUNNINGHAM, X. WEN, G. ZWEIGER, J. J. SEILHAMER, R. SO-
MOGYI (2000). The application of Shannon entropy in the identification of putative drug
targets. Biosystems, 55, pp. 5–14.

T. GAŁKA (2015). On the application of Shannon entropy and continuous entropy in the
evaluation of diagnostic symptoms. International Journal of Condition Monitoring, 5,
pp. 12–17.

M. GHITANY (2004). The monotonicity of the reliability measures of the beta distribution.
Applied Mathematics Letters, 17, pp. 1277–1283.

G. M. GIORGI, M. CRESCENZI (2001). A look at the Bonferroni inequality measure in a
reliability framework. Statistica, 61, no. 4, pp. 571–583.

R. E. GLASER (1980). Bathtub and related failure rate characterizations. Journal of the
American Statistical Association, 75, no. 371, pp. 667–672.

C. GROVES-KIRKBY, A. DENMAN, P. PHILLIPS (2009). Lorenz curve and Gini coeffi-
cient: Novel tools for analysing seasonal variation of environmental radon gas. Journal
of Environmental Management, 90, pp. 2480–2487.

F. GUESS, F. PROSCHAN (1988). Mean residual life: Theory and applications. Handbook
of Statistics, 7, pp. 215–224.

M. S. HUGHES, J. N. MARSH, J. M. ARBEIT, R. G. NEUMANN, R. W. FUHRHOP,
K. D. WALLACE, L. THOMAS, J. SMITH, K. AGYEM, G. M. LANZA, S. A. WICK-
LINE, J. E. MCCARTHY (2009). Application of Rényi entropy for ultrasonic molecular
imaging. Journal of the Acoustical Society of America, 125, pp. 3141–3145.



488 M.Z. Anis and D. De

A. JACOBSON, A. MILMAN, D. KAMMEN (2005). Letting the (energy) Gini out of the bot-
tle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics
of energy distribution and equity. Energy Policy, 33, pp. 1825–1832.

C. L. JAYASINGHE, P. ZEEPHONGSEKUL (2013). Non-parametric smooth estimation
of the expected inactivity time function. Journal of Statistical Planning and Inference,
143, no. 5, pp. 911–928.

M. K. JHA, S. DEY, R. M. ALOTAIBI, Y. TRIPATHI (2020). Reliability estimation of a
multicomponent stress-strength model for unit Gompertz distribution under progressive
Type II censoring. Quality & Reliability Engineering International, 36, pp. 965–987.

M. K. JHA, S. DEY, Y. TRIPATHI (2019). Reliability estimation in a multicomponent
stress–strength based on unit-Gompertz distribution. International Journal of Quality
& Reliability Management, 37, pp. 428–450.

J. D. KALBFLEISCH, J. LAWLESS (1989). Inference based on retrospective ascertainment:
An analysis of the data on transfusion-related AIDS. Journal of the American Statistical
Association, 84, pp. 360–372.

M. KAYID, H. AL-NAHAWATI, I. A. AHMAD (2011). Testing behavior of the reversed
hazard rate. Applied Mathematical Modelling, 35, no. 5, pp. 2508–2515.

B. KLEFSJÖ (1984). Reliability interpretations of some concepts from economics. Naval
Research Logistics Quarterly, 31, pp. 301–308.

S. KOLTCOV (2018). Application of Rényi and Tsallis entropies to topic modeling optimiza-
tion. Physica A: Statistical Mechanics and its Applications, 512, pp. 1192–1204.

D. KUMAR, S. DEY, E. ORMOZ, S. M. T. K. MIRMOSTAFAEE (2020). Inference for the
unit-Gompertz model based on record values and inter-record times with an application.
Rendiconti del Circolo Matematico di Palermo Series 2, 69, p. 1295–1319.

C. KUNDU, A. NANDA (2010). Some reliability properties of the inactivity time. Com-
munications in Statistics - Theory and Methods, 39, no. 5, pp. 899–911.

M. LORENZ (1905). Methods of measuring the concentration of wealth. Publications of
the American Statistical Association, 9, no. 70, pp. 209–219.

J. MAZUCHELI, A. F. MENEZES, S. DEY (2019). Unit-Gompertz Distribution with ap-
plications. Statistica, 79, no. 1, pp. 25–43.

J. MI (1995). Bathtub failure rate and upside-down bathtub mean residual life. IEEE Trans-
actions on Reliability, 44, no. 3, pp. 388–391.

K. MOSLER, M. SCARSINI (1993). Stochastic Orders and Applications: A Classified Bibli-
ography. Springer-Verlag, Berlin Heidelberg.



An Expository Note on Unit-Gompertz Distribution with Applications 489

K. R. M. NAIR, N. SREELAKSHMI (2016). The new Zenga curve in the context of reli-
ability analysis. Communications in Statistics - Theory & Methods, 45, no. 22, pp.
6540–6552.

A. NANDA, S. CHOWDHURY (2020). Shannon’s entropy and its generalisations towards
statistical inference in last seven decades. International Statistical Review. Early view.

A. K. NANDA, M. SHAKED (2001). The hazard rate and the reversed hazard rate orders,
with application to order statistics. Annals of the Institute of Statistical Mathematics,
53, no. 4, pp. 853–864.

T. G. PHAM, N. TURKKAN (1994). The Lorenz and the scaled total-time-on-test transform
curves: a unified approach. IEEE Transactions on Reliability, 43, pp. 76–84.

P. L. RAMOS, D. C. NASCIMENTO, P. H. FERREIRA, K. T. WEBER, T. E. SANTOS,
F. LOUZADA (2019). Modeling traumatic brain injury lifetime data: Improved estima-
tors for the generalized gamma distribution under small samples. PLoS One, 14, p. 8.

A. RÉNYI (1961). On measures of entropy and information. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contribu-
tions to the Theory of Statistics, University of California Press, Berkeley, CA, pp. 547–
561.
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SUMMARY

In a recent paper, Mazucheli et al. (2019) introduced the unit-Gompertz (UG) distribution and
studied some of its properties. It is a continuous distribution with bounded support, and hence
may be useful for modelling life-time phenomena. We present counter-examples to point out some
subtle errors in their work, and subsequently correct them. We also look at some other interesting
properties of this new distribution. Further, we also study some important reliability measures
and consider some stochastic orderings associated with this new distribution.

Keywords: Log concave; Reliability functions; Stochastic orders.
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