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THE DISCRETE POWER HALF-NORMAL DISTRIBUTION
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SUMMARY

The discrete power half-normal distribution is introduced, as the discretization of the power half-
normal distribution, based on the difference of values of the continuous survival function. The
discrete distribution has a bathtub shaped failure rate or an increasing failure rate. Some statistical
properties are proved. Maximum likelihood estimation is studied. A simulation study shows the
good asymptotic behaviour of the maximum likelihood estimates. Applications to reliability and
lifetime data are provided.

Keywords: Bathtub failure rate; Discrete power; Half-Normal distribution; Increasing failure rate;
Maximum likelihood estimation.

1. INTRODUCTION

The power half-normal distribution is an important model for describing reliability and
lifetime data. This distribution is proposed in Gómez and Bolfarine (2015), applying
the results in Lehmann (1953) and Durrans (1992) on power distributions. If F (x) =
P (X ≤ x) is the cumulative distribution function of a continuous random variable X
with density function f (x) , then G(x) = F (x)α is the corresponding power cumulative
distribution function, with density function g (x) = α(F (x))α−1 f (x) , where α > 0 . See
also Nadarajah and Kotz (2006), Gupta and Gupta (2008), and Pewsey et al. (2012). The
family of power half-normal distributions is a subfamily of the distributions considered
in Pescim et al. (2010). See also Lawless (1982), chapters 3 to 6, and Sinha (1986), for
other continuous models for reliability and lifetime data.

In applications, it may be convenient to analyze data by discrete models, since we
are interested in lifetime of an on/off switch or lifetime of a device that is exposed to
shocks or work in cycles. See Nakagawa and Osaki (1975), Stein and Dattero (1984),
Padgett and Spurrier (1985), Khan et al. (1989), Kulasekera (1994), Roy (2003), Roy
(2004), Kemp (2008), Krishna and Pundir (2009), Nooghabi et al. (2011), Al-Huniti
and Al-Dayan (2012), Bebbington et al. (2012), Chakraborty and Chakravarty (2012),
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Almalki and Nadarajah (2014), Gómez-Déniz et al. (2014), Abouammoh and Alhaz-
zani (2015), Chakraborty (2015), Sangpoom and Bodhisuwan (2016), Nekoukouh and
Bidram (2017), Jayakumar and Babu (2018), Jayakumar and Sankaran (2018), Jayakumar
and Sankaran (2019), and Vila et al. (2019).

In this paper, the discrete power half-normal distribution is proposed. The dis-
cretization of the continuous model is based on the difference of values of the contin-
uous survival function. More precisely, in Section 2 the discrete model is introduced.
In Section 3, some statistical properties are shown. In Section 4 maximum likelihood
estimation is studied, and a Monte Carlo experiment is performed. Finally, in Section
5, the model is applied to published data sets.

2. THE MODEL

Following Gómez and Bolfarine (2015), the cumulative distribution function of the
power half-normal phn(σ ,α) random variable (r.v.) is

G(x;σ ,α) =
�

2Φ
� x
σ

�

− 1
�α

, (1)

where Φ is the standard normal cumulative distribution function, σ > 0 , α > 0 , and
x ≥ 0 .

The density function of Eq. (1) is

g (x;σ ,α) =
2α
σ
φ
� x
σ

��

2Φ
� x
σ

�

− 1
�α−1

, (2)

where φ is the standard normal density function, σ > 0 , α > 0 , and x ≥ 0 .
The survival function of Eq. (1) is

S(x;σ ,α) = 1−
�

2Φ
� x
σ

�

− 1
�α

, (3)

where σ > 0 , α > 0 , and x ≥ 0 .
The discrete power half-normal distribution dphn(σ ,α) has probability mass defined

as
p(x;σ ,α) = S(x;σ ,α)− S(x + 1;σ ,α) , (4)

where x = 0,1,2, . . ., σ > 0 , and α > 0 . See Figures 1 and 2.
The failure rate of Eq. (4) is

h(x;σ ,α) =
p(x;σ ,α)
S(x;σ ,α)

, (5)

where x = 0, . . . , m and m = 0,1,2, . . . . The failure rate is bathtub shaped for 0< α < 1
and increasing for α≥ 1 . See Figures 1 and 2.
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Figure 1 – Panel (a): density function g (x;σ ,α) , x ≥ 0 . Panel (b): discrete power half-normal
distribution p(x;σ ,α). Panel (c): failure rate h(x;σ ,α) , x = 0,1,2, . . . , where σ = 3.25 and
α= 0.65 .
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Figure 2 – Panel (a): density function g (x;σ ,α) , x ≥ 0 . Panel (b): discrete power half-normal
distribution p(x;σ ,α) . Panel (c): failure rate h(x;σ ,α) , x = 0,1,2, . . . , where σ = 3.25 and
α= 7.8.
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Figure 3 – Mean panel (a), variance panel (b), skewness panel (c) and kurtosis panel (d) of the
discrete power half-normal distribution dphn(σ ,α) , for σ = 3.25 and α > 0 .

The moments,
µr = E(X r ) =
∑

x
x r p(x;σ ,α) ,

cannot be expressed in closed form. Figure 3 shows the behaviour of the discrete power
half-normal distribution dphn(σ ,α) , in terms of mean, variance, skewness, and kurto-
sis.

3. SOME PROPERTIES

THEOREM 1. Let Xi , i = 1,2, . . . , n , be non-negative independent identically dis-
tributed (i.i.d.) integer valued r.v’s and Y = max1≤i≤n Xi . Then Y has a dphn(σ ,αn)
distribution, if and only if Xi has a dphn(σ ,α) distribution.

PROOF. (If part). Let Xi , i = 1,2, . . . , n , with a dphn(σ ,α) distribution. Then

S(x) = 1−
�

2Φ
� x
σ

�

− 1
�α

, x = 0,1,2, . . . .

For every y = 0,1,2, . . . ,

S(y) = P (Y > y) = 1− P (allXi ≤ y) = 1− F (y)n

= 1−
�

2Φ
� y
σ

�

− 1
�αn

.

(Only if part). Let S(Y ) = 1−
�

2Φ
�

y
σ

�

− 1
�αn

, for y = 0,1,2, . . . .

It is known that

S(x) = P (X1 > x) = 1− (P (allXi ≤ x))1/n = 1−
�

2Φ
� x
σ

�

− 1
�α

,
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for x = 0,1,2, . . . . 2

THEOREM 2. Let Xi , i = 1,2, . . . , be non-negative independent integer valued r.v.’s
and Y = max1≤i≤n Xi . Then, Y has a dphn(σ ,α) distribution, if Xi has a dphn(σ ,αi )
distribution, where α=

∑n
i=1αi .

PROOF. We have that

S(y) = 1− P (allXi ≤ x) = 1−
n
∏

i=1

�

2Φ
� x
σ

�

− 1
�αi

= 1−
�

2Φ
� x
σ

�

− 1
�

∑n
i=1 αi

.

2

Let [·] be the greatest integer function.

THEOREM 3. If X has a phn(σ ,α) distribution, then Y = [X ] has a dphn(σ ,α) distri-
bution.

PROOF. We have that [X ] > Y ⇔ X > Y . In fact, ([X ] > Y ) ⊆ (X > Y ) ⊆
([X ] > [Y ]) = ([X ] > Y ) , where the last equality holds since Y is integer valued.
Hence, (X > Y ) = ([X ]> Y ) .

We also have that

P (Y > y) = P ([X ]> y) = P (X > y) = 1−
�

2Φ
� y
σ

�

− 1
�α

.

2

THEOREM 4. Let X be a non-negative r.v., and t be a positive number. Then
Yt = [X /t ] has a dphn(σ ,α) distribution for every t > 0 , if and only if X has a phn(σ ,α)
distribution.

PROOF. (If part). We have that

P (Yt = y) = P (y ≤ Y /t < y + 1) = S(y t )− S((y + 1)t ) , y = 0,1,2, . . . .

Thus,
St (y) = P (Yt > y) = S(y t ) ,

where y is an integer. Moreover,

St (x) = 1−
�

2Φ
� y
σ t

�

− 1
�α

,

for every t > 0, and we have a dphn(σ ,α) distribution.
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(Only if part). Given that X1 has a dphn(σ ,α) distribution with survival function

St (y) = 1−
�

2Φ
�

y
σ t

�

−1
�α

, t > 0 , y = 0,1, . . . . . We have that S(y t ) = 1−
�

2Φ
�

y
σt

�

−1
�α

,

t > 0, y = 0,1,2, . . . . Writing y t = x , where 0< x <+∞ , we have

S(y) = 1−
�

2Φ
� x
σt t

�

− 1
�α

. (6)

The left-hand side of Eq. (6) does not depend on t , and hence we must have on the

right-hand side of Eq. (6) a positive constant σt t = σ . Thus, S(x) = 1−
�

2Φ
�

x
σ

�

−1
�α

,

0< x <+∞ , implying that X has a phn(σ ,α) distribution.

2

4. MAXIMUM LIKELIHOOD ESTIMATION

Let {z1, . . . , zn} be a sample of n i.i.d. observations from the dphn(σ ,α) distribution,
given by Eq. (4), on the values xi = 0,1,2, . . . . The log-likelihood l (σ ,α) = log L(σ ,α)
then is

l (σ ,α) =
n
∑

i=1

log p(zi ;σ ,α) . (7)

The score function S(σ ,α) is the gradient vector S(σ ,α) = (S(σα)1, S(σ ,α)2) , with
components S(σ ,α)1 = (∂ /∂ σ)l (σ ,α) and S(σ ,α)2 = (∂ /∂ α)l (σ ,α) . In particular,
we have that

S(σ ,α)1 =
n
∑

i=1

�

1
p(zi ;σ ,α)

∂ p(zi ;σ ,α)
∂ σ

�

,

S(σ ,α)2 =
n
∑

i=1

�

1
p(zi ;σ ,α)

∂ p(zi ;σ ,α)
∂ α

�

.

We have that

E(σ ,α)(S(σ ,α)1) = n
∑

x

�

∂ p(x;σ ,α)
∂ σ

�

,

E(σ ,α)(S(σ ,α)2) = n
∑

x

�

∂ p(x;σ ,α)
∂ α

�

,

and E(σ ,α)(S(σ ,α)) = (0,0) .
The numerical solutions (σ̂ , α̂) of the score equations S(σ ,α) = (0,0) are the maxi-

mum likelihood estimates (m.l.e’s) of (σ ,α) in the dphn(σ ,α) distribution of Eq. (4).
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4.1. Information

For the log-likelihood l (σ ,α) , given by Eq. (7), the expected information matrixI (σα)
can be obtained from minus the Hessian of L(σ ,α) as

I (σ ,α) =
�

I (σ ,α)11 I (σ ,α)12
I (σ ,α)21 I (σ ,α)22

�

,

where

I (σ ,α)11 = E(σ ,α)

�

−
∂ S(σ ,α)1
∂ σ

�

=−n
∑

x

�

1
p(x;σ ,α)

�

∂ p(x;σ ,α)
∂ σ

�2

−
∂ 2 p(x;σ ,α)
∂ σ2

�

, (8)

I (σ ,α)22 = E(σ ,α)

�

−
∂ S(σ ,α)2
∂ α

�

=−n
∑

x

�

1
p(x;σ ,α)

�

∂ p(x;σ ,α)
∂ α

�2

−
∂ 2 p(x;σ ,α)
∂ α2

�

, (9)

I (σ ,α)21 = E(σ ,α)

�

−
∂ S(σ ,α)2
∂ σ

�

=−n
∑

x

�

1
p(x;σ ,α)

∂ p(x;σ ,α)
∂ σ

∂ p(x;σ ,α)
∂ α

−
∂ 2 p(x;σ ,α)
∂ σ∂ α

�

, (10)

I (σ ,α)12 = E(σ ,α)

�

−
∂ S(σ ,α)1
∂ α

�

=I (σ ,α)21 . (11)

4.2. Asymptotics

We assume that any closed and bounded subset of Ξ of the parameter (σ ,α) is compact,
and that the true parameter (σ0,α0) is an interior point of an open set in Ξ.

Applying Wald (1949), under some regularity conditions, and by using the strong
law of large numbers, the strong convergence of the m.l.e.’s (σ̂ , α̂) to (σ0,α0), as n→∞,
can be shown.

Following Lehmann and Casella (1998), chapter 6, we can see that the third deriva-
tives of the log-likelihood l (σ ,α), given by Eq. (7), exists and can be bounded, in ab-
solute value, by specific functions with finite expected values. The information matrix
I (σ ,α), for the log-likelihood in Eq. (7), has finite elements in Equations (8), (9), (10),
and (11), and is positive definite. We also have that n1/2((σ̂ , α̂)− (σ0,α0)) is asymptot-
ically normal with mean (0,0) and covariance matrices I (σ0,α0)

−1, as n →∞. Fur-
thermore, we have that α̂ and σ̂ in (σ̂ , α̂) are asymptotically efficient, in the sense that
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n1/2(σ̂ − σ0) and n1/2(α̂− α0) have asymptotic variances I (σ0,α0)
−1
11 and I (σ0,α0)

−1
22 ,

respectively, as n→∞.

4.3. Monte Carlo experiment

We performed a simulation experiment to study the bias and the mean square error of
the m.l.e.’s (σ̂ , α̂) in the dphn(σ ,α) distribution, given by Eq. (4). We always simulated
10000 replications of the same experiment that consists in drawing a sample of n i.i.d.
observations, from a dphn(σ ,α) distribution, where n = 15,20,50,100,200 and σ > 0 ,
and α > 0 .

We used the computational environment for statistics R, by R Core Team (2020). In
particular, in the function optim of R, we considered the algorithm of Nelder and Mead
(1965), for the optimization problems min(σ ,α)(−l (σ ,α)), with a log-likelihood of the
form l (σ ,α), given by Eq. (7).

In Tables 1 to 4 we provide the simulation results regarding the m.l.e’s (σ̂ , α̂) of (σ ,α)
for the dphn(σ ,α) distribution, given by Eq. (4), with σ = 32.5 , α= 0.65 , and α= 7.8 .
The performance of (σ̂ , α̂) improves, as n increases, but the convergence is faster for
0<α < 1 .

TABLE 1
Bias and mean square error of the m.l.e.’s (σ̂ , α̂) , for the discrete power half-normal distribution

p(x;σ ,α) , where σ = 3.25 and α= 0.65 .

n b (σ̂) mse(σ̂) b (α̂) mse(α̂)

15 -0.14 0.81 0.16 2.15
20 -0.11 0.61 0.10 0.10
50 -0.04 0.25 0.04 0.03
100 -0.02 0.13 0.02 0.01
200 -0.01 0.06 0.01 0.01

TABLE 2
Bias and mean square error of the m.l.e.’s (σ̂ , α̂) , for the discrete power half-normal distribution

p(x;σ ,α) , where σ = 5.77 and α= 0.65 .

n b (σ̂) mse(σ̂) b (α̂) mse(α̂)

15 -0.02 2.34 0.11 0.11
20 -0.19 1.76 0.08 0.07
50 -0.08 0.72 0.04 0.02
100 -0.03 0.36 0.01 0.01
200 -0.02 0.18 0.01 0.01
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TABLE 3
Bias and mean square error of the m.l.e.’s (σ̂ , α̂) , for the discrete power half-normal distribution

p(x;σ ,α) , where σ = 3.25 and α= 7.8 .

n b (σ̂) mse(σ̂) b (α̂) mse(α̂)

15 -0.11 0.22 4.43 214.85
20 -0.08 0.17 2.76 64.13
50 –0.05 0.06 0.86 7.53
100 -0.01 0.03 0.37 2.72
200 -0.09 0.02 0.18 0.19

TABLE 4
Bias and mean square error of the m.l.e.’s (σ̂ , α̂) , for the discrete power half-normal distribution

p(x;σ ,α) , where σ = 5.77 and α= 7.8 .

n b (σ̂) mse(σ̂) b (α̂) mse(α̂)

15 -0.19 0.67 3.92 129.58
20 -0.14 0.50 2.55 52.06
50 –0.06 0.19 0.82 6.89
100 -0.02 0.09 0.35 2.51
200 -0.01 0.05 0.17 1.10
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Figure 4 – Profile likelihoods L(α) , n = 100 , for the discrete power half-normal distribution
dphn(σ ,α) , where σ = 3.25 and α= 0.65 (panel (a)), and σ = 3.25 and α= 7.8 (panel (b)).
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4.4. Profile likelihood

Given a likelihood L(σ ,α), the profile likelihood of α is

L(α) =max
σ

L(σ ,α) , (12)

where α > 0. More precisely, Eq. (12) means that L(α) = L(σ̂α,α), where σ̂α is the m.l.e.
of θ for a given α, where α > 0.

To calculate the profile likelihood L(α), defined in Eq. (12), we have used the min-
imization algorithm of Brent (1973), chapter 5, which is suitable for the univariate op-
timization problems minσ (−L(σ ,α)), where α > 0 . See also the function optim in R
Core Team (2020) for further details and an implementation of the algorithm.

Figure 4 shows the good behaviour of the profile likelihood L(α), given by Eq. (12),
for the dphn(σ ,α) distribution.

5. APPLICATIONS

5.1. Data set 1

We consider a data set from Birnbaum and Saunders (1969) of n = 101 observations,
referring to maximum stress per cycle 31,000 psi (Tabel 5).

TABLE 5
Data set 1: maximum stress per cycle 31,000 psi.

70,90,96,97,99,100,103,104,104,105,107,108,108,108,109,109,112,112,113,114,
114,114,116,119,120,120,120,121,121,123,124,124,124,124,124,128,128,129,
129,130,130,130,131,131,131,131,131,132,132,132,133,134,134,134,134,134,
136,136,137,138,138,138,139,139,141,141,142,142,142,142,142,142,144,144,
145,146,148,148,149,151,151,152,155,156,157,157,157,157,158,159,162,163,
163,164,166,166,168,170,174,196,212

The m.l.e.’s for the dphn(σ ,α) distribution were σ̂ = 55.1689 and α̂= 41.2697 . The
Akaike (1974) information criterion was AI C = 861.8349 . In Figure 5, the failure rate
is shown.
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Figure 5 – Failure rate for the data set 1.

5.2. Data set 2

We considered a data set from Aarset (1987) of n = 50 observations, referring to lifetimes
of devices (Table 6).

TABLE 6
Data set 2: lifetimes of devices.

0,0,1,1,1,1,1,2,3,6,7,11,12,18,18,18,18,18,21,32,36,40,45, 46,47,50,55,
60,63,63,67,67,67,67,72,75,79,82,82,83,84,84,84,85,85,85,85,85,86,86

The m.le.’s for the dphn(σ ,α) distribution were σ̂ = 62.8226 and α̂ = 0.7538 . The
Akaike (1974) information criterion was AI C = 436.4083 . In Figure 6, the failure rate,
having a bathtub shape, is shown.

0 20 40 60 80
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00
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02

0.
04

Figure 6 – Failure rate for the data set 2.
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