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SUMMARY

In this paper, a new bounded generalization of the unit-Gompertz distribution called the Marshall-
Olkin extended unit-Gompertz distribution (MOEUGD) is introduced. The mathematical prop-
erties and an associated quantile regression model of the proposed distribution are derived. The
maximum likelihood estimation method is employed for estimating the parameters of the pro-
posed distribution, and a Monte Carlo simulation study is carried out to investigate the asymp-
totic behaviour of the parameter estimates of the proposed distribution. Finally, the applicability
of the proposed distribution is illustrated by means of two real data sets defined on a unit-interval
andan application of the regression model to a real data set.
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1. INTRODUCTION

Lifetime distributions are applied to vast areas of real life phenomena such as in relia-
bility theory and survival analysis. For example, the exponential distribution has been
widely applied to model survival data sets and has also been generalized by many re-
searchers due to the disadvantage of exhibiting only a constant hazard rate property.
Some of these generalizations include the Weibull distribution, gamma distribution, ex-
ponentiated exponential distribution, and Gompertz distribution. Increasing the flexi-
bility of the classical lifetime distributions in analyzing real life phenomena has remained
a strong reason for the generalization of classical distributions.
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Several unit distributions have been introduced for modelling datasets in the field
of Biological sciences, Engineering, Actuarial sciences, Economics and Financial Risk
Management, etc. Examples of such distributions include the unit-Weibull distribu-
tion due to Mazucheli et al. (2020), the unit-Bur XII distribution due to Korkmaz and
Chesneau (2021), the log-weighted exponential distribution due to Altun (2021), the
Marshall-Olkin extended Topp-Leone distribution due to Opone and Iwerumor (2021),
the logit slash distribution due to Korkmaz (2020), the unit-Johnson SU distribution due
to Gunduz and Korkmaz (2020), the unit-Gamma distribution due to Mazucheli et al.
(2018a),the unit-Birnbaum-Saunders distribution due to Mazucheli et al. (2018b), the
bounded weighted exponential distribution due to Mallick et al. (2021), the bounded M-
O extended exponential distribution due to Ghosh et al. (2019), the transmuted Marshall-
Olkin Topp-Leone distribution developed by Opone and Osemwenkhae (2022), the
transmuted continuous Bernoulli distribution introduced by Chesneau et al. (2022), the
power continuous Bernoulli distribution proposed by Chesneau and Opone (2022), etc.

Mazucheli et al. (2019) introduced a new generalization of the Gompertz distribu-
tion with bounded support using the logarithm transformation for which X = e−Y in
the Gompertz distribution. The density function of the unit-Gompertz distribution is
defined by

f (x) = λβx−(β+1) exp{−λ(x−β− 1)}, x,λ,β> 0, (1)

and the corresponding cumulative distribution function is obtained as

F (x) = exp{−λ(x−β− 1)}, x,λ,β> 0. (2)

In this paper, we extend the unit-Gompertz distribution by using the method of
generalization in Marshall and Olkin (1997).

Suppose the survival function of a known probability distribution is defined by
F̄ (x). Marshall and Olkin (1997) defined the survival function of the Marshall-Olkin
extended family of distributions as

Ḡ(x,α) =
αF̄ (x)

1− ᾱF̄ (x)
=

αF̄ (x)
F (x)+αF̄ (x)

, −∞< x <∞, 0<α <∞. (3)

If F is a cumulative distribution function with a density function f , then G has a density
function given as

g (x,α) =
α f (x)

{1− ᾱF̄ (x)}2
, −∞< x <∞, 0<α <∞, (4)

where ᾱ = 1− α is called a “tilt parameter”, since the hazard h(x) of the transformed
distribution is shifted below (α ≥ 1) or above (0 < α ≤ 1) from the hazard r (x) of the
baseline distribution. In fact, for all x ≥ 0, h(x) ≤ r (x) when α ≥ 1, and h(x) ≥ r (x)
when 0<α≤ 1.
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Considering the unit-Gompertz dsitribution as the baseline distribution in Eq. (3)
and Eq. (4), the resulting distribution is what we call the Marshall-Olkin extended unit-
Gompertz distribution (MOEUGD). The remaining Sections of this paper are orga-
nized as follows: Section 2 presents some mathematical properties of the proposed dis-
tribution, which include the survival function, cumulative distribution function, proba-
bility density function, hazard rate function, quantile function, median, moments, mo-
ment generating function, and Renyi entropy. The parameter estimates of the proposed
distribution using the maximum likelihood method and a Monte Carlo simulation study
to investigate the performance of the maximum likelihood estimators are given in Sec-
tion 3. The quantile regression model of the proposed distribution and its validation
is introduced in Section 4. Section 5 illustrates the applicability of the proposed distri-
bution in analyzing two real data sets, while Section 6 presents the application of the
quantile regression model of the proposed distribution to a real data set. Finally, we
give a concluding remark in Section 7.

2. MATHEMATICAL PROPERTIES OF THE PROPOSED MOEUG DISTRIBUTION

2.1. Probability density and cumulative distribution functions of the MOEUGD

The density function of a random variable X following the proposed Marshall-Olkin
extended unit-Gompertz distribution is defined by

g (x) =
αβλx−(β+1) exp{−λ(x−β− 1)}
{1− ᾱ

�

1− exp{−λ(x−β− 1)}
�

}2
, 0< x < 1, α,β,λ > 0. (5)

The corresponding cumulative distribution function of the MOEUGD is obtained as

G(x) =
exp{−λ(x−β− 1)}

1− ᾱ
�

1− exp{−λ(x−β− 1)}
� , 0< x < 1, α,β,λ > 0. (6)

The density function defined in Eq. (5) can further be expressed in a series representa-
tion using the generalized binomial expansion for any positive real number and |z |< 1,
reported in George and Thobias (2017) as

(1− z)−s =
∞
∑

k=0

�

s + k − 1
k

�

zk . (7)

Thus, we have that

�

1− ᾱ
�

1− e−λ(x
−β−1)

��−2
=
∞
∑

i=0

�

i + 1
i

�

ᾱi
�

1− e−λ(x
−β−1)

�i
, (8)

�

1− e−λ(x
−β−1)

�i
=
∞
∑

i=0

�

i
j

�

(−1) j e−λ(x
−β−1) j , (9)



100 F. C. Opone et al.

e−λ(x
−β−1)( j+1) ≈ e−λ( j+1)x−β+λ( j+1). (10)

Recall that

e−x =
∞
∑

n=0

(−1)n xn

n!
, (11)

so that

e−λ( j+1)x−β =
∞
∑

k=0

(−λ( j + 1))k x−βk

k!
. (12)

Hence, Eq. (5) can be expressed as

g (x) = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k!
eλ( j+1)[λ( j + 1)]k x−β(k+1)−1. (13)

The graphical representation of the density function of the MOEUG distribution is
given in Figure 1.
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Figure 1 – Density function of the MOEUGD for different values of the parameters.

Figure 1 shows that the density function of the MOEUG distribution accomodates
decreasing, increasing, and right-skewed unimodal shapes for different choices of the
parameters of the distribution.
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2.2. Survival and hazard rate functions of the MOEUGD

The survival and hazard rate functions of the proposed MOEUG distribution are, re-
spectively, defined by

S(x) = 1−G(x)

= 1−
exp{−λ(x−β− 1)}

1− ᾱ
�

1− exp{−λ(x−β− 1)}
� ,

=
α
�

1− exp{−λ(x−β− 1)}
�

1− ᾱ
�

1− exp{−λ(x−β− 1)}
� , 0< x < 1, α,β,λ > 0, (14)

and

H (x) =
g (x)

1−G(x)

=
αβλx−(β+1) exp{−λ(x−β− 1)}
{1− ᾱ

�

1− exp{−λ(x−β− 1)}
�

}2
×

1− ᾱ
�

1− exp{−λ(x−β− 1)}
�

α
�

1− exp{−λ(x−β− 1)}
�

=
αβλx−(β+1) exp{−λ(x−β− 1)}

1− ᾱ
�

1− exp{−λ(x−β− 1)}
�

α
�

1− exp{−λ(x−β− 1)}
� . (15)

The plot of the hazard rate function of the MOEUG distribution is shown in
Figure 2.
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Figure 2 – Hazard rate function of the MOEUGD for different values of the parameters.

The plot indicates that the hazard rate function of the MOEUG distribution acco-
modates an increasing, bathtub, and upsidedown bathtub shaped property.
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2.3. The quantile function of the MOEUGD

Suppose that G(x) is the cumulative distribution function of a continous random vari-
able X , then the quantile function of X , (QX (u)) is derived by solving the system of
equation G(x) = u to obtain QX (u) = G−1(u), where u is uniformly distributed. The
quantile function of a random variable X , following the Marshall-Olkin extended unit-
Gompertz distribution, is therefore defined as

exp{−λ(x−β− 1)}
1− ᾱ

�

1− exp{−λ(x−β− 1)}
� = u

exp{−λ(x−β− 1)} = u − uᾱ
�

1− exp{−λ(x−β− 1)}
�

exp{−λ(x−β− 1)} (1− uᾱ) = u(1− ᾱ)

exp{−λ(x−β− 1)} = αu
(1− uᾱ)

x−β = 1− 1
λ

ln
�

αu
(1− uᾱ)

�

QX (u) =
�

1− 1
λ

ln
�

αu
(1− uᾱ)

��− 1
β

. (16)

The median of the MOEUG distribution is obtained by assuming u = 1
2 in Eq. (16),

which yields

Median = Q2

�

1
2

�

=



1− 1
λ

ln





α

2
�

1− ᾱ
2

�









− 1
β

. (17)

Some numerical computation of quantiles from the MOEUG distribution for dif-
ferent values of the parameters are given in Table 1.

TABLE 1
Some quantiles from the MOEUG distribution (α= 2).

u (β= 3,λ= 2) (β= 1,λ= 1) (β= 2,λ= 0.5) (β= 1,λ= 3)

0.1 0.8142 0.3697 0.4762 0.6377
0.2 0.8642 0.4765 0.5593 0.7320
0.3 0.8967 0.5640 0.6267 0.7951
0.4 0.9211 0.6412 0.6869 0.8428
0.5 0.9403 0.7115 0.7431 0.8809
0.6 0.9562 0.7766 0.7967 0.9125
0.7 0.9695 0.8374 0.8487 0.9392
0.8 0.9811 0.8946 0.8996 0.9622
0.9 0.9911 0.9487 0.9500 0.9823
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Table 1 shows some quantiles from the MOEUG distribution, which can also be seen as
random samples from the distribution. We clearly observe that for varying values of the
parameters of the distribution, the random variates fall within the unit-interval, which
conforms with the support of the proposed distribution.

2.4. The r t h moment and moment generating function of the MOEUGD

Let X be a continuous random variable with probability density function g (x), then
the r t h moment about the origin of X is defined by

µ
′

r = E(X r ) =
∫ ∞

−∞
x r g (x)dx. (18)

Substituting the series representation of the density function of the MOEUG distribu-
tion into Eq. (18), the r t h moment of the MOEUG distribution is obtained as

µ
′

r = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k!
eλ( j+1)[λ( j + 1)]k

∫ 1

0
x r−β(k+1)−1dx

= αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k![r −β(k + 1)]
eλ( j+1)[λ( j + 1)]k . (19)

The first four r t h moments of the MOEUG distribution in terms of infinite series
are obtained from Eq. (19) as

µ
′

1 = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k![1−β(k + 1)]
eλ( j+1)[λ( j + 1)]k ,

µ
′

2 = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k![2−β(k + 1)]
eλ( j+1)[λ( j + 1)]k ,

µ
′

3 = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k![3−β(k + 1)]
eλ( j+1)[λ( j + 1)]k ,

µ
′

4 = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k

k![4−β(k + 1)]
eλ( j+1)[λ( j + 1)]k . (20)

The variance (σ2), measures of skewness (Sk ), and kurtosis (Ks ) of the MOEUG
distribution can be derived by substituting the values of the r t h moments into the ex-
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pressions

σ2 = µ
′

2−µ
2,

Sk =
µ
′

3− 3µ
′

2µ+ 2µ3

�

µ′2−µ2
�

3
2

,

Ks =
µ
′

4− 4µ
′

3µ+ 6µ
′

2µ
2− 3µ4

�

µ′2−µ2
�2 . (21)

The generating function of a continuous random variable X with density function
g (x) is defined by

MX (t ) = E(e t x ) =
∫ ∞

−∞
e t x g (x)dx, (22)

thus, the generating function of the MOEUG distribution is given by

MX (t ) = αβλ
∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

∞
∑

m=0

�

i + 1
i

��

i
j

�

ᾱi (−1) j+k t m eλ( j+1)[λ( j + 1)]k

k!m![m−β(k + 1)]
, (23)

since e t x =
∞
∑

m=0

t m x m

m!
.

Numerical computation of the theoretical moments of the MOEUG distribution
for selected values of the parameters is shown in Table 2.

TABLE 2
Theoretical Moments of the MOEUG distribution (β=1).

µ
′

r (α= 2,λ= 3) (α= 1,λ= 1) (α= 3,λ= 1) (α= 0.2,λ= 0.5)

µ
′

1 0.840 0.5985 0.7311 0.2764
µ
′

2 0.7254 0.4065 0.5767 0.109
µ
′

3 0.6388 0.301 0.4772 0.0578
µ
′

4 0.5712 0.234 0.4078 0.0374
σ2 0.019 0.0481 0.0422 0.0326
Sk -1.1692 0.0074 -0.7059 1.6394
Ks 4.2006 1.9908 2.6304 5.599

Table 2 displays the theoretical moments of the MOEUG distribution for differ-
ent values of the parameters of the distribution. The Table indicates that the MOEUG
distribution is positively (right)-skewed (Sk > 0), negatively (left)-skewed (Sk < 0), and
approximately symmetric (Sk ≈ 0). The MOEUG distribution can also be leptokur-
tic (Ks > 3), platykurtic (Ks < 3) and mesokurtic (Ks ≈ 3). This claim supports the
graphical illustration of the density function of the MOEUG distribution in Figure 1.



Marshall-Olkin Extended Unit-Gompertz Regression Model 105

2.5. The Renyi entropy of the MOEUGD

An entropy of a random variable X is a measure of variation of uncertainty associated
with the ramdom variable X . Rényi (1961) defined the Renyi entropy of X with density
function g (x) as

τR(γ ) =
1

1− γ
log

�
∫

g γ (x)dx
�

, γ > 0,γ 6= 1. (24)

Substituting Eq. (5) in Eq. (24), we have

τR(γ ) =
1

1− γ
log

∫ 1

0
(αβλ)γ x−γ (β+1)e−λ(x

−β−1)

×
�

1− ᾱ
�

1− e−λ(x
−β−1)

��−2γ
dx. (25)

Using the generalized binomial expansion defined in Eq. (7),

�

1− ᾱ
�

1− e−λ(x
−β−1)

��−2γ
=

∞
∑

i=0

�

i + γ
i

�

ᾱγ i
�

1− e−λ(x
−β−1)

�γ i
,

�

1− e−λ(x
−β−1)

�γ i
=

∞
∑

j=0

(−1) j
�

γ i
j

�

e−λ(x
−β−1)γ j ,

e−λγ ( j+1)(x−β−1) ≈ e−λγ ( j+1)−λγ ( j+1)x−β ,

e−λγ ( j+1)x−β =
∞
∑

k=0

(−1)k[λγ ( j + 1)]k x−βk

k!
, (26)

then Eq. (25) becomes

τR(γ ) =
1

1− γ
log(αβλ)γ

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + γ
i

��

γ i
j

�

(−1) j+k ᾱγ i e−λγ ( j+1)(27)

× [λγ ( j + 1)]k
∫ 1

0
x−β(γ+k)−γdx. (28)

Evaluating the integral part of Eq. (27) yields

τR(γ ) =
1

1− γ
log(αβλ)γ

∞
∑

i=0

∞
∑

j=0

∞
∑

k=0

�

i + γ
i

��

γ i
j

�

(−1) j+k ᾱγ i

×
e−λγ ( j+1)[λγ ( j + 1)]k

1−β(γ + k)− γ
. (29)

Golshani and Pasha (2010) provided some important properties of the measure given
in Eq. (24):
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(i) The Renyi entropy can be negative;

(ii) For any γ1 < γ2, Rγ2
≤ Rγ1

, and equality holds if and only if X is a uniform random
variable.

According to Kayal and Kumar (2017), the Renyi entropy is more or less sensitive
to the shape of the probability distribution due to the parameter γ . For large values of
γ , the measure given in Eq. (24) is more sensitive to events that occur often, while for
small values of γ , it is more sensitive to event that occur rarely.

Numerical computation of the Renyi entropy of the MOEUGD for varying values
of parameter γ is shown in Table 3.

TABLE 3
Numerical Computation of the Renyi Entropy of the MOEUGD (λ =1).

γ (α= 4,β= .3) (α= 2,β= .2) (α= 4,β= 2) (α= 3,β= 1)

0.01 -0.0001 -0.0030 -0.1545 -0.0271
0.03 -0.0003 -0.0090 -0.2488 -0.0565
0.5 -0.0049 -0.01792 -0.7750 -0.2717
0.7 -0.0069 -0.2718 -0.8843 -0.3198

2 -0.0206 -1.1815 -1.2921 -0.5142
4 -0.0460 -2.2117 -1.5512 -0.6681
7 -0.0947 -2.7264 -1.7135 -0.7844
9 -0.1320 -2.8805 -1.7716 -0.8300

From Table 3, we clearly observe that for any two consecutive values of parameter
γi , say, γ1 and γ2, the Renyi entropy Rγi

, say, Rγ1
and Rγ2

, satisfies the condition γ1 < γ2,
Rγ2
≤ Rγ1

as suggested by Golshani and Pasha (2010).

3. PARAMETER ESTIMATION

3.1. Maximum likelihood estimation

Here, we present the maximum likelihood estimates(MLEs) of the parameters of
MOEUGD(α,β,λ). Let x1, x2, · · · , xn be random samples from the MOEUGD with
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density function defined in Eq. (5), then the log-likelihood function is given by

`(x,ϕ) =
n
∑

i=1

ln [g (x)] ,

`(x,ϕ) =
n
∑

i=1

ln

�

αβλx−(β+1) exp{−λ(x−β− 1)}
{1− ᾱ

�

1− exp{−λ(x−β− 1)}
�

}2

�

, ϕ = (α,β,λ),

= n ln(α,β,λ)− (β+ 1)
n
∑

i=1

l n(xi )−λ
n
∑

i=1

(x−βi − 1)

− 2
n
∑

i=1

ln
h

1− ᾱ
�

1− e−λ(x
−β
i −1)

�i

. (30)

The first partial derivatives of the log-likelihood function with respect to the differ-
ent parameters are given by

∂ `(x,ϕ)
∂ α

=
n
α
− 2

n
∑

i=1

1− e−λ(x
−β
i −1)

1− ᾱ
�

1− e−λ(x−β−1)
� , (31)

∂ `(x,ϕ)
∂ β

=
n
β
−

n
∑

i=1

ln xi +λ
n
∑

i=1

x−βi ln xi − 2λᾱ
n
∑

i=1

e−λ(x
−β
i −1)x−βi ln xi

1− ᾱ
�

1− e−λ(x−β−1)
� ,(32)

∂ `(x,ϕ)
∂ λ

=
n
λ
−

n
∑

i=1

�

x−β− 1
�

+ 2ᾱ
n
∑

i=1

e−λ(x
−β
i −1)x−βi − e−λ(x

−β
i −1)

1− ᾱ
�

1− e−λ(x−β−1)
� . (33)

The maximum likelihood estimate ϕ̂ of the parameters ϕ is obtained by solving the

system of non-linear equations
∂ `(x,ϕ)
∂ ϕ

= 0. These equations can be solved using a

numerical method known as New Raphson iterative scheme given by

ϕ̂ = ϕk −H−1(ϕk )U (ϕk ), ϕ̂ = (α̂, β̂, λ̂)T , (34)

where U (ϕk ) is the score function and H−1(ϕk ) is the Hessian matrix, which is the
second partial derivative of the log-likelihood function. The bbmle package in the R

statistical software package is used to evaluate the maximum likelihood estimates of the
parameters of the MOEUG distribution.

3.2. Simulation study

Here, we investigate the performance and the accuracy of the maximum likelihood es-
timate of the parameters of the Marshall-Olkin extended unit-Gompertz distribution
through a simulation study. Using a similar simulation algorithm to that reported in
the works of Opone and Ekhosuehi (2018) and Tuoyo et al. (2021), a Monte Carlo
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simulation of pseudo-random samples from the MOEUG distribution is repeated 1000
times for different sample sizes n = (20, 50, 100, 200) and fixed parameter values of
(α = 0.1,β = 0.5,λ = 0.2), (α = 0.3,β = 0.8,λ = 0.1), and (α = 0.1,β = 2.0,λ = 0.1).
The asymptotic behaviour of the parameter estimates is examined through the com-
putation of three quantities, namely the Bias, Root Mean-Squared Error (RMSE), and
Coverage Probability (CP) of the 95% confidence interval of the parameter estimates.
Table 4 displays the Monte Carlo simulation results for the Bias, RMSE, and the coverage
probability (CP) of the 95% confidence interval of the parameter estimates.

From Table 4 we observe that the bias and root mean-squared error of the parameter
estimates of the MOEUG distribution decreases (tends to zero) as the sample size n
increases, which holds in case of the consistency property of an estimator. Also, we
observe that the coverage probabilities of the CIs of the parameter estimates are close to
the nominal level of 95%.

4. QMOEUG REGRESSION MODEL

In this Section, we introduce an alternative quantile regression model based on the re-
parameterization of the MOEUG distribution. Let

α=
exp (λ) (u − 1)

u
�

exp (λ)− exp
�

λµ−β
�� . (35)

Inserting Eq. (35) in the MOEUG density, we have the probability density function
of the quantile MOEUG (QMOEUG) distribution:

f (y) =
exp (λ) (u − 1)βλy−(β+1)

u
�

exp (λ)− exp
�

λµ−β
�� exp

�

−λ
�

y−β− 1
��

×







1−
�

1− exp(λ)(u−1)
u(exp(λ)−exp(λµ−β))

�

×
�

1− exp
�

−λ
�

y−β− 1
�	�







−2

, (36)

where µ ∈ (0,1) is the quantile parameter, u is a predefined value,β,λ > 0 are the shape
parameters. Hereafter, the density in Eq. (36) is denoted as Y ∼QMOEUG (µ,β,λ; u).

Using the density function in Eq. (36), we define the QMOEUG regression model.
Let Y1,Y2, . . . ,Yn be random variables from the QMOEUG distribution with un-

known µi ,β, and λ parameters, and known u. We use the link function to link the
covariates to the quantile parameter of the QMOEUG distribution. The appropriate
link function should be chosen based on the domain of the random variable Y . The
QMOEUG distribution is defined on (0,1), so the logit-link function is chosen. The
logit-link function is defined by

g (µi ) = log
�

µi

1−µi

�

= xiγ
T, (37)
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where γ =
�

γ0,γ1, . . . ,γp

�T
represents the unknown regression parameters,

xi =
�

1, xi1, xi2, . . . , xi p

�T
represents realizations of the covariates for the i -th individ-

ual.
The MLE method is preferred to estimate the unknown parameters of the QMOEUG

regression model. Isolating µi from Eq. (37), we have

µi =
exp

�

xiγ
T
�

1+ exp (xiγT )
, (38)

where i = 1,2, . . . , n. Let φ =
�

γT,β,λ
�

be the unknown parameter vector, and u is a
pre-defined value. The log-likelihood function of the QMOEUG regression model can
be written as follows

` (φ) = nλ+ n log (u − 1)+ n log (βλ)− (β+ 1)
n
∑

i=1

log (yi )

− λ
n
∑

i=1

�

y−βi − 1
�

−
n
∑

i=1

log
¦

u
�

exp (λ)− exp
�

λµ−βi

��©

− 2
n
∑

i=1

log







1−
�

1− exp(λ)(u−1)
u
�

exp(λ)−exp
�

λµ−βi

��

�

×
�

1− exp
¦

−λ
�

y−βi − 1
�©�







, (39)

where µi is defined in Eq. (37). The MLE of the unknown parameter vector φ is ob-
tained by direct maximization of the log-likelihood function, given in Eq. (39). Some
statistical software can be used for this purpose. The optim function of the R software
is used in this study. This function requires good initial parameter vector to converge to
the global maximum value of the log-likelihood function. The initial parameter vector
is obtained following the idea of Mazucheli et al. (2020).

4.1. Validation

Assessment of the model fitting is a critical part of any statistical model. The accuracy
of the model is discussed with the randomized quantile residuals of Dunn and Smyth
(1996), which is defined by

rq ,i = Φ
n

F
�

yi ; µ̂i , β̂, λ̂
�o−1

, (40)

where Φ is the cumulative distribution function of the standard normal distribution,
F
�

yi ; µ̂i , β̂, λ̂
�

is the cumulative distribution function of the QMOEUG distribution.

According to Dunn and Smyth (1996), randomized quantile residuals are distributed as
N (0,1) once the fitted model is valid.
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5. APPLICATION OF THE MOEUGD TO LIFETIME DATA SETS

Here, the applicability of the MOEUG distribution is illustrated using two real data sets
defined on a unit interval. Some well-known bounded distributions are also used to fit
the real data sets along with the proposed MOEUG distribution. These distributions
with their corresponding density function include:

(i) unit-Gompertz Distribution (UGD)

f (x) = λβx−(β+1) exp{−λ(x−β− 1)}, (41)

(ii) Kumaraswamy Distribution (KD)

f (x) = αβxα−1(1− xα)β−1, (42)

(iii) Beta Distribution

f (x) =
xα−1(1− x)β−1

B(α,β)
, B(α,β) =

Γ (α)Γ (β)
Γ (α+β)

. (43)

TABLE 5
Flood Level and Rock Sample Data Sets.

Data set I 0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 0.42,
0.42, 0.45,0.48, 0.49, 0.61, 0.65, 0.74

Data Set II 0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410,
0.1486220,0.1623940, 0.2627270, 0.1794550, 0.3266350, 0.2300810,
0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250,
0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770,
0.1224170, 0.2285950, 0.1138520, 0.2252140, 0.1769690, 0.2007440,
0.1670450, 0.2316230, 0.2910290, 0.3412730, 0.4387120, 0.2626510,
0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530,
0.1641270,0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470.

The data sets are displayed in Table 5, where:

Data set I The first data set represents 20 observations of the maximum flood level
(in millions of cubic feet per second) for the Susquehanna River at Harrisburg,
Pennsylvania. The data set was first reported in Dumonceaux and Antle (1973),
and recently was used in Mazucheli et al. (2019) to illustrate the potentiality of
the unit-Gompertz distribution. The data set is right skewed with skewness value
Sk = 0.9939 and leptokurtic with kurtosis value Ks = 3.3053.
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Data set II The second data set consists of 48 rock samples from a petroleum reservoir
reported in Cordeiro and Brito (2012). The data set is also right skewed with
skewness value Sk = 1.1330 and leptokurtic with kurtosis value Ks=3.9404.

The parameter estimates of the distributions, the Akaike Information Criterion
(AIC), the Bayesian Information Criterion (BIC), the Kolmogorov-Smirnov test statis-
tic (K-S), the Anderson Darling test statistic (A∗), and the Cramer-von Mises test statistic
(W∗) with their respective p-values are employed to compare the fitness obtained from
the distributions for the two data sets.

TABLE 6
Summary Statistics for the Flood Level Data Set, n=20.

Distributions Parameter AIC BIC K-S A∗ W∗

Estimates (p-value) (p-value) (p-value)

MOEUGD α = 0.029 -26.664 -23.676 0.131 0.247 0.042
β = 1.162 (0.885) (0.972) (0.927)
λ = 1.854

UGD α = 0.015 -28.740 -26.741 0.152 0.293 0.053
β = 4.115 (0.743) (0.943) (0.862)

Beta α=6.832 -24.367 -22.376 0.206 0.730 0.124
β=9.238 (0.363) (0.532) (0.482)

Kumaraswamy α=3.378 -21.947 -19.955 0.218 0.937 0.165
β=12.006 (0.300) (0.391) (0.348)

Tables 6 and 7 respectively show the parameter estimates, the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), the Kolmogorov-Smirnov
test statistic (K-S), the Anderson Darling test statistic (A∗), and the Cramer-von Mises
test statistic (W∗) with their respective p-values of the distributions for the flood level
and rock sample data sets. The Tables reveal the superiority of the proposed MOEUG
distribution over the unit-Gompertz, beta and Kumaraswamy distributions in analyzing
the two dats sets, since the proposed MOEUG distribution has the smallest values in
terms of the goodness of fit test statistics.

The graphical illustration of goodness of fit in terms of the density fit and the probability-
probability (P-P) plots of the distributions for the two data sets are displayed in Figures
3 and 4 to further support the superiority of the proposed MOEUG distribution over
the existing distributions.
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TABLE 7
Summary Statistics for the Rock Samples from a Petroleum Reservoir Data Set, n=48.

Distributions Parameter AIC BIC K-S A∗ W∗

Estimates (p-value) (p-value) (p-value)

MOEUGD α = 0.081 -107.609 -101.995 0.056 0.268 0.025
β = 1.513 (0.998) (0.960) (0.990)
λ = 0.240

UGD α = 0.005 -109.287 -105.545 0.081 0.357 0.043
β = 2.989 (0.913) (0.889) (0.918)

Beta α=6.832 -24.367 -22.376 0.718 88.403 10.690
β=9.238 (2.2e-16) (1.2 e-05) (2.2 e-16)

Kumaraswamy α=2.719 -100.983 -97.241 0.153 1.289 0.201
β=44.670 (0.209) (0.236) (0.257)

Figure 3 – Density fit and P-P plots of the distributions for the Flood level Data.
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Figure 4 – Density fit and P-P plots of the distributions for the Rock Sample Data.

6. APPLICATION OF THE QMOEUGD REGRESSION MODEL

In this Section, an application of the QMOEUG regression model is presented. We
use similar data to the work of Korkmaz et al. (2022). They use the unit-Chen (UC)
quantile regression model to analyze the recovery rates for viable C D34+ cells with
the covariates such as gender (1: male, 0: female), history of chemotherapy (0: 1-day
chemotherapy, 1: 3-day chemotherapy), and ages of the individuals. Detailed informa-
tion for the data can be found in the simplexreg package of the R software. Here, the
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recovery rate of the C D34+ cells is considered as response variable. QMOEUGD, unit-
Chen and Kumaraswamy regression models are used to model the data set. The fitted
regression model is

logit (µi ) = γ0+ γ1GENDERi + γ2CHEMOi + γ3AGEi , (44)

where i = 1,2,3, . . . , 239. The pre-defined value u is selected as u = 0.5 to model the
conditional median. The estimated parameters of the QMOEUGD regression model
are given in Table 8. The estimated parameters of the UC and Kumaraswamy regression
models are omitted, except −` and AIC values, since these are reported in Korkmaz
et al. (2022). From Tables 8 and 9, we conclude that the QMOEUGD regression model
produce better result than the UC and Kumaraswamy regression models, because it has
lowest values of −` and AIC values.

TABLE 8
Estimated parameters of the QMOEUGD regression model.

Parameters Estimates Standard errors p values

Intercept 0.957 0.142 < 0.001
Gender 0.068 0.104 0.256
Chemo 0.246 0.118 0.019
Age 0.019 0.006 < 0.001
β 650.893 20.639 -
λ 0.015 0.019 -

TABLE 9
Model selection criteria for QMOEUGD, UC and Kumaraswamy regression models.

Models −` AIC

QMOEUGD -197.491 -382.981
UC -195.826 -381.651
Kumaraswamy -192.830 -375.659

According to the estimated parameters of the QMOEUGD regression model, there
is no significant difference between female and male individuals for the recovery rate of
the C D34+ cells. However, when the age increases, the recovery rate of the C D34+
cells increases. Additionally, individuals receiving a 3-day chemotherapy have a higher
recovery rate than the individuals receiving a 1-day chemotherapy.

6.0.1. Residual analysis
The P-P plots of the randomized quantile residuals for the fitted regression models are
displayed in Figure 5. From these Figures, it is obvious that the points of the QMOEUGD
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residuals are nearer to the diagonal line than those of the UC and Kumaraswamy regres-
sion models. So, we conclude that the QMOEUGD regression model provides a good
fit for the data.

Figure 5 – PP plots of randomized quantile residuals for the fitted regression models.

7. CONCLUSION

This paper extends the unit-Gompertz distribution using the Marshall-Olkin method
of generalization. Explicit expressions for the mathematical properties of the MOEUG
distribution have been derived. The maximum likelihood estimation method has been
employed to estimate the unknown parameters of the MOEUG distribution. We have
provided a quantile regression model based on the MOEUG distribution and have com-
pared it with the unit-Chen and unit-Kumaraswamy regression models. The results ob-
tained from the two data sets under study reveal that the MOEUG distribution as well
as the QMOEUG regression model provide a better fit than some existing models. We
hope that in the future, the QMOEUG regression model attracts researchers when an-
alyzing lifetime data sets.
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