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1. INTRODUCTION

In spite of hundreds of lifetime Poisson models in literature, several new flexible models
are still being developed to address real life scenarios. The Gompertz distribution is a
continuous model proposed in Gompertz (1824). The Gompertz distribution is used to
model mortality rate, survival time, failure rate in computer codes, lifespan in gerontol-
ogy and customer lifetime value. However, despite the numerous researches in modeling
lifetime Poisson process in literature with constant failure rate, real life scenarios are un-
fortunately non-monotonic increasing functions. Hence, a linear monotone increasing
failure rate like the Gompertz distribution is introduced to account for the deficiency.

This study presents a bathtub, increasing, decreasing and skewed shaped class of sta-
tistical distribution called Marshall-Olkin Gompertz (MO-G) distribution with a bet-
ter fit for real life data than existing well-known distributions. However, the results
obtained from existing literature such as Gompertz, Alpha power Gompertz distri-
bution (APGz) (Eghwerido et al., 2021b), transmuted Gompertz distribution (TGz)
(Khan et al., 2016b), transmuted generalized Gompertz distribution, (TGGz) (Khan
et al., 2016a) and Marshall-Olkin extended generalized Gompertz distribution,
(MOEGG) (Benkhelifa, 2016) stimulate this article.

Eghwerido et al. (2020b) proposed the inverse odd Weibull generated family of distri-
bution. Eghwerido et al. (2021a) proposed the Shifted Exponential-G family of Distri-
butions. Unal et al. (2018) proposed the alpha power inverted exponential distribution.
Alizadeh et al. (2018a) proposed transmuted Weibull-G distribution. Alizadeh et al.
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(2018b) proposed the Poisson-G distribution. Alizadeh et al. (2020) proposed the trans-
muted odd log-logistics-G distribution. Eghwerido and Agu (2021) proposed the shifted
Gompertz-G model. Alzaatreh et al. (2013) proposed a family of generating a new dis-
tribution called alpha power. Mahdavi and Kundu (2017) proposed a new method of
generating distribution with application to exponential distribution. Weibull Fréchét
distribution, (WFr) was proposed in Afify et al. (2016), alpha power inverse Weibull
distribution (APIW) in Basheer (2019), Kumuraswamy alpha power inverted exponen-
tial distribution (KAPIE) in Zelibe et al. (2020), the alpha power Teissier distribution
in Eghwerido (2021), Weibull alpha power inverted exponential distribution (WAPIE)
in Efe-Eyefia et al. (2020). Aryal and Tsokos (2011) proposed the transmuted Weibull,
Bourguignon et al. (2014) proposed the Weibull-G. Eghwerido et al. (2021c) proposed
the alpha power Marshall-Olkin-G Distribution, Cordeiro et al. (2017) proposed the
exponentiated Weibull-H, Granzotto et al. (2017) proposed the cubic rank transmuted.
Merovci et al. (2017) proposed the exponentiated transmuted-G. Mahmoud and Man-
douh (2013) proposed transmuted Frechet. Eghwerido et al. (2020a) proposed the Gom-
pertz extended generalized exponential distribution. Nofal et al. (2017) proposed the
generalized transmuted-G. Rahman et al. (2018) proposed general transmuted family.
Yousof et al. (2015) and Yousof et al. (2017) proposed the transmuted exponentiated
generalized-G and transmuted Topp-Leone-G and Gompertz alpha power inverted ex-
ponential (GAPIE) distributions were considered in Eghwerido et al. (2020c) .

The MO-G distribution was proposed based on the Marshall-Olkin characteriza-
tions.

This article draws a bead on a three parameter model called Marshall-Olkin Gom-
pertz (MO-G) distribution for lifetime Poisson processes. The statistical structural prop-
erties of the proposed distribution are established in this paper. The maximum likeli-
hood estimates (MLEs) of the MO-G parameters were derived in a closed form.

The Gompertz probability density function is given as

w(x) = α exp
�

µx +
α

µ
(1− exp(µx))
�

x, α, µ> 0. (1)

The cumulative distribution function that corresponds to Equation (1) is defined as

W (x) = 1− exp
�

−α
µ
(exp(µx)− 1)
�

x,α, µ> 0, (2)

where α is the shape parameter and µ is the scale parameter.
Suppose, w(x) and W (x) are the density and cumulative functions of the baseline dis-

tribution or model. Then, Marshall and I. (1997) proposed a transformation for adding
a parameter called Marshall-Olkin with the cdf given as

U (x) =
W (x)

β+(1−β)W (x)
, β> 0, (3)
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where (1−β) is the tilt parameter. However, the corresponding pdf is expressed as

u(x) =
βw(x)

[β+(1−β)W (x)]2
, β> 0. (4)

In this article, the MO-G distribution together with its mathematical properties will
be thoroughly and diligently treated. However, the empirical flexibility and proficiency
of the proposed model is examined by application to glass fibre data obtained by work-
ers at the UK National Physical Laboratory and National Highway Traffic Safety Ad-
ministration data on fatal accidents that occur on roads in the United States. The data
represent the number of vehicle fatalities for 39 counties in South Carolina for 2012
(www-fars.nhtsa.dot.gov/States) as used in Mann (2016).

This study is organized as follows: Section 2 defines the MO-G model together with
its statistical properties. Section 3 discusses the mathematical linear representation of
the proposed density. Section 4 examines statistical structural properties of the proposed
MO-G distribution is discussed. The estimates of the parameters are obtained in Section
5. Section 6 presents real life applications to validate the flexibility and efficiency of the
proposed MO-G model. The results obtained are compared with existing models in
statistical literature in this Section. Section 7 is the conclusions.

2. THE MO-G DISTRIBUTION

In this Section, the new proposed MO-G three parameters of the Gompertz distribu-
tion is presented. Let X be a continuous random variable , then the pdf of the MO-G
distribution is expressed as

uMO-G(x) =
β α exp
�

µ x − α
µ (exp(µx)− 1)
�

�

1− (1−β)
�

exp
�

− αµ (exp(µx)− 1)
���2 x, β, µ, α > 0. (5)

The corresponding cumulative distribution function (cdf) is defined as

UMO-G(x) =
1− exp
�

− αµ (exp(µx)− 1)
�

�

1− (1−β)
�

exp
�

α
µ (1− exp(µx))
��� x, α, β, µ> 0, (6)

where β is additional extra shape parameter.
Figure 1 is the plot for some parameters values cases for α,µ andβ. The plots show

that the MO-G density can be decreasing, skewed to the right, and unimodal.
The following were observed from Equation (5):

• β= 1, we obtain the Gompertz distribution.

• β= 1, µ tends to zero, we obtain the exponential distribution.
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Figure 1 – The density plot for MO-G distribution.

• µ tends to zero, we obtain the Marshall-Olkin exponential distribution.

The survival function of the MO-G distribution is defined as

SMO-G(x) =1−
1− exp
�

α
µ (1− exp(µx))
�

�

1− (1−β)
�

exp
�

− αµ (exp(µx)− 1)
��� . (7)

The hazard rate function (hrf) of the MO-G distribution is expressed as

hrfMO-G(x) =
α exp(µx)

1− (1−β)exp
�

− αµ (exp(µx)− 1)
� . (8)

Figure 2 is the plot for the MO-G hazard rate function for some parameter values cases.
The plot reveals that the MO-G distribution is increasing and bathtub shaped.

3. MATHEMATICAL MIXTURE REPRESENTATION

This Section derives the algebraic expression for the MO-G distribution. The mixture
representation obtained would help to simplify the properties of the proposed MO-G
model explicitly. More so, it would assist in expressing the proposed MO-G distribution
in terms of Gompertz distribution. However, for |g |< 1 and η > 0, then,

(1− g )−n =
∞
∑

ρ=0

�

η+ρ− 1
ρ

�

gρ, (9)
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Figure 2 – The MO-G hazard rate function.

for a real non-integer. However, for η integer, ρ stops at η− 1.
Let the quantity in the denomination of equation (5) be B, Hence B can be enumer-

ated as

B =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρ
�

exp
�

α

µ
(1− exp(µx))
��ρ

. (10)

Thus, as a power series, the MO-G distribution can be defined as

uMO-G(x) =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ραβexp
�

µx − α
µ
(exp(µx)− 1)(ρ+ 1)

�

. (11)

The Odds function that corresponds to this distribution is given as

O(x) =
1− exp
�

α
µ (1− exp(µx))
�

βexp
�

− αµ (exp(µx)− 1)
� . (12)

4. STRUCTURAL STATISTICAL PROPERTIES OF THE MO-G DISTRIBUTION

In this Section, some of the statistical structural properties of the MO-G distribution
are derived and investigated. These include the moments, generating function, quantile
function, entropies, probability weighted moment, moments of the residual and order
statistics.
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4.1. Quantile function of the MO-G distribution

Suppose X is a random variable as X ∼MO-G(α,µ,β). Then, the quantile function of
X for m ∈ [0,1] is given as

Qm =µ
−1 log
�

1−
µ

α
log
�

m− 1
m(1−β)− 1

��

0< m < 1. (13)

However, by setting m as 0.5 in Equation (13), we have the median (M) of X as

M =µ−1 log
�

1−
µ

α
log
�

−0.5
0.5(1−β)− 1

��

. (14)

Figures 3 and 4 show the Bowley’s skewness and Moor’s kurtosis of the MO-G modal.
However, the 25t h percentile and 75t h percentile for the random variable X is ob-

tained as

Q1 =µ
−1 log
�

1−
µ

α
log
�

−0.75
0.25(1−β)− 1

��

; (15)

Q3 =µ
−1 log
�

1−
µ

α
log
�

−0.25
0.75(1−β)− 1

��

. (16)

The Bowley’s skewness is obtained in the quantile function as

Sk =
Q0.75− 2Q0.50+Q0.25

Q0.75−Q0.25
. (17)

The Moor’s kurtosis is expressed as

Mk =
Q0.875−Q0.625−Q0.375+Q0.125

Q0.75−Q0.25
. (18)



The Marshall-Olkin Gompertz Distribution 189

m
u

alpha

B
o
w

le
y
 S

k
e
w

n
e
s
s

mu

be
ta

B
o
w

le
y
 S

k
e
w

n
e
s
s

β= 0.15 α= 0.5

mu

be
ta

B
o
w

le
y
 S

k
e
w

n
e
s
s

µ= 0.2

Figure 3 – The 3D plots of the Bowley’s skewness.
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Figure 4 – The 3D plots of the Moor’s kurtosis.
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4.2. The MO-G distribution moments

The MO-G distribution moments are given in a Laplace transform as

L(s) =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρβ
∫ ∞

0
α exp
�

µx − α
µ
(exp(µx)− 1)(ρ+ 1)

�

exp(−s x)dx.

(19)
Let υ= exp(µx), then Equation (19) can be expressed as

L(s) =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρβα
µ

exp
�

α

β
(ρ+ 1)
�∫ ∞

1
α exp
�

−α
µ
(ρ+ 1)v
�

v−
s
µ d v.

(20)
However, by Abramowitz and Stegun (1965),

En(x) =
∫ ∞

1

e−z h

hη
d h, η > 0, Re(z)> 0, (21)

where z = α
µ (ρ− 1) and η= S

µ . Thus

L(s) =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρβα
µ

exp
�

α

β
(ρ+ 1)
�

E S
µ

�

α

µ
(ρ+ 1)
�

, α, β, µ> 0. (22)

More so, the MO-G r t h moment of the random variable X is defined as

E[X r ] =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρ
βα

µ
exp
�

α

µ
(ρ+ 1)
�

×

×
∫ ∞

1

r
µr

x−1 exp
�

−α
µ
(ρ+ 1)x
�

[ln(x)]r−1dx.

(23)

Thus, by Milgram (1985), the generalized integro-exponential function and the integral
representation in Equation (23), can be defined as

E f
s (z) =
∫ ∞

1
ln[x] f x−s 1

Γ ( f + 1)
exp(−z x)dx, (24)

where the quantity E f
s is given as

E f
s (z) =

(−1) f

f !
∂ f

∂ s f
Es (z). (25)

Thus, the MO-G r t h moment is expressed as

E[X r ] =
∞
∑

ρ=0

�

ρ+ 1
ρ

�

(1−β)ρβ r !
µη

exp
�

α

µ
(ρ+ 1)
�

E r−1
1

�

α

µ
( j + 1)
�

, (26)
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with the quantity E r−1
1

�

α
µ ( j + 1)
�

given as

E r−1
1 =

∞
∑

i=1

1
(−i)r

�

− αµ (ρ+ 1)
�i

i !
+

+
(−1)r

r !

η
∑

i=0

r !
(r − i)!i !

ln
�

α

µ
(ρ+ 1)
�r−i

lim
j→0

d i

dυi
Γ (1− υ).

(27)

4.3. Generating Function

The MO-G probability generating function for a random variable X is defined as

M (t ) =
∫ ∞

−∞
t x uMO-G(x)dx

=
∞
∑

i=0

x i (log t )i

i !
uMO-G(x)dx f o r |t |> 1, x > 0.

(28)

This implies that

M (t ) =
∞
∑

ρ=0

∞
∑

i=0

wρi

∫ ∞

1
x iα exp
�

µx − α
µ
(exp(µx)− 1)(ρ+ 1)

�

dx, (29)

with

wρi =
(log t )i

i !

�

ρ+ 1
ρ

�

(1−β)ρβ.

Simplifying after integrating gives

M (t ) =
∞
∑

ρ=0

∞
∑

i=0

wρi
i !
µi

exp
�

α

µ
(ρ+ 1)
�

E i−1
1

�

α

µ
(ρ+ 1)
�

. (30)

However, the MO-G moment generating function (mgf) is expressed as

MX (t ) =
∫ ∞

−∞
e t x uMO-G(x)dx

=
∞
∑

ρ=0

wρ

∫ ∞

0
exp
�

µx − α
µ
(exp(µx)− 1)(ρ+ 1)+ t x

�

dx,
(31)

where wρ =
�ρ+1
ρ

�

(1−β)ρβ.
Thus, by the same substitution of Equation (19), the mgf, say Mx (t ) is given as

Mx (t ) =
∞
∑

ρ=0

wρ
α

µ
exp
�

α

µ
(ρ+ 1)
� ∫ ∞

0
exp
�

−α
µ
(ρ+ 1)υ
�

υ
s
µ dυ. (32)
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On simplifying Equation (32), we have

Mx (t ) =
∞
∑

ρ=0

wρ
α

µ
exp
�

α

µ
(ρ+ 1)
�

ψs/µ

�

α

µ
(ρ+ 1)
�

α, β, µ> 0, (33)

where

ψs/µ

�

α

µ
(ρ+ 1)
�

=
∫ ∞

0
exp
�

−α
µ
(ρ+ 1)υ
�

υ
s
µ dυ. (34)

4.4. Probability weighted moments (PWM)

The (s , r )t h PWM of MO-G model is defined as

P (s , r ) =E[x r F (x)s ]

=
∫ ∞

0
x r U s

MO-G(x)uMO-G(x)dx.
(35)

This implies that

P (s , r ) =
∫ ∞

0
x r
βα
�

1− exp
�

− αµ
�

exp(µx)− 1
��

�s�

µx − α
µ

�

exp(µx)− 1
�

�

�

1−
�

1−β
�

exp
�

− αµ
�

exp(µx)− 1
��

�s+2 dx. (36)

However, simplifying (36) we have

P (s , r ) =
s
∑

ρ=1

s+2
∑

υ=1

Ωρ,υ exp
�

α

µ

�

ρ+ s + 3
�

�

E r−1
1

�

α

µ

�

ρ+ s + 3
�

�

, (37)

Ωρ,υ =
r !
µr
β

�

s
ρ

��

s + 2
υ

�−1�

−1
�2s−υ−ρ+2�

1−β
�−(s+2)

. (38)

The PWM function can be used to obtain the parameters and quantiles of a distribution
that may not be explicitly obtained.

4.5. Entropies

The Renyi entropy of the distribution MO-G is expressed as

Rδ (x) =
∞
∑

ρ=0

log
∫ ∞

−∞
cρ exp
�

δµx − αδ
µ
(ρ+ 1)(exp(µx)− 1)

�

dx δ > 0, δ ̸= 0, (39)
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where

cρ =
1

1−ρ

�

ρ+ 1
ρ

�δ

(1−β)ρδ (1−β)ρδαδβδ . (40)

On integrating and simplifying gives

Rδ (x) =
∞
∑

ρ=0

�

log
�

yρ+
�

δµx − αδ
µ
(ρ+ 1)(exp(µx)− 1)

���

, (41)

where

yρ =
cρ

δβ−µδ(ρ+ 1)exp(µx)
. (42)

The MO-G shannon entropy is defined as

E[− log uMO-G(x)] =
∞
∑

ρ=0

�

log nρ− α
µ
(ρ+ 1)E(exp(µx)− 1)+µE[x]

�

, (43)

where E[x] =− d
d s L(s) |s=0 .

4.6. Moment of the residual

The ηt h moment of the residual life, say dn(t ) = E[(x − t )n | x > t ] for n = 1,2, . . .
uniquely determines UMO-G(x). (see Navarro et al., 1998). However, the ηt h moment of
the residual life is given as

dn(t ) =
1

1−UMO-G(x)

∫ ∞

t
(x − t )n d UMO-G(x)dx. (44)

However, on applying binomial expansion, we have

dn(t ) =
1

1−UMO-G(x)
×

×
∞
∑

ρ=0

n
∑

k=0

Dρk t n−k
∫ ∞

t
αxn exp
�

µx − α
µ
(exp(µx)− 1)(ρ+ 1)

�

dx
(45)

where Dρk =
�ρ+1
ρ

�

(1−β)ρ(−1)n−k
�n

k

�

β. Hence,

dn(t ) =
1

1−UMO-G(x)

∞
∑

ρ=0

∞
∑

k=0

Dρk t n−k n!
µn

exp
�

α

µ

�

E n−1
1

�

α

µ
(ρ+ 1)
�

(46)

for | arg t |<π .
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4.7. Order Statistics

The order statistics of the MO-G model is defined as

fi :n(x) =
u(x)

B(i , n− i + 1)

n−i
∑

j=0

(−1) j
�

n− 1
j

�

U (x)i+ j−1. (47)

Clearly, we have

fi :n(x) =
1

B(i , n− i + 1)

n−i
∑

j=0

∞
∑

τ=0

∞
∑

k=0

ϑ jτk exp
h

µx − α
x
(1+ k +τ)(exp(µx)− 1)

i

, (48)

where ϑ jτk =βα
�n−1

j

��i+ j−1
k

��i+ j+τ
τ

�

(−1)k+τ(1−β)τ .

5. ESTIMATION OF MO-G PARAMETERS

Several approaches have been employed for parameter estimation in literature. In this
article, the maximum likelihood method was adopted to obtain the parameters of the
MO-G distribution.

Let x = (x1, . . . , xn) be a random sample from the MO-G model with unknown
parameter vector θ = (α,µ,β)T . Then log-likelihood function ℓ of the MO-G can be
expressed as

ℓ= η logβ+
η
∑

ρ=1

�

µxρ−
α

µ

�

e (µxρ)− 1
�

�

− 2 log
η
∑

ρ=1

ωρ+η logα, (49)

where

ωρ =
�

1− (1−β)exp
�α

µ
(1− exp(µxρ))
�

�

. (50)

However, taking the partial derivative of equation (49) with respect to each parameter
and equating to zero is expressed as

∂ ℓ

∂ β
=
η

β
− 2

η
∑

ρ=1

ω′
ρ,β

ωρ

= 0, (51)

whereω′ρ(·) is the first partial derivative.

∂ ℓ

∂ α
=
η

α
− 2

η
∑

ρ=1

ω′ρ,α

ωρ

−
η
∑

ρ=1

1
µ

�

exp(µxρ)− 1
�

= 0, (52)

∂ ℓ

∂ µ
=

η
∑

ρ=1

xρ−2
η
∑

ρ=1

ω′ρ,µ

ωρ

+
α

µ2

η
∑

ρ=1

�

exp(µxρ)−1
�

−
η
∑

ρ=1

xρα

µ

�

exp(µxρ)−1
�

= 0. (53)

Newton-Raphson algorithm is used to obtain the solution to the estimates of the vector
analytically using Software like, R, MATLAB and MAPLE.
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5.1. MO-G regression analysis

Parametric models are widely used to estimate survival functions for univariate models
and for regression problems for censored datasets. However, these parametric models
tend to provide a good fit for survival times data.

Let X be an MO-G random variable. Then, for a regression model with scale (τ)
and location (φ(v)) parameters, then D = log(X ) has logMO-G distribution defined as

D =φ(v)+τZ ; τ > 0, (54)

such that Z does not depend on v. Thus, for a support d ⊆ℜ, the density of D is defined
as

u(d ) =
βw
� d−φ(v)

τ

�

�

β+(1−β)W
� d−φ(v)

τ

�

�2 , β> 0. (55)

The corresponding cdf is expressed as

U (d ) =
W
� d−φ(v)

τ

�

β+(1−β)W
� d−φ(v)

τ

�

, β> 0. (56)

Hence, the logMO-G regression model can be defined as

u(d ) =
βτ−1 exp
�

exp
� d−φ(v)

τ

�

−τ−1 exp
�φ(v)
τ

��

exp
�
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��
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��

exp
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��

− 1
��

��2 , β> 0.

(57)
The cdf that corresponds is defined as

U (d ) =
1− exp
�

−τ−1 exp
�φ(v)
τ

��

exp
�

exp
� d−φ(v)

τ

��

)− 1
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− 1
��

��
, β> 0,

(58)
where φ ∈ℜ is the location parameter.

The survival function of D is defined as

S(d ) =
βexp
�

−τ−1 exp
�φ(v)
τ

��

exp
�

exp
� d−φ(v)

τ

��

)− 1
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�
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��

1− exp
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��

exp
�

exp
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τ

��

− 1
��

��
, β> 0.

(59)
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The standardized pdf of Z is expressed as

π(z) =
βτ−1 exp
�

exp
�

z
�

−τ−1 exp
�φ(v)
τ

��

exp
�

exp
�

z
��

− 1
�

�

�

β+
�

1−β
��

1− exp
�

−τ−1 exp
�φ(v)
τ

��

exp
�

exp
�

z
��

− 1
��

��2 , β> 0. (60)

However, a linear location-scale regression is proposed as

Di = vT
i ψ+τZi , i = 1,2,3, . . . , n, (61)

where Di is the response variable. vT
i = (vi1, vi2, vi3, . . . , vi p ) is the explanatory variable

vector. Also, ψ is p × 1 vector of parameter and Zi is th i t h random error with density
(60).

The purpose of the logMO-G is to enable .the possibilities of fitting variety of mod-
els to different datasets that are more flexible and practicable.

Suppose Di1, D2, D3, . . . , Dn are random sample with size n, such that each response
variable is defined as

Di =min
§

log
�

Xi

�

, log
�

mi

�

ª

, (62)

with mi as the censure for the i t h measurement such that the censoring times and ob-
served lifetimes are independent for non-informative censoring. Let C and F be the
log-censoring and log-lifetime for sets of individuals for di . Then, the log-likelihood
function for vector of parameters θ=

�

ψT ,τ,β,φ
�T from model (61) is defined as

ℓ(θ) =
∑

i∈F

log
�

u(di )
�

+
∑

i∈F

log
�

S(di )
�

, (63)

where u(di ) is the density function in Equation (57) and s(di ) is the survival function in
Equation (59) of Di .

Thus, the likelihood can be expressed as

ℓ(θ) =
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(64)
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where the number of failure is denoted by ρ and zi =
�

di−vT
i ψ
�

τ for i = 1,2,3, . . . , n.
The MLE of Equation (64) can be obtained for the unknown parameter by maximizing
Equation (64). The estimates can be achieved using R package. The survival function for
di can be estimated as

S(di ) =
β̂exp
�

−τ̂−1 exp
� φ̂
τ̂

��

exp
�

exp
� di−vT

i ψ̂
τ̂

��

)− 1
�

�

�

β̂+
�

1− β̂
��

1− exp
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−τ̂−1 exp
� φ̂
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��

exp
�
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τ̂

��

− 1
��

��
. (65)

The asymptotic distribution of (m̂ − m) under general regularity conditions is a
multivariate normal Nρ+1(0,K(m)−1), where K(m) is the expected information matrix
with asyptotic covariance matrix K(m)−1 of m̂. This can be approximated using the
inverse of (ρ+3)× (ρ+3) of observed information matrix J (θ)with inference based on
the normal approximation Nρ+3(0.J (m̂)−1) distribution for m̂.

5.2. Bayesian inference with Stan package

This Section discuss the Bayesian reliability analysis of the MO-G model for survival
time datasets.

The Bayesian reliability analysis can be obtained using the pdf given in Equations (5)
and (7). However, the prior is specified despite the parameter of interest before applying
the pdf to analyze the experimental data. Although, several priors like the Uniform and
Gaussian have been used in statistical literature. However, the uniform prior has been
very useful in Bayesian analysis because it assumes that the value of the parameters for
the prior is equally likely. Thus, the Half-Cauchy (HC) distribution with upper tail
with a large mass that approaches zero for large values is preferred because, it exhibit
the characteristics of the uniform distribution for a scale parameter of 25. Hence, the
likelihood function can be expressed as

L=
D
∏

d=1

�

u(yd )
�δd
�

S(yd )
�1−δd

, (66)

such that for δd = 0 for censored and δd = 1 for uncensored. Hence,

L=
D
∏

d=1
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However, the joint posterior density can be expressed as

p
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(68)

with α ∼ H C (0,25), β ∼ H C (0,25) and σ ∼ N (0,1000), for i = 1,2,3,4, . . . , I . The
closed form of the Bayesian Equation (68) does not exist. However, the marginal (the
basis of the Bayesian inference) posterior densities of the parameter cannot be obtained
in a closed form. Hence, MCMC methods are used to evaluate the posterior parameters.
The posterior parameters can be evaluated using the rstan package in R (R Core Team,
2019).

5.3. Simulation studies

A simulation study was performed to investigate the flexibility and proficiency of the
class of MO-G distribution. R (R Core Team, 2019) was used for the statistical com-
puting. Table 1 shows the results for various parameters values. The simulation was
examined as follows:

• Data were generated using the MO-G quantile function as

x =µ−1 log
�

1−
µ

α
log
�

m− 1
m(1−β)− 1

��

0< m < 1. (69)

• The sample sizes of n = 50,100,150,200,250,300 and 350 were taken for µ= 0.5,
α= 1.5 and β= 0.5.

• The sample size was replicated 5000 times.

The simulation study investigated the mean estimates (AEs), biases, variance and means
squared errors (MSEs) of the maximum likelihood estimate MLEs.

The bias is calculated by (for M )

ˆBIASM =
1

5000

5000
∑

i=1

�

M̂i −M
�

. (70)
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Also, the MSE is obtained as

M̂SEM =
1

5000

5000
∑

i=1

�

M̂i −M
�2

. (71)

TABLE 1
Monte Carlos simulation study for the MO-G Distribution.

Sample size Parameter AE Bias Variance MSE

5 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3156 0.3156 0.0392 0.1388
µ= 0.5 0.5366 0.0366 0.0034 0.0048

10 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3284 0.3284 0.0347 0.1425
µ= 0.5 0.5219 0.0219 0.0024 0.0029

50 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 0.5 1.3603 0.3603 0.0256 0.1554
µ= 0.5 0.5000 0.0000 0.0004 0.0004

100 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3727 0.3727 0.0244 0.1633
µ= 0.5 0.4997 -0.0003 0.0003 0.0003

150 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3806 0.3806 0.0238 0.1687
µ= 0.5 0.5004 0.0004 0.0002 0.0002

200 β= 1.0 0.0003 -0.4997 0.0000 0.2497
α= 0.5 1.3875 0.3875 0.0232 0.1733
µ= 0.5 0.5011 0.0011 0.0002 0.0002

250 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3919 0.3919 0.0227 0.1763
µ= 0.5 0.5016 0.0016 0.0002 0.0002

The mean estimate of µ,α, and β tend to the true parameter values in Table 1 as
sample sizes increases. This indicate that the parameter estimate corresponds to the
first-order asymptotic theory. Also, the biases, variance and MSEs of the MLEs of the
parameters estimate decreases as the sample size increases and approach zero. This im-
plies that the normal approximation can be improved by the bias adjustments of the
estimates.
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TABLE 1
Continued.

Sample size Parameter AE Bias Variance MSE

300 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.3982 0.3982 0.0220 0.1805
µ= 0.5 0.5022 0.0022 0.0002 0.0002

350 β= 1.0 0.0003 -0.4997 0.0000 0.2497
α= 0.5 1.4014 0.4014 0.0216 0.1827
µ= 0.5 0.5025 0.0025 0.0002 0.0002

400 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.4065 0.4065 0.0209 0.1861
µ= 0.5 0.5030 0.0030 0.0002 0.0002

450 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.4084 0.4084 0.0206 0.1874
µ= 0.5 0.5032 0.0032 0.0002 0.0002

500 β= 0.5 0.0003 -0.4997 0.0000 0.2497
α= 1.5 1.4141 0.4141 0.0198 0.1913
µ= 0.5 0.5038 0.0038 0.0002 0.0002

800 β= 1.7 1.6710 0.4299 0.0171 0.2498
α= 0.5 0.4650 -0.4998 0.0000 0.2019
µ= 1.5 1.4688 0.0054 0.0002 0.0002
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6. APPLICATION

The empirically the efficiency, proficiency and flexibility of the MO-G model were illus-
trated using real life data sets. The fits of the MO-G, Kumaraswamy Gompertz (KUGz),
Weibull Gompertz (WGz), Gompertz (G), transmuted Gompertz (TGz) (Khan et al.,
2016b), Topp Leone Gompertz (TLGz), transmuted generalized Gompertz (TGGz)
(Khan et al., 2016a), transmuted Weibull (TW), beta Weibull (BW), transmuted alpha
power Gompertz (TAPO-GGz), alpha power Weibull (APW) (Nassar et al., 2017), al-
pha power inverse Weibull (APIW) (Basheer, 2019), Marshall-Olkin extended general-
ized Gompertz (MOEGG), lognormal Burrxii (LoGBur) and Gompertz Weibull (GW)
distributions were compared.

The first data set is made up of 63 observations of the strength of 1.5cm glass fibres
obtained by workers at the UK National Physical Laboratory (Smith and Naylor, 1987)
as used in Mead et al. (2019), Abouelmagd et al. (2018), Efe-Eyefia et al. (2020), Eghwerido
et al. (2020c), Eghwerido et al. (2020d), Zelibe et al. (2020), Bourguignon et al. (2014) and
Afify et al. (2016).

The second data set were obtained from the National Highway Traffic Safety Ad-
ministration on fatal accidents that occured on roads in the United States. The data
represent the number of vehicle fatalities for 39 counties in South Carolina for 2012
(www-fars.nhtsa.dot.gov/States) as used in Mann (2016) .The dataset are as follow:

22, 26, 17, 4, 48, 9, 9, 31, 27, 20, 12, 6, 5, 14, 9, 16, 3, 33, 9, 20, 68, 13, 51, 13, 2, 4,
17, 16, 6, 52, 50, 48, 23, 12, 13, 10, 15, 8, 1.

The descriptive statistics of the vehicle fatalities dataset is as shown in Table 2.

TABLE 2
Descriptive statistics for the vehicle fatalities dataset.

Mean Mode Median St.D Variance IQR Kurtosis Skewness 25t h pe r c ent 75t h pe r c ent 99t h pe r c ent

19.54 9.00 14.00 16.51 272.47 15.50 0.61 1.24 9.00 24.50 61.92

The following criteria Akaike Information Criteria (AIC), Bayesian Information
Criteria (BIC), Consistent Akaike Information Criteria (CAIC), and Hannan and Quinn
Information Criteria (HQIC), the Anderson Darling (A) statistic, Cramér-von Mises
statistic (W), Kolmogorov Smirnov (KS) statistic, and the p value were also provided.
The test statistics are given as follows: H QI C = −2ℓ̂+ 2k log(log(n)), BI C = −2ℓ̂+
k log(n), AI C = −2ℓ̂+ 2k, C AI C = −2ℓ̂+ 2kn

n−k−1 , where k is the number of model

parameters , ℓ̂ is minus twice the maximized log-likelihood and n is the sample size.
The test statistics are provided in Tables 3 and 4. The standard errors (in parenthesis)

and model parameters MLEs were also included.
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TABLE 3
The statistics rating for MO-G distribution with glass fibres dataset with standard errors in

parentheses.

Distribution Parameter MLEs AIC CAIC BIC HQIC W A p-value K-S

α̂= 42.396(54.218)
MO-G β̂= 0.650(0.585) 30.511 30.917 36.940 33.039 0.077 0.463 0.559 0.0997

λ̂= 1.430(0.551)

α̂= 25.819(34.740)
APGz β̂= 0.088(0.0677) 32.579 32.986 39.009 35.108 0.107 0.629 0.410 0.112

λ̂= 2.459(0.474)

α̂= 36.137(55.020)
TAPO-GGz λ̂= 0.799(0.227) 32.858 33.548 41.431 36.230 0.087 0.514 0.405 0.494

φ̂= 0.06152(0.06139)
β̂= 2.519(0.614)

α̂= 1.671(0.590)
TLGz β̂= 0.020(0.018) 34.300 34.707 40.729 36.829 0.166 0.932 0.433 0.212

λ̂= 2.817(0.534)

â = 0.850(0.200)
TGGz b̂ = 0.020(0.200) 34.850 35.540 43.420 38.220 0.1520 0.844 0.438 0.254

α̂= 2.950(0.660)
β̂= 1.580(0.540)

α̂=−0.750(0.330)
TGz β̂= 0.030(0.030) 34.890 35.090 39.180 36.580 0.131 0.754 0.402 0.239

λ̂= 2.920(0.490)

α̂= 73.195(53.355)
MOEGG β̂= 1.291(0.427) 36.207 36.897 44.780 39.579 0.106 0.598 0.444 0.109

λ̂= 0.988(0.228)
µ̂= 1.568(0.420)

â = 0.032(0.085)
WGz b̂ = 3.227(1.305) 36.833 37.523 45.406 40.205 0.181 1.012 0.376 0.139

α̂= 0.833(0.566)
β̂=−0.002(0.361)

α̂=−0.501(0.275)
TW β̂= 0.646(0.024) 36.672 37.362 45.245 40.044 0.204 1.118 0.185 0.137

λ̂= 5.150(0.668)
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TABLE 3
Continued.

Distribution Parameter MLEs AIC CAIC BIC HQIC W A p-value K-S

â = 1.555(0.423)
KUGz b̂ = 0.214(0.048) 37.476 38.165 46.048 40.847 0.180 1.010 0.109 0.152

α̂= 0.097(0.018)
β̂= 3.115(0.015)

α̂= 0.620(0.247)
BW β̂= 32.426(901.401) 37.176 37.865 45.748 40.547 0.196 1.089 0.140 0.145

â = 7.762(2.022)
b̂ = 2.768(9.968)

α̂= 6.559(8.031)
APW β̂= 0.154(0.096) 38.181 38.587 44.610 40.709 0.175 0.963 0.330 0.119

λ̂= 4.731(0.818)

α̂= 3.612(0.80)
WFr β̂= 25.186(0.29) 38.796 39.486 47.369 42.168 0.247 1.357 0.096 0.155

â = 0.162(4.78)
b̂ = 0.213(20.49)

α̂= 0.224(0.812)
GW β̂= 0.009(0.046) 38.377 39.067 46.949 41.749 0.233 1.283 0.309 0.152

â = 0.797(0.514)
b̂ = 5.618(0.510)

α̂= 61.099(48.144)
APIW β̂= 0.775(0.164) 82.585 82.992 89.014 85.114 0.985 5.296 0.358 0.024

λ̂= 3.805(0.298)

α̂= 15.076(69.041)
BBur β̂= 36.940(98.231) 67.331 68.021 75.904 70.703 0.706 3.857 0.309 0.152

â = 2.052(0.638)
b̂ = 0.647(0.689)

α̂=−0.917(0.128)
TBur β̂= 0.576(0.134) 85.364 85.771 91.793 87.893 0.973 5.329 0.075 0.284

λ̂= 5.796(1.203)

α̂= 0.510(0.005)
G β̂= 3.626(0.347) 141.380 141.580 145.600 143.060 0.185 0.835 0.0382 0.146
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TABLE 4
The statistics rating for MO-G distribution with vehicle fatalities dataset with standard errors in

parentheses.

Distribution Parameter MLEs AIC CAIC BIC HQIC W A p-value K-S

α̂= 2.937(4.188)
MO-G β̂= 0.095(0.093) 314.068 314.754 319.059 315.859 0.003 0.045 0.508 0.002

λ̂=−0.007(0.027)

α̂= 15.170(24.371)
TAPO-GGz λ̂= 0.269(0.652) 315.234 316.411 321.889 317.622 0.046 0.338 0.058 0.094

φ̂= 0.0905(0.051)
β̂=−0.008(0.017)

α̂= 2.410(2.129)
BW β̂= 1.328(0.000) 315.556 316.732 322.210 317.943 0.136 0.464 0.022 0.090

â = 0.790(0.152)
b̂ = 12.892(0.000)

â = 5.262(8.514)
WGz b̂ = 1.329(0.310) 315.895 317.072 322.550 318.283 0.046 0.363 0.089 0.091

α̂= 0.014(0.015)
β̂=−0.016(0.017)

α̂= 0.004(0.017)
APGz β̂= 0.004(0.001) 316.147 316.832 321.137 317.937 0.140 0.495 0.090 0.093

λ̂= 1.324(0.217)

α̂= 0.004(0.017)
APW β̂= 0.004(0.001) 316.147 316.832 321.137 317.937 0.140 0.495 0.090 0.093

λ̂= 1.324(0.217)

α̂= 0.422(0.502)
TW β̂= 0.039(0.010) 316.401 317.087 321.392 318.192 0.084 0.869 0.067 0.092

λ̂= 1.335(0.168)

â = 2.208(1.542)
KUGz b̂ = 0.194(0.381) 317.771 318.947 324.425 320.158 0.049 0.396 0.097 0.089

α̂= 0.281(0.477)
β̂= 0.004(0.014)
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TABLE 4
Continued.

Distribution Parameter MLEs AIC CAIC BIC HQIC W A p-value K-S

α̂= 0.006(0.004)
GW β̂= 4.729(2.460) 318.142 319.319 324.796 320.530 0.127 0.794 0.066 0.013

â = 0.277(0.580)
b̂ = 0.186(0.037)

α̂= 69.681(107.776)
APIW β̂= 4.242(1.876) 319.739 320.425 324.730 321.530 0.113 0.729 0.016 0.012

λ̂= 1.246(0.139)

α̂= 0.01310.010)
WFr β̂=−0.391(0.226) 321.189 322.366 327.844 323.577 0.181 1.103 0.339 0.151

â =−0.299(0.055)
b̂ = 0.008(0.003)

α̂= 57.620(133.078)
LoGBur β̂= 33.783(52.945) 326.126 327.303 332.780 328.514 0.765 0.918 0.352 0.148

â = 1.644(2.575)
b̂ = 0.227(0.306)

α̂= 90.294(214.169)
BBur β̂= 78.582(223.283) 326.235 327.412 332.889 328.623 0.048 0.841 0.317 0.101

â = 0.802(1.897)
b̂ = 0.180(0.233)

α̂= 15.658(12.228)
MOEGG β̂= 0.301(0.084) 328.072 329.249 334.726 330.460 0.000 0.6370 0.000 14.143

λ̂=−0.044(0.013)
µ̂= 1.534(0.285)

α̂= 0.050(0.091)
G β̂= 0.052(0.011) 406.104 406.437 409.431 407.298 0.291 0.367 0.099 0.010
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The estimated densities of the models under consideration are shown in Figure 5.
Figure 6 shows the estimated cdfs plots. These plots indicate that the MO-G distribution
provides a better fit than others models considered for both data.
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Figure 5 – The plots of estimated MO-G density.

The third data consist of the number of women breast cancer cases in the Western
World Hospital as used in Khan and Khan (2018) and AbuJarad et al. (2020). Censored
survival times are indicated as an asterisk .The data are represented as follows:

Negatively stained: 23, 47, 69, 70*, 71*, 100*, 101*, 148, 181, 198*, 208*, 212*, 224*
Positively stained: 5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76*,
105*, 107*, 109*, 113, 116*, 118, 143*, 154*, 162*, 188*, 212*, 217*, 225*
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Figure 6 – The plots of estimated cdf of the MO-G model.

The Censored is denoted with 0 and uncensored is recorded as 1. The data are
recorded as data in matrix form. The rstan code in R is shown in Appendix A. The
summary results for the performance rating are shown in Table 5. In Table 5, the fol-
lowing abbreviations where used: posterior mean is denoted as mean, se-mean is the
Monte Carlo standard errors, posterior standard deviation is denoted as std, numbers of
effective sample size denoted as NE and spits is denoted as (Rhat). Figures 7 and 8 show
the autocorrelation and traceplots plots for the model convergence and output for the
MO-G model.

TABLE 5
Bayesian performance results of breast cancer with rstan function for MO-G Model.

Std Mean se-mean 97.5 percent 75 percent 50 percent 25 percent 2.5 percent Rhat NE

dev 3.03 313.13 0.04 320.27 319.50 311.51 311.69 309.49 1.00 2107
Beta[1] 0.53 -1.31 0.02 -0.08 -0.48 -1.10 -1.15 -2.21 1.00 1907
Beta[0] 1.41 6.11 0.09 10.49 8.13 7.51 4.16 1.64 1.00 1004
l p− 1.48 -125.24 0.06 -129.51 -130.71 -131.28 -132.42 -149.55 1.00 1211
shape 416.51 17.10 5.62 55.25 5.59 0.78 0.35 0.25 1.00 2207
scale 6.10 0.65 0.11 7.26 0.77 0.31 0.10 0.02 1.00 2207
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Figure 7 – The plots of the autocorrelation of the MO-G model.
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Figure 8 – The plots of trace of the MO-G model.

6.1. Discussion

The performance of a model is determined by the value that corresponds to the low-
est Akaike Information Criteria (AIC). Alternatively, the model with the highest Log-
likelihood value is regarded as the best model. In the two real life cases considered in this
study, the MO-G distributions have the lowest AIC value in glass fibres data and vehicle
fatalities data respectively. Hence, the proposed model competes favourably with other
existing models for the data used.

More so, Table 5 shows the Stan results for individual and merged chains. The pos-
terior Bayesian estimate of Beta0 is 6.11±1.41 with percentage confidence of 1.64,10.49
with Rhat 1.00. This implies that it is significant. Also, The posterior Bayesian esti-
mate of Beta[1] is −1.31± 0.53 with percentage confidence of −2.21,−0.08 with . This
implies that it is significant.
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7. CONCLUSIONS

The concept of the MO-G distribution has been defined and studied. The mathematical
properties for the pdf and cdf were carefully examined. We also derived some of the
mathematical properties of the MO-G distribution among quantile and median function
were established. The model parameter estimation was obtained using the maximum
likelihood estimation (MLE) approach. The PWMs and entropies of the MO-G model
were also derived. A simulation study of the MO-G model was also illustrated. The new
distribution was applied to a real life data to examine its flexibility. It shows that the MO-
G distribution performed better than, APGz, KUGz, WGz, TGz, TGGz, TLGz, WFr,
APIW, APW, KUGz, BBur, LoGBur, TAPO-GGz, BW, TW, MOEGG, GW, APIW,
APIW, TBur and G models.

APPENDIX

A. CODES

#pdf

f<-function(x,b,a,m){

((b*a*exp(m*x-(a/m)*(exp(m*x) - 1)))/(1 - (1 -b)

*(exp(-(a/m)*(exp(m*x)-1))))^2)

}

curve(f(x,10.8,0.5,0.3),main="",ylab="f(x)"

,xlab="x",ylim=c(0,0.8),0,10,lwd=2)

curve(f(x,1.5,1.0,0.1),lty=1,col=2,add=T,lwd=2)

curve(f(x,1.8,0.6,0.3),lty=1,col=3,add=T,lwd=2)

curve(f(x,1.7,0.4,0.3),lty=1,col=4,add=T,lwd=2)

curve(f(x,1.8,0.7,0.1),lty=1,col=5,add=T,lwd=2)

curve(f(x,5.5,1.0,0.2),lty=1,col=6,add=T,lwd=2)

curve(f(x,0.8,0.5,0.4),lty=1,col=7,add=T,lwd=2)

curve(f(x,2.7,0.4,0.5),lty=1,col=8,add=T,lwd=2)

curve(f(x,1.8,1.5,1.2),lty=1,col=10,add=T,lwd=2)

legend("topright",title=expression(""),

c(expression(beta*"=10.8,"*~alpha*"=0.5,"*~mu*"=0.3"),

expression(beta*"=1.50,"*~alpha*"=1.0,"*~mu*"=0.1"),

expression(beta*"=1.80,"*~alpha*"=0.6,"*~mu*"=0.3"),

expression(beta*"=1.70,"*~alpha*"=0.4,"*~mu*"=0.3"),

expression(beta*"=1.80,"*~alpha*"=0.7,"*~mu*"=0.1"),

expression(beta*"=5.50,"*~alpha*"=1.0,"*~mu*"=0.2"),

expression(beta*"=0.80,"*~alpha*"=0.5,"*~mu*"=0.4"),

expression(beta*"=2.70,"*~alpha*"=0.4,"*~mu*"=0.5"),

expression(beta*"=1.80,"*~alpha*"=1.5,"*~mu*"=1.2")),
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cex=1.1,lty=c(1),lwd=2,col=c(1,2,3,4,5,6,7,8,10))

win.graph(width=10,height=10)

plot.new()

#hazard

f<-function(x,b,a,m){

((((b*a*exp(m*x-(a/m)*(exp(m*x) - 1)))/

(1 - (1 -b)*(exp(-(a/m)*(exp(m*x)-1))))^2) )/

(1 - (((1 - (exp(-(a/m)*(exp(m*x) - 1))))/(1 - (1 -b)

*(exp(-(a/m)*(exp(m*x)-1)))))) ))

}

curve(f(x,10.8,0.5,0.3),main="",ylab="h(x)",

xlab="x",ylim=c(0,13),0,10,lwd=2)

curve(f(x,1.5,1.0,0.1),lty=1,col=2,add=T,lwd=2)

curve(f(x,8.8,0.6,0.3),lty=1,col=3,add=T,lwd=2)

curve(f(x,1.7,0.4,0.3),lty=1,col=4,add=T,lwd=2)

curve(f(x,1.8,0.7,0.1),lty=1,col=5,add=T,lwd=2)

curve(f(x,5.5,1.0,0.2),lty=1,col=6,add=T,lwd=2)

curve(f(x,0.8,0.5,0.1),lty=1,col=7,add=T,lwd=2)

curve(f(x,2.7,0.4,0.2),lty=1,col=8,add=T,lwd=2)

curve(f(x,1.8,1.5,1.2),lty=1,col=10,add=T,lwd=2)

legend("topleft",title=expression(""),

c(expression(beta*"=10.8,"*~alpha*"=0.5,"*~mu*"=0.3"),

expression(beta*"=1.50,"*~alpha*"=1.0,"*~mu*"=0.1"),

expression(beta*"=8.80,"*~alpha*"=0.6,"*~mu*"=0.3"),

expression(beta*"=1.70,"*~alpha*"=0.4,"*~mu*"=0.3"),

expression(beta*"=1.80,"*~alpha*"=0.7,"*~mu*"=0.1"),

expression(beta*"=5.50,"*~alpha*"=1.0,"*~mu*"=0.2"),

expression(beta*"=0.80,"*~alpha*"=0.5,"*~mu*"=0.1"),

expression(beta*"=2.70,"*~alpha*"=0.4,"*~mu*"=0.2"),

expression(beta*"=1.80,"*~alpha*"=1.5,"*~mu*"=1.2")),

cex=1.1,lty=c(1),lwd=2,col=c(1,2,3,4,5,6,7,8,10))
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SUMMARY

This article introduces three parameters class for lifetime Poisson processes in the Marshall-Olkin
transformation family that are increasing, bathtub and skewed. Some structural mathematical
properties of the Marshall-Olkin Gompertz (MO-G) model were derived. The MO-G model
parameters were established by maximum likelihood approach. The flexibility, efficiency, and
behavior of the MO-G model estimators were examined through simulation. The empirical ap-
plicability, flexibility and proficiency of the MO-G model was scrutinized by a real-life dataset.
The proposed MO-G model provides a better fit when compared to existing models in statistical
literature and can serve as an alternative model to those appearing in modeling Poisson processes.

Keywords: Bayesian analysis; Gompertz failure rate; Gompertz distribution; Gompertz mortal-
ity rate; Marshall-Olkin distribution; Regression analysis.
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