
STATISTICA, anno LXXXI, n. 1, 2021

CHARACTERIZATION OF GENERALIZED DISTRIBUTION BY
DOUBLY TRUNCATED MOMENT

Haseeb Athar 1

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh, 202002, India

Yahia Abdel-Aty
Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah, K.S.A.

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt

Mohd. Almech Ali
Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, K.S.A.

1. INTRODUCTION

The characterization of probability distribution plays an important role in statistical
studies. A characterization is a certain distributional or statistical property of a statis-
tic or statistics that uniquely determines the associated stochastic model. Distributions
are characterized using the properties of sample moments, truncated moments, order
statistics, record statistics, and reliability functions etc.

For the last few decades, there has been a great interest among researchers in the
characterizations of probability distributions by truncated moments. The development
of the general theory of the characterizations of probability distributions by truncated
moment began with the work of Galambos and Kotz (1978). For further development
one may refer to Kotz and Shanbhag (1980); Glanzel et al. (1984); Gupta (1985); Glanzel
(1987, 1990); Khan and Abu-Salih (1989); Ali and Khan (1998); Su and Huang (2000);
Khan and Athar (2004); Gupta and Ahsanullah (2006); Yildiz and Bairamov (2008); Ah-
sanullah (2009); Ahsanullah et al. (2016, 2017); Kilany (2017); Kilany and Hassanein
(2018); Athar and Abdel-Aty (2020) and references therein.

In this study, the characterization properties based on conditional expectation of a
continuous function of random variable are studied when truncation is from both the
sides, left and right. The organization of paper is as follows. In Section 2, first we proved
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two propositions, then applied these results to characterize a general class of distribu-
tions F (x) = [ah(x)+b ]c by doubly truncated k th moment. Some of its deductions and
particular cases are also discussed here. Section 3 deals with characterization of some
continuous distributions like power function, Pareto, exponential and exponentiated
Pareto. In Section 4, simulation study is performed to check the accuracy of characteri-
zation results. Further, in this section two real life data sets are used to demonstrate the
application of proposed characterization results.

2. CHARACTERIZATION THEOREMS

PROPOSITION 1. Let for an absolutely continuous (w.r.t) Lebesgue measure random
variable X with cdf F (x) and pdf f (x), such that F (α) = 0 and F (β) = 1. Suppose that
f ′(x) and E[ξ (X )|x ≤X ≤ y] exist, where ξ (x) is a continuous and differentiable function
of x. If

E[ξ (X )|x ≤X ≤ y] = g (x, y)η(x, y), (1)

where, g (x, y) is differentiable function of x, y ∈ (α,β) and η(x, y) = f (y)
F (y)−F (x) then

f (y) =K1 exp
n

∫ ξ (y)− ∂
∂ y g (x, y)

g (x, y)
d y
o

, (2)

where K1 can be determined using the relation

∫ β

α

f (y)d y = 1.

PROOF. We know that

E[ξ (X )|x ≤X ≤ y] =
1

F (y)− F (x)

∫ y

x
ξ (u) f (u)d u.

Therefore,
1

F (y)− F (x)

∫ y

x
ξ (u) f (u)d u =

g (x, y) f (y)
F (y)− F (x)

,

which implies
∫ y

x
ξ (u) f (u)d u = g (x, y) f (y). (3)

Differentiating both the sides w.r.t y, we have

ξ (y) f (y) = g (x, y) f ′(y)+ f (y)
∂

∂ y
g (x, y),
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which on simplification gives

f ′(y)
f (y)

=
ξ (y)− ∂

∂ y g (x, y)

g (x, y)
. (4)

Now integrate the above expression to get (2). Hence the proof. 2

PROPOSITION 2. Under the conditions as stated in Proposition 1. If

E[ξ (X )|x ≤X ≤ y] = g (x, y)ν(x, y), (5)

where, g (x, y) is differentiable function of x, y ∈ (α,β) and ν(x, y) = f (x)
F (y)−F (x) then

f (x) =K2 exp
n

−
∫ ξ (x)− ∂

∂ x g (x, y)
g (x, y)

d x
o

, (6)

where K2 can be determined using the relation

∫ β

α

f (x)d x = 1.

PROOF. In view of (5), we have
∫ y

x
ξ (u) f (u)d u = g (x, y) f (x). (7)

Differentiating Eq. (7) w.r.t . x, we get

f ′(x)
f (x)

=−
ξ (x)+ ∂

∂ x g (x, y)
g (x, y)

. (8)

Now integrate (8) w.r.t . x to get (6) which establishes the proposition. 2

LEMMA 3. For any positive integers a, b, c and j
∑c−1

j=0

�c−1
j

�

(c − j − 1)ac− j b j h c− j−2(y)
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)
=

a(c − 1)
ah(y)+ b

. (9)

PROOF. The LHS of (9) can also be expressed as

LH S =
a(c − 1)

∑c−2
j=0

�c−2
j

�

ac− j−2b j h c− j−2(y)
∑c−1

j=0

�c−1
j

�

ac− j−1b j h c− j−1(y)
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=
a(c − 1)[ah(y)+ b ]c−2

[ah(y)+ b ]c−1

=
a(c − 1)

ah(y)+ b
.

Hence the lemma. 2

THEOREM 4. Suppose an absolutely continuous (w.r.t. Lebesgue measure) random vari-
able X has cdf F (x) and pdf f (x) with F (α) = 0 and F (β) = 1. Further, if f ′(x) and
E(X k |x ≤ X ≤ y) exist for every x and y, α ≤ x < y ≤ β. Then for a continuous and
twice differentiable function h(.) and k = 1,2, ...

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (10)

where, η(x, y) = f (y)
F (y)−F (x) and

g (x, y) =

∑c−1
j=0

�c−1
j

� ac− j b j

(c− j )

n

yk h c− j (y)− xk h c− j (x)− k
∫ y

x uk−1h c− j (u)d u
o

∑c−1
j=0

�c−1
j

�

ac− j b j h c− j−1(y)h ′(y)
(11)

if and only if
F (y) =

�

ah(y)+ b
�c ,a 6= 0, y ∈ (α,β). (12)

PROOF. Necessary part: We have

g (x, y) =

∫ y
x ξ (u) f (u)d u

f (y)
.

For the cdf given in (12), we have the pd f given as

f (y) = F ′(y) = c
c−1
∑

j=0

�

c − 1
j

�

ac− j b j h c− j−1(y)h ′(y).

Now consider ξ (u) = uk , then we have

g (x, y) =

∑c−1
j=0

�c−1
j

�

ac− j b j
∫ y

x uk h c− j−1(u)h ′(u)d u
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)h ′(y)
.

Now integrating the above expression by parts, we get the required result.

To prove sufficiency part, in view of Eq. (4), we have

f ′(y)
f (y)

=
yk − ∂

∂ y g (x, y)

g (x, y)
. (13)
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Suppose g (x, y) =A(y)−B(x, y)−C (x, y), where

A(y) =
yk ∑c−1

j=0

�c−1
j

� ac− j b j

(c− j ) h c− j (y)
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)h ′(y)
,

B(x, y) =
xk ∑c−1

j=0

�c−1
j

� ac− j b j

(c− j ) h c− j (x)
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)h ′(y)
,

C (x, y) =
k
∑c−1

j=0

�c−1
j

� ac− j b j

(c− j )

∫ y
x uk−1h c− j (u)d u

∑c−1
j=0

�c−1
j

�

ac− j b j h c− j−1(y)h ′(y)
.

Then

∂

∂ y
g (x, y) = yk − g (x, y)

n h ′′(y)
h ′(y)

+
h ′(y)

∑c−1
j=0

�c−1
j

�

(c − j − 1)ac− j b j h c− j−2(y)
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)

o

. (14)

Now using value of ∂
∂ y g (x, y) in Eq. (13), we get

f ′(y)
f (y)

=
h ′′(y)
h ′(y)

+
h ′(y)

∑c−1
j=0

�c−1
j

�

(c − j − 1)ac− j b j h c− j−2(y)
∑c−1

j=0

�c−1
j

�

ac− j b j h c− j−1(y)
. (15)

Now on application of (9) in (15), we get

f ′(y)
f (y)

=
h ′′(y)
h ′(y)

+
a(c − 1)h ′(y)

ah(y)+ b
. (16)

This implies

F (y) = [ah(y)+ b ]c , y ∈ (α,β).

Hence the required result. 2

COROLLARY 5. Let X be continuous random variable with cdf F (x) and pdf f (x) for
α < x < β. Further, if f ′(x) and E(X k |x ≤ X ≤ y) exist for all x, y ∈ (α,β), then for
k = 1,2, ...

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (17)

where, η(x, y) = f (y)
F (y)−F (x) and

g (x, y) =
yk h(y)− xk h(x)− k

∫ y
x uk−1h(u)d u

h ′(y)
(18)
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if and only if
F (y) = ah(y)+ b ,a 6= 0, y ∈ (α,β). (19)

PROOF. Corollary can be established at c = 1 from (12). 2

COROLLARY 6. Let Y be continuous random variable with cdf F (y) and pdf f (y) for
α < y <β. Then for k = 1,2, ...

E[Y k |Y ≤ y] = g (y)φ(y), (20)

where, φ(y) = f (y)
F (y) and

g (y) =
yk h(y)+ αk b

a − k
∫ y
α

uk−1h(u)d u

h ′(y)
(21)

if and only if
F (y) = ah(y)+ b ,a 6= 0, y ∈ (α,β). (22)

PROOF. The corollary can be proved easily if x→ α and c = 1 in Theorem 4. 2

This result is also proved by Athar and Abdel-Aty (2020).

COROLLARY 7. Under the condition as stated in Theorem 4

E[h(X )|x ≤X ≤ y] = g (x, y)η(x, y) =
h(x)+ h(y)

2
(23)

where,

g (x, y) =
h2(y)− h2(x)

2h ′(x)

and

η(x, y) =
h ′(x)

h(y)− h(x)

if and only if

F (x) = ah(x)+ b ,a 6= 0, x ∈ (α,β). (24)

PROOF. To prove necessary part, we have

g (x, y) =

∫ y
x h(u) f (u)d u

f (x)
.

For the distribution given in (24), we have f (x) = ah ′(x).
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Therefore,

g (x, y) =

∫ y
x h(u)ah ′(u)d u

ah ′(x)
=

h2(y)− h2(x)
2h ′(x)

.

Further, since for the distribution given in (24)

η(x, y) =
f (x)

F (y)− F (x)
=

h ′(x)
h(y)− h(x)

.

This gives

E[h(X )|x ≤X ≤ y] =
h(x)+ h(y)

2
.

Hence the necessary part.

To prove sufficiency part, we have

g (x, y) =
h2(y)
2h ′(x)

−
h2(x)
2h ′(x)

. (25)

Differentiate g (x, y) partially w.r.t x to get

∂

∂ x
g (x, y) =

h2(x)h ′′(x)
2(h ′(x))2

−
h2(y)h ′′(x)
2(h ′(x))2

− h(x).

Now using relation (8) with ξ (x) = h(x), we get

f ′(x)
f (x)

=−
h(x)+ ∂

∂ x g (x, y)
g (x, y)

=
h ′′(x)
h ′(x)

.

This implies
F (x) = ah(x)+ b , x ∈ (α,β).

Hence the sufficiency part. 2

REMARK 8. Similar result was also established by Balasubramanian and Beg (1992);
Khan and Athar (2004) in terms of order statistics, which is given as

E
h

h(Xr+1:n)|Xr :n = x, Xr+2 = y
i

= E
h

h(x)|x ≤X ≤ y
i

=
h(x)+ h(y)

2
.

3. EXAMPLES

In this section characterization of some well known distributions like power function,
Pareto, exponential and exponentiated Pareto based on Theorem 4 are presented.
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3.1. Power function distribution

COROLLARY 9. Let a random variable X has cdf F (x) and pdf f (x). Further, if f ′(x)
and E(X k |x ≤X ≤ y) exists for every x, y ∈ (0,1). Then for k = 1,2, ...

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (26)

where

g (x, y) =
yk+p − xk+p

(k + p)y p−1

and

η(x, y) =
p y p−1

y p − x p

if and only if
F (y) = y p , p > 0, y ∈ (0,1). (27)

PROOF. On comparison of (27) with (19), we get a = 1, h(y) = y p and b = 0.

Thus, result follows from Corollary 5. 2

REMARK 10. Under condition as stated in Corollary 9 with x → 0, we get the result
for right truncated moment

E[X k |X ≤ y] = g (y)η(y) =
p yk

k + p

with

g (y) =
yk+1

k + p
and η(y) =

f (y)
F (y)

=
p
y

if and only if
F (y) = y p , y ∈ (0,1), p > 0.

This result is also obtained by Athar and Abdel-Aty (2020).

3.2. Pareto distribution

COROLLARY 11. Suppose a random variable X has an absolutely continuous cdf F (x)
and pdf f (x). Further, assume that f ′(x) and E(X k |x ≤ X ≤ y) exist for every x, y ∈
(1,∞). Then for k = 1,2, ...

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (28)
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where

g (x, y) =
yk−p − xk−p

(k − p)y−(p+1)

and

η(x, y) =
p x p

y p+1− x p y
if and only if

F (y) = 1− y−p , p > 1, y ∈ (1,∞). (29)

PROOF. Result can be seen in view of Corollary 5 with a = −1, h(y) = y−p and
b = 1 in (19). 2

REMARK 12. Under condition as stated in Corollary 11 with x→ 1, we get the result
for right truncated moment

E[X k |X ≤ y] = g (y)η(y) =
p

k − p
yk − y p

y p − 1

with

g (y) =
yk+1− y p+1

k − p
and η(y) =

f (y)
F (y)

=
p y−(p+1)

1− y−p

if and only if
F (y) = 1− y−p , y ∈ (1,∞), p > 1.

Similar result is also obtained by Ahsanullah et al. (2016) and Athar and Abdel-Aty
(2020).

3.3. Exponential distribution

COROLLARY 13. Suppose a continuous random variable X has cdf F (x) and pdf f (x).
Further, assume that f ′(x) and E(X k |x ≤ X ≤ y) exist for every x, y ∈ (0,∞). Then for
k = 1,2, . . .

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (30)

where

g (x, y) =−
yk

θ
+

xk e−θ(x−y)

θ
+

k
θe−θy

∫ y

x
uk−1e−θu d u

and

η(x, y) =
θe−θy

e−θx − e−θy

if and only if
F (y) = 1− e−θy ,θ > 0, y ∈ (0,∞). (31)
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PROOF. On comparison of (31) with (19), we get a =−1, h(y) = e−θy and b = 1.

Therefore, Corollary 13 can be established in view of Corollary 5. 2

3.4. Exponentiated Pareto distribution

COROLLARY 14. Under the conditions as stated in Corollary 11.

E[X k |x ≤X ≤ y] = g (x, y)η(x, y), (32)

where

g (x, y) =

∑[θ−1]
j=0 (−1)θ− j+1

�[θ−1]
j

� 1
k−p(θ− j )

�

yk−p(θ− j )− xk−p(θ− j )
�

∑[θ−1]
j=0 (−1)θ− j+1

�[θ−1]
j

�

y p( j−θ)−1

and

η(x, y) =
pθy−p−1(1− y−p )θ−1

(1− y−p )θ− (1− x−p )θ

if and only if
F (y) = (1− y−p )θ, p > 1, θ > 0, y ∈ (1,∞). (33)

PROOF. On comparison of (33) with (12), we get a = −1, h(y) = y−p , b = 1 and
c = θ. Thus, corollary can be establish in view of Theorem 4. 2

Similarly, with proper choice of a, b , c and h(x) several distribution can be charac-
terized using Theorem 4. For more distributions belonging to this class, one may refer
to Khan and Abu-Salih (1989); Khan and Abouammoh (2000) and Athar and Akhter
(2015).

4. APPLICATIONS

In this section, we provided numerical illustration to validate the accuracy of theoretical
characterization results first via simulation and then applying these result to the real
data sets. For these purposes we have considered power function, Pareto, exponential
and exponentiated Pareto (Expo Pareto) distributions as examples of our main results.
The different random left and right truncation points are chosen using random number
generator and values between them are estimated. Finally, MSE are observed to trace
out which distribution gives the best fit to the data. R software (R Core Team, 2020)
has been used for computation.

The data set I given below represents the failure times of 50 components (per 1000h).
For previous study on this data set see Merovei et al. (2020).
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0.036 0.058 0.061 0.074 0.078 0.086 0.102 0.103 0.114 0.116
0.148 0.183 0.192 0.254 0.262 0.379 0.381 0.538 0.570 0.574
0.590 0.618 0.645 0.961 1.228 1.600 2.006 2.054 2.804 3.058
3.076 3.147 3.625 3.704 3.931 4.073 4.393 4.534 4.893 6.274
6.816 7.896 7.904 8.022 9.337 10.940 11.020 13.880 14.730 15.080

The values in above data set I do not lie in the interval [0,1] for power function dis-
tribution. Therefore, the original values are divided by the maximum value (15.080) of
the data set and transform them in the interval of [0,1]. Similarly, for Pareto and expo-
nentiated Pareto distributions, original values are divided by minimum value (0.036) of
the data set and transform them in the interval of (1,∞).

TABLE 1
Verification of the characterization results.

Distribution Parameters k (x, y) L.H.S. R.H.S.
�

�

�

L.H .S.−R.H .S.
R.H .S.

�

�

�

p = 0.5 1 (0.00, 0.92) 0.33 0.33 0
Power Function p = 1.0 2 (0.02, 0.27) 0.03 0.03 0

p = 1.5 3 (0.04, 0.19) 0.00 0.00 0
p = 2.0 4 (0.02, 0.29) 0.00 0.00 0

p = 2.0 1 (2.83, 222.83) 5.60 5.60 0
Pareto p = 2.5 2 (10.58, 100.69) 379.81 379.81 0

p = 5.0 3 (17.17, 77.89) 12039.90 12039.90 0
p = 8.0 4 (7.06, 122.03) 4957.46 4957.46 0

θ= 0.5 1 (0.08, 10.94) 2.03 2.03 0
Exponential θ= 1.0 2 (0.26, 4.07) 2.05 2.05 0

θ= 1.5 3 (0.62, 2.80) 2.76 2.76 0
θ= 2.0 4 (0.25, 4.39) 2.34 2.34 0

p = 1.5,θ= 2 1 (3.22, 189.33) 8.76 8.76 0
Expo Pareto p = 3.0,θ= 5 2 (5.08, 135.92) 75.17 75.17 0

p = 4.5,θ= 7 3 (15.94, 85.44) 11185.20 11185.20 0
p = 5.0,θ= 10 4 (5.33, 125.94) 3875.80 3875.80 0

A simulation study is performed on data set I to validate the accuracy of theoreti-
cal characterization results for power function, Pareto, exponential and exponentiated
Pareto distributions given in Corollary 9, Corollary 11, Corollary 13 and Corollary
14 respectively, which are considered as the examples of main characterization result
of general form of distributions. In Table 1, it is observed that absolute relative differ-
ence between two sides of the characterizing Eqs. (28), (30), (32) and (33) is zero, which
validates or confirms the accuracy of characterization results.

In Table 2, the original estimated values in column 5 for power function distribution
is obtained by multiplying the transformed estimated value by 15.080 and for Pareto
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TABLE 2
Application of characterization results.

Distribution Parameters (x, y) X X̂ (X − X̂ ) (X − X̂ )2 MSE

(0.004, 0.005) 0.061 0.068 -0.007 0.000
p = 0.5 (0.007, 0.008) 0.114 0.113 0.001 0.000

(0.524, 0.532) 7.904 7.962 -0.058 0.003

(0.005, 0.007) 0.086 0.091 -0.005 0.000
Power function p = 1.0 (0.036, 0.038) 0.570 0.558 0.012 0.000 0.004

(0.081, 0.133) 1.600 1.614 -0.014 0.000

(0.002, 0.004) 0.058 0.047 0.011 0.000
p = 1.5 (0.039, 0.043) 0.618 0.618 0.000 0.000

(0.532, 0.725) 9.337 9.516 -0.179 0.032

(1.611, 2.056) 0.061 0.065 -0.004 0.000
p = 1.2 (2.861, 3.222) 0.114 0.109 0.005 0.000

(219.333, 222.833) 7.904 7.959 -0.055 0.003

(2.167, 2.833) 0.086 0.089 -0.003 0.000
Pareto p = 1.5 (14.944, 15.944) 0.570 0.556 0.014 0.000 0.001

(34.111, 55.722) 1.600 1.544 0.056 0.003

(1.000, 1.694) 0.058 0.045 0.013 0.000
p = 2.0 (16.389, 17.917) 0.618 0.616 0.002 0.000

(222.833, 303.889) 9.337 9.257 0.080 0.006

(0.058, 0.074) 0.061 0.066 -0.005 0.000
θ= 0.5 (0.103, 0.116) 0.114 0.110 0.004 0.000

(7.896, 8.022) 7.904 7.958 -0.054 0.003

(0.078, 0.102) 0.086 0.090 -0.004 0.000
Exponential θ= 1.0 (0.538, 0.574) 0.570 0.556 0.014 0.000 0.053

(1.228, 2.006) 1.600 1.567 0.033 0.001

(0.036, 0.061) 0.058 0.048 0.010 0.000
θ= 1.5 (0.590, 0.645) 0.618 0.617 0.001 0.000

(8.022, 10.940) 9.337 8.652 0.685 0.470

p = 1.5 (1.611, 2.056) 0.061 0.066 -0.005 0.000
θ= 2 (2.861, 3.222) 0.114 0.109 0.005 0.000

(219.333, 222.833) 7.904 7.959 -0.055 0.003

p = 2.0 (2.167, 2.833) 0.086 0.089 -0.003 0.000
Expo Pareto θ= 3 (14.944, 15.944) 0.570 0.555 0.015 0.000 0.003

(34.111, 55.722) 1.600 1.524 0.076 0.006

p = 2.5 (1.000, 1.694) 0.058 0.052 0.006 0.000
θ= 4 (16.389, 17.917) 0.618 0.616 0.002 0.000

(222.833, 303.889) 9.337 9.220 0.117 0.014
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and exponentiated Pareto distributions by 0.036. Further, it is observed that the MSE
of Pareto distribution is least possible among others. Thus, Pareto distribution gives the
best bit for the above given data Set I.

The data set II given below represents the life of fatigue fracture of Kevlar 373/epoxy
that are subjected to constant pressure at the 90% stress level until all had failed. For
earlier studies on this data set one can refer to Barlow et al. (1984); Andrew and Herzberg
(1985); Gillariose and Tomy (2020).

0.025 0.089 0.089 0.250 0.311 0.345 0.476 0.565 0.567 0.657
0.675 0.675 0.675 0.770 0.838 0.839 0.843 0.865 0.885 0.911
0.912 0.984 1.048 1.060 1.077 1.173 1.257 1.277 1.299 1.321
1.350 1.355 1.460 1.488 1.573 1.573 1.708 1.726 1.746 1.763
1.775 1.828 1.838 1.850 1.881 1.888 1.888 1.932 1.956 2.005
2.041 2.090 2.109 2.133 2.210 2.246 2.288 2.320 2.347 2.351
2.495 2.526 2.991 3.026 3.268 3.405 3.485 3.743 3.746 3.914
4.807 5.401 5.444 5.530 6.554 9.096

In the above data set II again it can be noticed that the values do not lie in the interval
[0,1] for power function distribution. Therefore, the original values are divided by
the maximum value (9.096) in the data set and transform them in the interval of [0,1].
Similarly, for Pareto and exponentiated Pareto distributions, original values are divided
by minimum value (0.025) in the data set and transform them in the interval of (1,∞).

In Table 3, the original estimated values in column 5 for power function distribution
is obtained by multiplying the transformed estimated value by 9.096 and for Pareto and
exponentiated Pareto distributions by 0.025. Further, it is also observed that out of four
considered distributions MSE is least in the case of power function distribution. Thus,
power function distribution gives the best bit for the above given data Set II.
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TABLE 3
Application of characterization results.

Distribution Parameters (x, y) X X̂ (X − X̂ ) (X − X̂ )2 MSE

(0.028, 0.038) 0.311 0.297 0.014 0.000
p = 0.5 (0.203, 0.208) 1.881 1.868 0.013 0.000

(0.594, 0.608) 5.444 5.465 -0.021 0.000

(0.062, 0.072) 0.567 0.611 -0.044 0.002
Power Function p = 1.0 (0.215, 0.224) 2.005 1.998 0.007 0.000 0.007

(0.278, 0.333) 2.991 2.776 0.215 0.046

(0.192, 0.195) 1.763 1.761 0.002 0.000
p = 1.5 (0.383, 0.412) 3.743 3.616 0.127 0.016

(0.594, 0.608) 5.444 5.465 -0.020 0.000

(9.964, 13.749) 0.311 0.292 0.019 0.000
p = 1.2 (73.717, 75.211) 1.881 1.869 0.012 0.000

(215.159, 220.299) 5.444 5.464 -0.020 0.000

(22.510, 26.159) 0.567 0.608 -0.041 0.002
Pareto p = 1.5 (77.920, 81.307) 2.005 1.998 0.007 0.000 0.008

(100.638, 120.542) 2.991 2.757 0.234 0.055

(69.562, 70.701) 1.763 1.760 0.003 0.000
p = 2.0 (138.829, 149.223) 3.743 3.610 0.133 0.018

(215.159, 220.299) 5.444 5.464 -0.020 0.000

(0.250, 0.345) 0.311 0.297 0.014 0.000
θ= 0.5 (1.850, 1.888) 1.881 1.884 -0.003 0.000

(5.401, 5.530) 5.444 5.464 -0.020 0.000

(0.565, 0.657) 0.567 0.610 -0.043 0.002
Exponential θ= 1.0 (1.956, 2.041) 2.005 1.998 0.007 0.000 0.009

(2.526, 3.026) 2.991 2.755 0.236 0.056

(1.746, 1.775) 1.763 1.760 0.003 0.000
θ= 1.5 (3.485, 3.746) 3.743 3.607 0.136 0.018

(5.401, 5.530) 5.444 5.463 -0.019 0.000

p = 1.3 (9.964, 13.749) 0.311 0.292 0.019 0.000
θ= 3 (73.717, 75.211) 1.881 1.869 0.012 0.000

(215.159, 220.299) 5.444 5.464 -0.020 0.000

p = 2.5 (22.510, 26.159) 0.567 0.607 -0.040 0.002
Expo Pareto θ= 4 (77.920, 81.307) 2.005 1.997 0.008 0.000 0.009

(100.638, 120.542) 2.991 2.750 0.241 0.058

p = 3 (69.562, 70.701) 1.763 1.760 0.003 0.000
θ= 5 (138.829, 149.223) 3.743 3.609 0.134 0.018

(215.159, 220.299) 5.444 5.464 -0.020 0.000
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5. CONCLUSION

The characterization of probability distribution has significant contribution in statis-
tical studies. It is used to check whether the proposed model fits the requirement of
given probability distribution or not. The characterization using truncated moments
limits the observations and hence researchers may save their time and cost. The same is
observed through numerical illustration to the natural data. The proposed characteri-
zation result may be useful for the researchers, who are in the field of natural and allied
sciences.
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APPENDIX

SUPPLEMENTARY INFORMATION

#Power Function Distribution

p = 1.5; k = 1; x = 0.039; y = 0.043

#Calculation of LHS

A = p/(y^p - x^p)

f<-function(t){t^(k+p-1)}

B<-integrate(f,lower=x,upper=y,stop.on.error = FALSE)

C=B$value

lhs=A*C

#-----------------------------------------------------

#Calculation of RHS

A1 = p/(k + p)

B1 = (y^(k + p) - x^(k + p))/(y^p - x^p)

rhs = A1*B1

#-----------------------------------------------------

lhs

rhs

======================================================

#Pareto Distribution

p = 2.0; k = 1; x = 222.833; y = 303.889

#Calculation of LHS

A = p/(x^(-p) - y^(-p))
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f<-function(t){t^(k-p-1)}

B<-integrate(f,lower=x,upper=y,stop.on.error = FALSE)

C=B$value

lhs=A*C

#-----------------------------------------------------

#Calculation of RHS

A1 = p/(k - p)

B1 = (x^p*y^k - x^k*y^p)/(y^p - x^p)

rhs = A1*B1

#-----------------------------------------------------

lhs

rhs

======================================================

#Exponential Distribution

th = 0.5; k = 1; x = 0.103; y = 0.116

#Calculation of LHS

A = th/(exp(-th*x)-exp(-th*y))

f<-function(t){t^(k)*exp(-th*t)}

B<-integrate(f,lower=x,upper=y,stop.on.error = FALSE)

C=B$value

lhs=A*C

#----------------------------------------------------

#Calculation of RHS

A1=-(y^k/th)

B1=((x^k)*exp(-th*(x-y)))/th

C1=k/(th*exp(-th*y))

f1<-function(u){u^(k-1)*exp(-th*u)}

D1<-integrate(f1,lower=x,upper=y,stop.on.error = FALSE)

E1=D1$value

gxy=A1+B1+C1*E1

nxy=(th*exp(-th*y))/(exp(-th*x)-exp(-th*y))

rhs=gxy*nxy

#----------------------------------------------------

lhs

rhs

=====================================================

#Exponentiated Pareto Distribution

p=3.0;th=5;k=1;x=215.1594;y=220.2988

#Calculation of LHS

f<-function(t){t^(k-p-1)*(1-t^(-p))^(th-1)}

B<-integrate(f,lower=x,upper=y,stop.on.error = FALSE)

C=B$value

A = (p*th)/((1 - y^(-p))^th - (1 - x^(-p))^th)
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A

C

lhs=A*C

lhs

#-----------------------------------------------------

#Calculation of RHS

sumn=0;sumd=0

for (j in 0:th-1){

a=(-1)^(th-j+1)

b=choose(th-1,j)

c=1/(k-p*(th-j))

sumn=sumn+a*b*c*(y^(k-p*(th-j))-x^(k-p*(th-j)))

sumd=sumd+a*b*y^(p*(j-th)-1)

}

sumn;sumd

gxy=sumn/sumd

a1=p*th*y^(-p-1)*(1-y^(-p))^(th-1)

b1=(1-y^(-p))^th-(1-x^(-p))^th

nxy=a1/b1

gxy;nxy

rhs=gxy*nxy

rhs

#-----------------------------------------------------

lhs

rhs

======================================================

# r sample without replacement from vector

> sample (c(1:50), size=36, replace=F)
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SUMMARY

In this paper characterization properties based on conditional expectation of a continuous func-
tion of random variable are studied when truncation is from both the sides, left and right. Then,
these results are applied to obtain the k-th doubly truncated moment for a general class of distribu-
tion. Further, some examples and particular cases based on this general class of distributions are
also demonstrated. The results are obtained in simple and explicit manner which also unifies the
earlier results obtained by several authors. In the end, simulation study is performed to validate
the correctness of theoretical characterization results and then two real life data sets are used to
demonstrate the applications of these results.

Keywords: Truncated moment; Characterization; Pareto distribution; Power function distribu-
tion; Exponential distribution; Exponentiated Pareto distribution.
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