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1. INTRODUCTION

The Lindley distribution was originally proposed by Lindley (1958), in the context of
Bayesian statistics, as a counter example of fiducial statistics. Lindley developed the
distribution whose probability density function (pdf) is obtained by mixing densities,
exponential (θ) and gamma (2,θ) with mixing probabilities θ

1+θ and 1
1+θ respectively.

The pdf of Lindley distribution is given by

f (y) =
θ2

1+θ
(1+ y) e−θy , y > 0,θ > 0. (1)

The corresponding cumulative distribution function (cdf) is given by

F (y) = 1− e−θy
�

1+
θy

1+θ

�

, y > 0,θ > 0. (2)

Ghitany et al. (2008) discussed various properties of this distribution and showed that the
Lindley distribution provides a better fit than the exponential distribution. A discrete
version of the Lindley distribution was suggested by Gómez-Déniz and Calderín-Ojeda
(2011) based on an application related to insurance. The Lindley mixture of Poisson
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distribution is obtained by Sankaran (1970). Ghitany et al. (2011) developed a two-
parameter weighted Lindley distribution and discussed its applications to survival data.
Nadarajah et al. (2011) have obtained the generalized Lindley distribution. Shibu and
Irshad (2016) proposed extended new generalized Lindley distribution. Another exten-
sion of generalized Lindley distribution was proposed by Irshad and Maya (2017). Maya
and Irshad (2017) developed the generalized Stacy-Lindley mixture distribution by mix-
ing two generalized Stacy-gamma distributions.

Zografos and Balakrishnan (2009) proposed a class of distribution which is generated
by gamma random variables with an extra positive shape parameter. For any baseline
cdf G(z), z ∈ R, Zografos and Balakrishnan defined the Zografos-Balakrishnan G (ZBG)
distribution with pdf f(z), cdf F(z) and for a > 0 is given by

f (z) =
1
Γ (a)
{− log[1−G(z)]}a−1 g (z), z > 0 (3)

and

F (z) =
γ (a,− log[1−G(z)])

Γ (a)
(4)

=
1
Γ (a)

− log[1−G(z)]
∫

0

t a−1e−t d t , a, z > 0,

where g (z)= d
d z (G(z)), Γ (a) =

∞
∫

0
t a−1e−t d t denotes the gamma function, γ (a, u) =

u
∫

0
t a−1e−t d t denotes the lower incomplete gamma function and Γ (a, u) =

∞
∫

u
t a−1e−t d t

denotes the upper incomplete gamma function. The corresponding hazard rate function
is given by

h(z) =
{− log[1−G(z)]}a−1 g (z)
Γ (a,− log[1−G(z)])

. (5)

Nadarajah et al. (2015) developed various properties of ZBG family of distributions.
Zografos-Balakrishnan loglogistic distribution was obtained by Hamedani (2013).

In this paper, the generator suggested by Zografos and Balakrishnan (2009) is used
to define a new model, the Zografos-Balakrishnan Lindley (ZBL) distribution, which
generalizes the classical one parameter Lindley distribution. The main motivation be-
hind the construction of ZBG family of distributions is that, if a random variable Z have
density (1), then a logarithmic transformation of G(z), that is., u =−log(1−G(z)) have
gamma G(a, 1). Also different structural properties are defined and the parameters are
estimated using the method of maximum likelihood. It is obtained that the proposed
model is more flexible than the classical one parameter Lindley distribution and can be
effectively used to model certain real life data sets. The rest of the paper is organised as
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follows.
In Section 2 ZBL distribution is defined and its moments and model identifiability is
obtained. Some of the reliability properties of the model such as hazard rate, survival
function followed by an expression for stress strength reliability are presented in Section
3. In Section 4 quantile function is derived. The parameters of ZBL distribution are es-
timated using the method of maximum likelihood and thus obtained observed Fisher
information matrix and asymptotic confidence intervals which are given in Section 5.
The results of montecarlo simulation is given in Section 6 and finally in Section 7 an
application to the model using two real data sets is illustrated.

2. THE ZOGRAFOS-BALAKRISHNAN LINDLEY DISTRIBUTION

In this Section we define the ZBL distribution and give useful expansions of the pdf.

2.1. Definition

A continuous random variable X is said to follow ZBL distribution with parameters a
and θ if its pdf is of the form,

f (x) =
1
Γ (a)

§

− log
�

1−
�

1− e−θx 1+θ+θx
1+θ

��ªa−1 θ2

θ+ 1
(1+ x)e−θx

=
1
Γ (a)

�

log
�

1+θ
1+θ+θx

eθx
��a−1 θ2

θ+ 1
(1+ x)e−θx , x > 0, a,θ > 0.

(6)

The cdf is given by,

F (x) =
1
Γ (a)

γ
�

a, log
�

1+θ
1+θ+θx

eθx
��

=
1
Γ (a)

log( 1+θ
1+θ+θx eθx )
∫

0

t a−1e−t d t , x > 0, a,θ > 0. (7)

REMARK 1. When a = 1, the ZBL distribution reduces to the one parameter Lindley
distribution.

The pdf of ZBL distribution, for different values of parameters, is plotted in Figure 1.
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Figure 1 – The pdf of ZBL distribution is plotted for different values of a and θ.

2.2. Expansion of pdf

2.2.1. Expansion in terms of power series
The ZBL distribution with pdf given in (6) is expanded. We have

f (x) =
1
Γ (a)

§

− log
�

1−
�

1− e−θx 1+θ+θx
1+θ

��ªa−1

θ2

θ+ 1
(1+ x)e−θx , x > 0, a,θ > 0.

Now consider the following results for simplifications. Using the series representa-
tion,

− log(1− y) =
∞
∑

i=0

y i+1

i + 1
,

we can write, (see Fagbamigbe et al., 2018)

(− log(1− y))a−1 = ya−1
∞
∑

m=0

�

a− 1
m

�

y m

� ∞
∑

s=0

y s

s + 2

�m

. (8)

A power series raised to a positive integer m with as =
1

s+2 can be written as (see Grad-
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shteyn and Ryzhik, 2014),
� ∞
∑

s=0

as y s

�m

=
∞
∑

s=0

bs ,m y s , (9)

where bs ,m =
1

sa0

s
∑

i=1

(i(m+ 1)− s)ai bs−i f o r s ≥ 1.

Also, we have the generalization of the binomial theorem,

(1− z)b−1 =
∞
∑

k=0

(−1)kΓ (b )
Γ (b − k)k!

zk (10)

and the basic results of power series and gamma function,

(1+ x)t =
t
∑

r=0

�

t
r

�

x r and (11)

∞
∫

0

e−mx x p−1d x =
Γ (p)
x p

. (12)

Applying the results (8) to (12) in (6 ),we get the density function of ZBL as,

f (x) =
1
Γ (a)

∞
∑

m,s , p=0

�

a− 1
m

�

bs ,m(−1)p
�

a+m+ s − 1
p

�

p
∑

q=0

�p
q

�

θq+2

(1+θ)p+1

q+1
∑

t=0

�

q + 1
t

�

x t e−θx(p+1). (13)

Hence (6) reduced to a constant multiplied by a gamma form which in turn is useful in
determining various properties of the ZBL distribution.

2.2.2. Expansion in terms of exponentiated Lindley distribution
A random variable is said to have exponentiated-G distribution (exp-G) (see Cordeiro
et al., 2013), if its pdf and cdf are respectively given as,
for any a > 0,

ha(x) = aGa−1(x)g (x) and Ha(x) =Ga(x). (14)

Nadarajah et al. (2015) expressed (3) as

f (z) =
∞
∑

k=0

bk ha+k (z) (15)
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where bk =

�

k + 1− a
k

�

(a+ k)Γ (a− 1)

k
∑

j=0

(−1) j+k
�

k
j

�

P j ,k

(a− 1− j )
,

P j ,ks are obtained from the relation

p j ,k =
1
k

k
∑

m=1

(−1)m[m( j + 1)− k]
(m+ 1)

cm p j ,k−m (16)

for k=1,2,... and P j ,0 = 1. Here ha+k (x) denotes the pdf of exp-G(a + k) distribution
and its cdf can be represented as

F (x) =
∞
∑

k=0

bk Ha+k (x), (17)

where Ha+k (x) denotes the cdf of exp-G (a + k) distribution. Nadarajah et al. (2011)
introduced exponentiated Lindley distribution. If h(x) and H (x) denote the pdf and
cdf exponentiated Lindley distribution, then the pdf and cdf of ZBL distribution can be
written as in (15) and (17).

2.3. Identifiability

The problem of identifiability lies in the uniqueness of distribution for the unknown
parameters in the model. That is, the parameters should uniquely determine a distri-
bution. The set of unknown parameters of a particular model is said to be identifiable
if different sets of parameters gives different distribution for given x. Here, the identi-
fiability property of ZBL is verified. Let f (H⃝1) and f (H⃝2) be different members of
ZBL distribution indexed by H⃝1 = (a1,θ1) and H⃝2 = (a2,θ2) respectively. Then the
likelihood ratio,

L =
f (H⃝1)
f (H⃝2)

=
Γ (a2)(θ1x + log 1+θ1

1+θ1+θ1 x )
a1−1(θ2+ 1)θ2

1

Γ (a1)(θ2x + log 1+θ2
1+θ2+θ2 x )

a2−1(θ1+ 1)θ2
2

e−θ1 x+θ2 x . (18)

Taking logarithm of likelihood,

log L = log
�

Γ (a2)
Γ (a1)

�

+(a1− 1) log (θ1x + log
1+θ1

1+θ1+θ1x
)

− (a2− 1) log (θ2x + log
1+θ2

1+θ2+θ2x
)+ log
�

θ2+ 1
θ1+ 1

�

+ log
�

θ2
1

θ2
2

�

−θ1x +θ2x (19)



The Zografos-Balakrishnan Lindley Distribution 51

Partial derivative of log L with respect to x and equating it to 0,

∂ log L
∂ x

= 0 =⇒

(a1− 1)θ2
1 −θ1(θ1x + log

�

1+θ1
1+θ1+θ1 x

�

(1+θ1+θ1x)
�

θ1x + log
�

1+θ1
1+θ1+θ1 x

��

(1+θ1+θ1x)

=
(a2− 1)θ2

2 −θ2(θ2x + log
�

1+θ2
1+θ2+θ2 x

�

(1+θ2+θ2x)
�

θ2x + log
�

1+θ2
1+θ2+θ2 x

��

(1+θ2+θ2x)
. (20)

In (20), RHS=LHS iff a1 = a2 and θ1 = θ2. That is, the parameters uniquely determines
the distribution. Therefore we conclude that the model is identifiable that is, f (H⃝1) =
f (H⃝2) ⇐⇒ H⃝1 = H⃝2.

2.4. Moments

THEOREM 2. The r th moment of the ZBL distribution is obtained as

E(X r ) =
θ2

θ+ 1
1
Γ (a)

∞
∑

m,s , p=0

�

a− 1
m

�

bs ,m(−1)p
�

a+m+ s − 1
p

�

p
∑

q=0

�p
q

�

θq

(1+θ)p

q+1
∑

t=0

�

q + 1
t

�

Γ (r + t + 1)
[θ(p + 1)]r+t+1

. (21)

where bs ,m is defined in (9).

PROOF. The r th moment of ZBL random variable is such that,

E(X r ) =

∞
∫

0

x r f (x)d x. (22)

Using (8) and (9) we have

E(X r ) =
θ2

θ+ 1
1
Γ (a)

∞
∑

m,s , p=0

�

a− 1
m

�

bs ,m(−1)p
�

a+m+ s − 1
p

�

p
∑

q=0

�p
q

�

θq

(1+θ)p

∞
∫

x=0

x r (1+ x)q+1e−θ(p+1)x d x. (23)

Using (11) and (12), and simplifying (23) we get (21). 2



52 M.R. Irshad et al.

From this expression one can easily find out the various properties related to moments
such as mean, variance, measures of skewness and kurtosis etc. Table 1 provides values
of first five moments as well as standard deviation (SD), coefficient of variation (CV), co-
efficient of skewness (CS), coefficient of kurtosis (CK) for selected values of parameters
of ZBL distribution.

TABLE 1
The moments related to ZBL distribution for selected values of parameters.

a = 1,θ= 0.5 a = 1,θ= 1 a = 1,θ= 2 a = 1,θ= 3

µ
′
1 3.333 1.5 0.667 0.417
µ
′
2 18.667 4 0.833 0.333
µ
′
3 144 15 1.5 0.389
µ
′
4 1408 72 3.5 0.593
µ
′
5 16639.999 420 10 1.111

SD 2.749 1.323 0.624 0.399
CV 0.825 0.882 0.935 0.96
CS -6.306 -4.59 -2.215 -0.172
CK 6.343 6.796 7.469 7.889

a = 2,θ= 0.5 a = 2,θ= 1 a = 2,θ= 2 a = 2,θ= 3
µ
′
1 6.069 2.819 1.29 0.816
µ
′
2 49.471 11 2.377 0.967
µ
′
3 503.863 54.416 5.652 1.493
µ
′
4 6146.4 325.11 16.399 2.831
µ
′
5 87296.9 2273.32 56.068 6.350

SD 3.555 1.747 0.845 0.549
CV 0.586 0.62 0.655 0.673
CS -13.971 -11.187 -7.751 -5.185
CK 4.869 4.995 5.232 5.406

From Table 1, we can conclude about skewness and kurtosis of ZBL distribution as,
(i) when a is fixed and θ is increasing, skewness and kurtosis are increasing,
(ii) when θ is fixed and a is increasing, skewness and kurtosis are decreasing.

3. SOME MEASURES OF RELIABILITY

In this section, we discuss certain measures of reliability such as survival and hazard rate
function for ZBL distribution. Also an expression for stress strength reliability is given.
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Figure 2 – The hrf is plotted for different values of a and θ.

3.1. Survival and hazard rate function

The survival function of the ZBL random variable is given by,

F (x) = 1− 1
Γ (a)

γ (a, log[
1+θ

1+θ+θx
eθx]). (24)

The hazard rate function (hrf) h(x) of a random variable X with cdf F (x) and pdf f (x)
is defined as,

h(x) =
f (x)

F (x)
, (25)

where F (x) = 1− F (x) is the survival function of X . The hrf of ZBL random variable
is given by,

h(x) =
1
Γ (a) [log(eθx 1+θ

1+θ+θx )]
a−1 θ2

θ+1 (1+ x)e−θx

1− 1
Γ (a)γ (a, log[ 1+θ

1+θ+θx eθx])
. (26)

The hrf for ZBL distribution is plotted for different values of a and θ in Figure 2.

From the plot of hrf of ZBL distribution, it is clear that the distribution posses various
shapes including increasing, decreasing, bathtub and upside-down bathtub shapes.



54 M.R. Irshad et al.

3.2. Stress strength reliability

Reliability have wide applications including engineering concepts. Let X1 and X2 be two
independent random variables following ZBL(a1,θ) and ZBL(a2,θ) respectively. Then
the stress strength probability or the reliability is defined by P (X2 < X1). On the ba-
sis of the expressions (15) and (17) we can obtain the expression for reliability as, (see
Nadarajah et al., 2015)

R =
∞
∑

j ,k=0

C j ,k

∞
∫

0

Ha2+ j (x)ha1+k (x)d x (27)

=
∞
∑

j ,k=0

C j k R j k ,

where

c j k =

�

k + 1− a1
k

�

(a1+ k)Γ (a1− 1)

�

j + 1− a2
j

�

(a2+ j )Γ (a2− 1)
Ik (a1) I j (a2) ,

Ik (a1) =
k
∑

i=0

(−1)i+k pi ,k

(a1− 1− i)

�

k
i

�

where pi ,k is defined in (16) and R j ,k = P (Y j < Yk ) is the reliability between Y j and
Yk which are distributed as exponentiated Lindley with parameters a2 + j and a1 + k
respectively. Hence,

Ha2+ j =
�

1− 1+θ+θx
1+θ

e−θx
�a2+ j

(28)

ha1+k =
(a1+ k)θ2

θ+ 1
(1+ x)
�

1− 1+θ+θx
1+θ

e−θx
�a1+k−1

e−θx (29)

Substituting (28) and (29) in (27) and using (11) and (12) we obtain

R =
∞
∑

p, j ,k=0

C j ,k
a1+ k
θ+ 1

θ2(−1)p
�

a1+ a2+ j + k − 1
p

�

p
∑

q=0

�p
q

�

θq eθ(p+1)

(1+θ)q
Γ (q + 2)

(θ(p + 1))q+2
. (30)
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4. QUANTILE FUNCTION

In this section we derive an expression for quantile function of ZBL distribution. The
cdf of ZBL distribution is given in (7). Let

u =
γ (a, log[ 1+θ

1+θ+θx eθx])

Γ (a)
,

Q−1(a, 1− u) = log
�

1+θ
1+θ+θx

eθx
�

, (31)

where Q−1(a, u) is the inverse gamma regularized function that is, inverse function of
Q(a, x) = 1− γ (a,x)

Γ (a) .
Now (31) can be reduced to,

−(1+θ+θx)e−(1+θ+θx) = −(θ+ 1)e−[1+θ+Q−1(a,1−u)] ∈ (−1
e

, 0).

That is,

−(1+θ+θx) =W−1[−(θ+ 1)e−[1+θ+Q−1(a,1−u)]],

where W−1(x) is the negative branch of Lambert-W function. Thus the quantile func-
tion of ZBL distribution is given by

x =−
§

1+
1
θ
+

1
θ

W−1

�

−(1+θ)e−[1+θ+Q−1(a,1−u)]
�

ª

. (32)

Table 2 represents the quantiles of ZBL distribution for selected values of the parameters
a and θ.

TABLE 2
The values of quantiles of ZBL distribution for selected values of the parameters.

u a = 1,θ= 5 a = 2,θ= 0.5 a = 3,θ= 2 a = 4,θ= 6

0.1 0.025 2.141 0.755 0.333
0.2 0.053 3.053 1.029 0.436
0.3 0.085 3.844 1.262 0.522
0.4 0.121 4.616 1.487 0.605
0.5 0.164 5.421 1.719 0.689
0.6 0.216 6.31 1.972 0.781
0.7 0.283 7.356 2.268 0.888
0.8 0.377 8.713 2.648 1.024
0.9 0.534 10.837 3.236 1.234
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5. MAXIMUM LIKELIHOOD ESTIMATION

Let X1,X2, ...,Xn be a random sample taken from ZBL(a,θ). The likelihood function is
given by

L=
θ2n

(θ+ 1)n
1

(Γ (a))n
e
−θ

n
∑

i=0
xi

n
∏

i=1

�

θxi + log
1+θ

1+θ+θxi

�a−1

(1+ xi ) (33)

and the log-likelihood function is given by,

log L = 2n logθ− n log(θ+ 1)− n log(Γ (a))−θ
n
∑

i=0

xi

+ (a− 1)
n
∑

i=1

log
�

θxi + log
1+θ

1+θ+θxi

�

+ log(1+ xi ). (34)

The normal equations are thus obtained by,

∂ log L
∂ θ

= 0 =⇒ 2n
θ
− n
θ+ 1
−

n
∑

i=0

xi +(a− 1)

∂

∂ θ

¨

n
∑

i=0

log
�

θxi + log
1+θ

1+θ+θxi

�

«

= 0

=⇒ 2n
θ
− n
θ+ 1
−

n
∑

i=0

xi +(a− 1)
n
∑

i=0

1

θxi + log 1+θ
1+θ+θxi

�

θxi (3θ+ 3+θx2
i + xi + 3θxi +θ

2+θ2x2
i + 2θ2xi )

(1+θ+θxi )2(1+θ)

�

= 0.

(35)
∂ log L
∂ a

= 0 =⇒ −n
d

da
[logΓ (a)]+

n
∑

i=0

log
�

θxi + log
1+θ

1+θ+θxi

�

= 0. (36)

Solving (35) and (36) using mathematical softwares like MATHEMATICA, MATHCAD and R

we can obtain the maximum likelihood estimates (MLEs) of the parameters a and θ.

5.1. Observed Fisher information matrix

The Fisher Information matrix is required for interval estimation of the parameters a
and θ. The observed Fisher information matrix of λ̂= (â, θ̂) can be expressed as

I (λ) =
�

Iaa Iaθ
Iaθ Iθθ

�

,
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where

Iaa =
∂ 2L
∂ a2

= nψ′(â), ψ′(â) =
∂ 2 log(Γ (â))

∂ â2
is the trigamma function,

Iaθ = −
n
∑

i=1

θxi (2+ xi +θ+θxi )

(1+θ)(1+θ+θxi )(θxi + log( 1+θ
1+θ+θxi

))
and

Iθθ =
2n
θ2
− n
(θ+ 1)2

+(a− 1)
n
∑

i=1

xi

�

θxi (−2+ 2θ+ 4θ2+θ3+θx2
i (1+θ)

2

+xi (−1+ 2θ+ 6θ2+ 2θ3))− (2+ xi + 2θ+ 2θxi ) log(
1+θ

1+θ+θxi
)
�

.

5.2. Asymptotic confidence intervals

For large n, the asymptotic distribution of λ̂= (â, θ̂) is given by

p
n(λ̂−λ) d−→N2(0, I−1(λ)). (37)

Thus the properties of λ̂ can be derived based on this normal approximation. The 100(1-
α)% confidence intervals of the parameters a and θ is thus obtained by

â±Z α
2

Ç

I−1
aa (λ̂) (38)

and

θ̂±Z α
2

Ç

I−1
θθ
(λ̂), (39)

where I−1
aa (λ̂) and I−1

θθ
(λ̂) are the diagonal elements of I−1(λ̂) and Z α

2
is the upper α

2
th

percentile of standard normal distribution.

6. MONTE CARLO SIMULATION

The Monte Carlo simulation was done in order to prove the efficiency of the model. The
estimates were calculated for true values of parameters (a = 1,θ=5) and (a = 2,θ=10)
for N=1000 samples of sizes 25, 50, 100, 200, 400 and 800 and the following quantities
are computed.

1. Mean of the MLE of parameters, â = 1
N

N
∑

i=1
âi and θ̂= 1

N

N
∑

i=1
θ̂i .
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2. Average bias of MLEs of parameters, bias(a) = 1
N

N
∑

i=1
(âi − a) and

bias(θ) = 1
N

N
∑

i=1
(θ̂i −θ).

3. Mean square error (MSE) of MLEs of parameters, MSE(a) = 1
N

N
∑

i=1
(âi − a)2 and

MSE(θ) = 1
N

N
∑

i=1
(θ̂i −θ)2.

4. Root mean square error (RMSE) of MLEs of parameters,

RMSE(a) =

√

√

√ 1
N

N
∑

i=1
(âi − a)2 and RMSE(θ) =

√

√

√ 1
N

N
∑

i=1
(θ̂i −θ)2.

Table 3 and Table 4 show the mean MLEs of the parameters with their bias, MSEs and
RMSEs.

TABLE 3
The simulation results for a = 1,θ= 5.

Parameter n Mean Average bias MSE RMSE

a 25 1.107 0.107 0.110 0.332
50 1.057 0.057 0.043 0.206
100 1.023 0.023 0.019 0.137
200 1.014 0.014 0.008 0.089
400 1.008 0.008 0.004 0.067
800 1.004 0.004 0.002 0.047

θ 25 5.673 0.673 3.738 1.934
50 5.351 0.351 1.374 1.172
100 5.115 0.115 0.562 0.749
200 5.068 0.068 0.241 0.491
400 5.046 0.046 0.136 0.369
800 5.023 0.023 0.067 0.259
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TABLE 4
The simulation results for a = 2,θ= 10.

Parameter n Mean Average Bias MSE RMSE

a 25 2.249 0.249 0.565 0.752
50 2.092 0.092 0.170 0.412
100 2.045 0.045 0.088 0.296
200 2.026 0.026 0.345 0.186
400 2.013 0.013 0.0181 0.134
800 2.007 0.007 0.009 0.097

θ 25 11.408 0.408 15.691 3.961
50 10.511 0.511 4.981 2.232
100 10.297 0.297 2.468 1.157
200 10.178 0.178 0.995 0.998
400 10.091 0.091 0.504 0.710
800 10.043 0.043 0.256 0.506

7. APPLICATION

In this section two real data sets are considered in order to prove the applicability of the
proposed distribution by comparing it with other classical distributions. The first data
set given in Table 5 represents the waiting times (in minutes) before service of 100 Bank
customers and examined and analysed by Ghitany et al. (2008) for fitting the Lindley
(1958) distribution.

And the second one given in Table 6 is the failure stresses of single carbon fibres of
length 50mm, originally proposed by Bader and Priest (1982). For the two datasets, the
estimates of the parameters, -log likelihood (-log L), Akaike Information criterion (AIC),
Bayesian Information criterion (BIC), Corrected Akaike Information Criterion (AICc)
and the Kolmogorov Smirnov (K-S) statistic values and p value are calculated. Table 7
and 8 gives the results obtained from ZBL, Generalized Lindley (GL) (see Zakerzadeh
and Dolati, 2009), Extended Inverse Lindley (EIL) (see Alkarni, 2015) , Generalized In-
verse Lindley (GIL) (see Sharma et al., 2016), Power Lindley (PL) (see, Ghitany et al.,
2013), Marshall-Olkin Extended Lindley (MOEL) (see Ghitany et al., 2012) , and Lind-
ley (L) (see Lindley, 1958) distributions to the datasets. The plots of fitted densities and
cumulative densities with respective to the given data sets are also plotted.

From Tables 7 and 8, we can see that ZBL gives a better fit to the data than other clas-
sical distributions considered here, since ZBL distribution have the smallest goodness of
fit statistics and model adequacy measures.

Figures 3 and 4 depict the density and cumulative density plot which compares the
fitted densities of the models with the empirical histogram and cumulative density of
the real data.
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TABLE 5
Data of waiting times of 100 bank customers.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52
4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80
25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54
3.70 5.17 7.28 9.74 14.76 6.31 0.81 2.62 3.82 5.32 7.32
10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90
2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23 5.41
7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 07.63 17.12 46.12
1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46
4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02
2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
21.73 2.07 3.36 6.93 8.65 12.63 22.69

TABLE 6
Data of failure stresses of single carbon fibres.

1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 1.764
1.807 1.812 1.84 1.852 1.852 1.862 1.864 1.931 1.952
1.974 2.019 2.051 2.055 2.058 2.088 2.125 2.162 2.171
2.172 2.18 2.194 2.211 2.27 2.272 2.28 2.299 2.308
2.335 2.349 2.356 2.386 2.39 2.41 2.43 2.431 2.458
2.471 2.497 2.514 2.558 2.577 2.593 2.601 2.604 2.620
2.633 2.670 2.682 2.699 2.705 2.735 2.785 3.02 3.042
3.116 3.174
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TABLE 7
Estimates and statistics for the data of waiting times of 100 customers.

Model Estimates -log L AIC BIC AICc K-S ( p-value)

ZBL
â=1.263
θ̂=0.223

317.876 639.751 644.961 639.875
0.050

(0.962)

GL
θ̂=0.23
α̂=1.491
β̂=0.814

317.836 641.673 649.488 641.923
0.0511
(0.957)

EIL
θ̂=6.542
α̂=0.011
β̂=1.163

334.381 674.762 682.578 675.012
0.117

(0.131)

GIL θ̂=7.229
α̂=1.152

334.779 673.558 678.768 673.682
0.118

(0.124)

PL θ̂=0.153
α̂=1.083

318.319 640.637 645.848 640.761
0.052
(0.95)

MOEL θ̂=0.208
α̂=1.243

318.914 641.827 647.037 641.951
0.057

(0.906)

L θ̂=0.187 319.037 640.075 642.68 640.116
0.068

(0.749)

TABLE 8
Estimates and statistics for the data of the failure stresses of single carbon fibres.

Model Estimates -log L AIC BIC AICc K-S ( p-value)

ZBL
â=25.715
θ̂=11.938

34.839 73.677 78.026 73.871
0.069

(0.915)

GL
θ̂=12.828
α̂=28.135
β̂=24.003

35.065 76.13 82.653 76.523
0.072

(0.886)

EIL
θ̂=31.725
α̂=0.01
β̂=4.995

43.860 93.720 100.243 94.114
0.125

(0.262)

GIL θ̂=32.637
α̂=4.994

43.875 91.098 96.098 91.943
0.125

(0.260)

PL θ̂=0.052
α̂=4.219

34.978 73.955 78.309 74.149
0.075

(0.905)

MOEL θ̂=4.456
α̂=786

35.993 75.985 80.334 76.179
0.077

(0.838)

L θ̂=0.707 106.999 215.999 218.173 216.062
0.42

(2.207× 10−10)
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Figure 3 – Fitted densities (a) and cumulative densities (b) of data of waiting times of 100 customers.
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Figure 4 – Fitted densities (a) and cumulative densities (b) of data of the failure stresses of single
carbon fibres.

We can see that the ZBL distribution is closer to the empirical histogram and the
empirical cumulative densities than the fits of other classical distributions considered
here. In summary, the new ZBL distribution may be an interesting alternative to the
other models available in the literature for modelling positive real life data sets.
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SUMMARY

The Lindley distribution was proposed in the context of Bayesian statistics as a counter example of
fiducial statistics. In this paper, we propose the Zografos-Balakrishnan Lindley (ZBL) distribution
in which Lindley distribution is a special case. Some properties of the new distribution is obtained
such as moments, hazard rate function, stress strength reliability etc. The parameters are estimated
using the method of maximum likelihood. Finally an application of the proposed distribution to
two real data sets is illustrated and it is concluded that ZBL distribution provides better fit than
other classical distributions.

Keywords: Lindley distribution; Hazard rate function; Stress strength reliability; Moments; Quan-
tile function; Maximum likelihood estimation; Simulation.
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