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SUMMARY

A new variety of Ranked Set Sampling (RSS), namely Induced Generalized Record Ranked Set
Sampling (IGRRSS), is introduced. In the proposed methodology, ranking is implemented by
considering generalized (k) record values on the auxiliary variable X from each sequence of units.
The selected units are further screened for measuring the variable of primary interest Y . Further,
we propose estimators based on IGRRSS for the unknown parameters associated with the vari-
able Y when the parent bivariate distribution belongs to the Morgenstern family of distributions.
The proposed sampling scheme is utilized to collect primary data on the usable timber volume
Y based on the ranking of units by generalized (2) record values on tree height X of acacia trees.
Accordingly, Morgenstern type bivariate logistic distribution has been modelled for the distribu-
tion of the population random vector (X , Y ) and estimated the average usable timber volume of
the population.

Keywords: Generalized (k) record values; Record ranked set sampling; Induced generalized upper
record ranked set sampling (IGURRSS); Induced generalized lower record ranked set sampling;
Concomitants of generalized record values; Morgenstern family of distributions; Morgenstern
type bivariate logistic distribution; Best linear unbiased estimation; Modelling bivariate distribu-
tion by IGURRSS data.

1. INTRODUCTION

The concept of ranked set sampling (RSS) was introduced by McIntyre (1952) as a pro-
cess of increasing the precision of the sample mean as an estimator of the population
mean. McIntyre’s method of RSS consists of choosing randomly n2 units, arranging
them randomly in n sets of n units each, ranking the units in each set by a judgment
method, choosing the i -th ranked unit from the i -th set and making a measurement
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of the variable of interest on the selected unit for i = 1,2, . . . , n. For detailed discussion
about the development and applications of RSS see Stokes (1977, 1995), Patil et al. (1994),
Lam et al. (1994, 1996),Patil (2002), Chen et al. (2004), Modarres and Zheng (2004),
Wolfe (2004), Zheng and Modarres (2006), Priya and Thomas (2013, 2016), and Paul
and Thomas (2017).

It is to be noted that any imperfect ranking of the units by judgment ranking in RSS
can have the effect that the statistics constructed from them incurs large mean square
error. Stokes (1977) has introduced another RSS in which an easily and inexpensively
measurable auxiliary variable X is used for ranking the units and for identifying appro-
priate units for measuring the variable Y of primary interest, provided X and Y are
jointly distributed with a bivariate probability density function (pdf) f (x, y). The ad-
vantage of this method of RSS is that no ranking error occurs in this case, and the result-
ing observations are exactly distributed as concomitants of order statistics in which the
information on the ranks of the observations on the auxiliary variable are captured and
impounded probabilistically in those distributions. Chen et al. (2004) have portrayed a
detailed account of applications of RSS as devised by Stoke’s (1977). For some recent
applications of this RSS see also Muttlak and McDonald (1990), Kaur et al. (1996), Mut-
tlak (1998), Sinha (2005), Chacko and Thomas (2007, 2008), Lesitha et al. (2010), Lesitha
and Thomas (2013), Thomas et al. (2014), and Philip and Thomas (2015).

It may be noted that the construction of record values of a sequence of observations
does severe filtering in the sequence and thereby produces a significantly reduced set
of units consisting of the most sensitive and extraordinary members of the original se-
quence. One may refer to Paul and Thomas (2017) in which classical record values on
an easily measurable auxiliary variable are used to rank the units and to define a suitable
RSS. But a difficulty one encounters in using the data resulting from the RSS defined
by Paul and Thomas (2017) to statistical inference problems regards their limited oc-
currence, as the expected values of interarrival times of records is infinite Glick (1978).
However, the k-th record values, as introduced by Dziubdziela and Kopocinski (1976),
occur more frequently than those of the classical records. Those records were conve-
niently called generalized (k) record values in Minimol and Thomas (2013, 2014), Paul
and Thomas (2013, 2015, 2016), Paul (2014), Thomas et al. (2014) and Thomas and Paul
(2014). As the above authors, we call k-th record values of Dziubdziela and Kopocinski
(1976) as generalized (k) record values all through this paper.

Initially, it seems that some disinterest was developed among statisticians to deal
with generalized upper (k) record values (GURVs) by the message conveyed by the fact
that the distributions of GURVs arising from a distribution with cumulative distribu-
tion function (cdf) F (x) is the same as the distribution of classical upper record values
arising from the distribution with cdf 1− (1−F (x))k (for details see Arnold et al., 1998,
pp. 43-44). However, Paul and Thomas (2015) pointed out that a characterization result
based on classical record values arising from 1− (1−F (x))k cannot become a characteri-
zation result for F (x) or vice versa. Another advantage in utilizing GURVs is that for a
given value of k, the process of constructing GURVs evolves with an inbuilt system to
eliminate the k − 1 number of probable large values in the data, which may turn out to
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be outliers. Paul and Thomas (2015) have also pointed out cases when estimates based
on GURVs are more efficient than those based on classical record values. Thus GURVs
are useful to address certain problems more efficiently than addressing them by classical
record values.

It is interesting to note that Salehi and Ahmadi (2014) have defined record ranked
set sampling (RRSS), in which n different sequences of units from a population are con-
sidered, an inexpensive mechanism such as a judgment method is used to determine the
record value sequence on the judgment scores of each of the n sequences formed, and
from the i -th sequence, that unit corresponding to the i -th record value (with respect to
judgment scores) is chosen for actual measurement of the variable of primary interest
for i = 1,2, . . . , n. The RRSS, defined by Salehi and Ahmadi (2014), also suffers due to
imperfect ranking, as in the case of McIntyre’s RSS.

In this paper we consider a situation when an experimenter is facing the following
constraints:

C1 : the sampling is too costly or painful, so that strong economic considerations in
sampling become necessary,

C2 : requirement for ranking the units by depending on an easily measurable auxiliary
variable X that is jointly distributed with the variable Y of primary interest,

C3 : requirement for designing a mechanism to keep away from the sample some fixed
number of possible outliers (of high value) on X observations so as to check the
outliers on Y as well in an indirect way,

C4 : requirement of capturing in the sample the most valuable units that are different
from the suspected outliers on X directly (and hence on Y indirectly).

Under the above constraints, we aim to define an RSS similar to Stokes (1977), but
it uses the units with generalized upper (k) record values on the auxiliary variable X for
further screening the units.

Suppose (Xi ,Yi ), i = 1,2, . . . is a sequence of independent and identically distributed
(iid) bivariate random variables each distributed identically as the random variable (X ,Y ),
which has an absolutely continuous cdf FX ,Y (x, y) and pdf fX ,Y (x, y). Let FX (x) and
fX (x), respectively, be the marginal cdf and pdf of X , and FY (y) and fY (y), respectively,
be the marginal cdf and pdf of Y . Now we consider the marginal sequence of random
variables Xi , i = 1,2, . . .. Then for a positive integer k ≥ 1, the sequence of generalized
upper (k) record times {TU (n,k), n ≥ 1} of {Xi} is defined as (see Nevzorov, 2001, p. 82)

TU (1,k) = k

and
TU (n+1,k) =min{ j : j > TU (n,k),X j >XTU (n,k)−k+1:TU (n,k)

} for n ≥ 1,
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where Xi :m denotes the i -th order statistic in a sample of size m. Now, if we write

XU (n,k) =XTU (n,k)−k+1:TU (n,k)
for n = 1,2, . . . ,

then {XU (n,k)} is known as the sequence of the generalized upper (k) record values.
Now we can identify the ordered pair (X ,Y ) from the sequence (Xi ,Yi ), i = 1,2, . . . in
which X =XU (n,k), so that the Y component in that ordered pair is denoted by YU [n,k]
and is known as the concomitant of the n-th generalized upper (k) record value. If we
write fY |X (y|x) to denote the conditional pdf of Y given X = x, then the pdf of YU [n,k]
is given by (for more details see, Chacko and Mary, 2013)

fYU [n,k]
(y) =

kn

Γ (n)

∞
∫

−∞

[− ln{1− FX (x)}]
n−1 [1− FX (x)]

k−1 fY |X (y|x) fX (x)dx. (1)

Similarly, the joint pdf of YU [m,k] and YU [n,k] for m < n is then given by

fYU [m,k],YU [n,k]
(y1, y2) =

∞
∫

−∞

x2
∫

−∞

fY |X (y1|x1) fY |X (y2|x2) fXU (m,k),XU (n,k)
(x1, x2)dx1dx2,

where

fXU (m,k),XU (n,k)
(x1, x2) =

kn
�

− ln[F̄X (x1)]
	m−1

Γ (m)Γ (n−m)
�

ln[F̄X (x1)− ln[F̄X (x2)]]
	n−m−1

×[F̄X (x2)]
k−1 fX (x1) fX (x2)

F̄X (x1)
, (2)

for x1 < x2, 1≤ m < n and n ≥ 2, where F̄X (t ) = 1− FX (t ).
This paper is organized as follows. Section 2 introduces the newly proposed IG-

URRSS. The general estimation theory of location and scale parameters of the marginal
distribution of the variable of primary interest of any bivariate Morgenstern family of
distributions using the observations of IGURRSS is discussed in Section 3. In Section 4
we consider a specific member of the Morgenstern family of distributions viz. Morgen-
stern type bivariate logistic distribution (MTBLD) to illustrate the applications of the
results derived in Section 3. We have devoted Section 5 to demonstrate the newly pro-
posed IGRRSS method to a real life problem, and we have further utilized the collected
observations by this new sampling scheme to identify the parental bivariate model. Fur-
ther, we obtain the estimate of the average timber volume of the population of trees
surveyed.
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2. INDUCED GENERALIZED UPPER RECORD RANKED SET SAMPLING

Suppose we have n sequences of independent units drawn from an infinite population.
The interest is in carrying out a study on a variable Y of primary interest whose measure-
ment on the units is comparatively expensive or time consuming whereas measurement
of an auxiliary variable X is quite easy, under constraints C1 to C4 as stated in the intro-
duction. To deal with this problem, we define a new sampling method namely Induced
Generalized Record Ranked Set Sampling below.

DEFINITION 1. Draw n sequences of independent units from a population with Y as
the variable of primary interest and X as an auxiliary variable on the units such that X
and Y are jointly distributed. We consider a situation in which measurement of X on the
units is inexpensive and easy while measuring Y on the units is difficult and costly. Make a
measurement of X on the units of each sequence and thereby use those observations within
each sequence to construct the sequence of generalized upper (k) record values. Now from
the i -th sequence of generalized upper (k) record values, select the unit corresponding to
the i -th generalized upper (k) record value on X and make measurement on the variable
Y of primary interest on this unit. Let the resulting measurement be denoted by YU [i ,k]i
for i = 1,2, . . . , n. Then the observations YU [1,k]1 , YU [2,k]2 , . . . , YU [n,k]n taken together is
called the induced generalized upper record ranked set sample (igurrss). The sampling strategy
that yields this sample is called Induced Generalized Upper Record Ranked Set Sampling
(IGURRSS).

REMARK 2. If we construct the generalized lower (k) record values of marginal X ob-
servations, and define the analogous ranked set sampling of Definition 1, then the obtained
sample is known as the induced generalized Lower Record Ranked Set Sample ( iglrrss). The
sampling strategy used in this case is called Induced Generalized Lower Record Ranked Set
Sampling (I GLRRSS).

If fX ,Y (x, y) is the joint pdf of the population bivariate random vector (X ,Y ) with
marginal pdf fX (x) for X and marginal pdf fY (y) for Y , then it is of interest to note that
the i -th observation YU [i ,k]i generated in IGURRSS is distributed as the concomitant
of i -th generalized upper (k) record values (on the variable X ), and its pdf is denoted by
fYU [i ,k]i

(y), which can be obtained from Eq. (1) putting n = i .

As in the case of the mean of observations of the RSS defined by McIntyre (1952),
the mean of the observations of IGURRSS as defined in Definition 1 may not estimate
as such the parameter corresponding to E(Y ) of the variable of primary interest. How-
ever it is interesting to note that if the distribution of the parent random vector (X ,Y )
belongs to the Morgenstern family of distributions with pdf

fX ,Y (x, y) = fX (x) fY (y){1+ γ [1− 2FX (x)] [1− 2FY (y)]} , −1≤ γ ≤ 1, (3)
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then from Chacko and Mary (2013) we have

fYU [i ,k]i
(y) = fY (y)
�

1+ γ
�

1− 2
�

k
(k + 1)

�i�

{2FY (y)− 1}
�

, (4)

and consequently we obtain the asymptotic form of the mean

n
∑

i=1
fU [i ,k]i (y)

n of pdf’s fU [i ,k]i (y),
i = 1,2, . . . , n as follows. From Eq. (4) we have

n
∑

i=1
fU [i ,k]i (y)

n
= fY (y)+ γ fY (y) (2FY (y)− 1)−

2γk
n

�

1−
� k

k + 1

�n�

(2FY (y)− 1) .

Then the limiting form of the above mean function is given by

lim
n→∞

n
∑

i=1
fU [i ,k]i (y)

n
= fY (y) [1+ γ (2FY (y)− 1)]

= {1− γ} fY (y)+ γ f2:2(y).

Clearly, the right side of the above equation is again a pdf, which seems to be a mod-
ified mixture of the pdf’s fY (y) and f2:2(y) (as the range of γ is −1 < γ < 1), where
f2:2(y) = 2FY (y) fY (y) is the pdf of the largest order statistic of a random sample of size
two arising from the marginal distribution of Y .

3. ESTIMATION OF SOME PARAMETERS OF MORGENSTERN TYPE BIVARIATE DIS-
TRIBUTION USING IGURRSS

Suppose a population of units is such that on each unit the measurement on an auxil-
iary variable X can be made easily, whereas measurement on the variable Y of primary
interest is somewhat difficult or expensive. Suppose (X ,Y ) is such that X and Y are
distributed marginally with cdf’s FX

�

x−θ1
λ1

�

and FY

�

y−θ2
λ2

�

, respectively, and jointly dis-
tributed as a Morgenstern type distribution given by the cdf

FX ,Y (x, y;θ1,θ2,λ1,λ2,γ ) = FX

�

x −θ1

λ1

�

FY

�

y −θ2

λ2

�

{1+ γ

×
�

1− FX

�

x −θ1

λ1

���

1− FY

�

y −θ2

λ2

���

, (5)

where −∞ < x < ∞, −∞ < y < ∞,−∞ < θi < ∞, λi > 0, i = 1,2,
−1 ≤ γ ≤ 1. Clearly, γ is the association parameter, θ1,λ1 are the location and scale
parameters, respectively, of FX

�

x−θ1
λ1

�

, and θ2,λ2 are the location and scale parameters,
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respectively, of FY

�

y−θ2
λ2

�

. The joint pdf corresponding to the cdf defined in Eq. (5) is
given by,

fX ,Y (x, y) =
fX

�

x−θ1
λ1

�

fY

�

y−θ2
λ2

�

λ1λ2

�

1+ γ
�

1− 2FX

�

x −θ1

λ1

���

1− 2FY

�

y −θ2

λ2

���

.

(6)
The conditional distribution fY |X (y|x) of the random variable Y given X = x is then
given by

fY |X (y|x) =
fY

�

y−θ2
λ2

�

λ2

�

1+ γ
�

1− 2FX

�

x −θ1

λ1

���

1− 2FY

�

y −θ2

λ2

���

. (7)

The Morgenstern bivariate family of distributions is a well known and extensively large
class of bivariate distributions, which are characterized by their marginal distributions.
This family is further well known for its fine properties on the distributions of con-
comitants of order statistics or concomitants of records or concomitants of generalized
records arising from it. For more details see Johnson et al. (1994), Veena and Thomas
(2008), Thomas and Veena (2014), and Thomas et al. (2014). As measurement on X can
be carried out inexpensively on any number of units while there is much difficulty in
the measurement of the characteristic Y of interest, we are constrained to impose an ob-
servational economy consideration on Y , and hence we apply Definition 1 to generate
an igurrss with observations YU [1,k]1, YU [2,k]2, . . . , YU [n,k]n . Then, from Eq. (4), the pdf
of the i -th igurrss observation YU [i ,k]i is given by

fYU [i ,k]i
(y) =
∫

fY |X (y|x) fXU (i ,k)
(x)d x =

fY

�

y−θ2
λ2

�

λ2

�

1+ γ
�

1− 2
� k

k + 1

�i
�

×
�

2FY

�

y −θ2

λ2

�

− 1
��

. (8)

If we put

WU [i ,k]i =
YU [i ,k]i −θ2

λ2
, (9)

then the pdf of WU [i ,k]i is given by

fWU [i ,k]i
(w) = fW (w)

�

1+ γ
�

1− 2
� k

k + 1

�i
�

{2FW (w)− 1}
�

= fW (w)+ γ
�

1− 2
� k

k + 1

�i
�

[2 fW (w)FW (w)− fW (w)]

= fW (w)+ γ
�

1− 2
� k

k + 1

�i
�

[ f2:2(w)− fW (w)] , (10)
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where f2:2(w) denotes the density function of the second order statistic W2:2 of a random
sample of size 2 arising from fW (w) of W = Y−θ2

λ2
. Then for i = 1,2, . . . , n, from Eq.

(10) we have,
E
�

WU [i ,k]i

�

= ζi , (11)

where

ζi = α+ γ
�

1− 2
� k

k + 1

�i
�

[α2:2−α] , (12)

in which α and α2:2 denote the expectations of W and W2:2, respectively. Also if we
write α(2) = E(W 2) and α(2)2:2 = E(W 2

2:2), then for i = 1,2, . . . , n we have

E
�

W 2
U [i ,k]i

�

= α(2)+ γ
�

1− 2
� k

k + 1

�i
�

�

α(2)2:2−α
(2)
�

. (13)

From Eq. (11) to Eq. (13) we have for i = 1,2, . . . , n,

Var
�

WU [i ,k]i

�

= βi , (14)

where

βi = α
(2)+

ζi −α
α2:2−α

�

α(2)2:2−α
(2)
�

− ζ 2
i . (15)

Clearly, ζi and βi for i = 1,2, . . . , n are free from the parameters provided γ is known.
Since for i ̸= j , YU (i ,k)i and YU ( j ,k) j are independently distributed (as they arise from
different independent sequences), it follows that

Cov
�

WU [i ,k]i ,WU [ j ,k] j

�

= 0. (16)

Thus, if we write YU [n,k] =
�

YU [1,k]1,YU [2,k]2, . . . ,YU [n,k]n

�′

, then from Eq. (9) and Eq.

(11) to (16), the mean vector E
�

YU [n,k]

�

and dispersion matrix D
�

YU [n,k]

�

of YU [n,k]

are given by

E
�

YU [n,k]

�

= θ21+λ2ζ , (17)

D
�

YU [n,k]

�

= λ2
2G , (18)

where ζ = (ζ1,ζ2, . . . ,ζn)
′
, G=diag(β1,β2, . . . ,βn), and 1 is a column vector of n ones.

Now if γ is known, then the elements of ζ and G are known real numbers. Conse-
quently, Equations (17) and (18) together define a generalized Gauss-Markov setup, and
hence the best linear unbiased estimators (BLUEs) θ∗2,k and λ∗2,k of θ2 and λ2 are obtained
as

θ∗2,k = D−1
�

ζ
′
G−1
�

ζ 1
′ − 1ζ

′�

G−1
�

YU [n,k] (19)

and
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λ∗2,k = D−1
�

1
′
G−1
�

1ζ
′ − ζ 1

′�

G−1
�

YU [n,k], (20)

with variances given by
Var(θ∗2,k ) = λ

2
2

�

ζ
′
G−1ζ
�

/D (21)

and
Var(λ∗2,k ) = λ

2
2

�

1
′
G−11
�

/D , (22)

where D =
�

ζ
′
G−1ζ
��

1
′
G−11
�

−
�

ζ
′
G−11
�2

. The expressions in Equations (19) and
(20) can be further simplified as

θ∗2,k =
n
∑

r=1















β−1
r

� n
∑

i=1
ζ 2

i β
−1
i

�

− ζrβ
−1
r

� n
∑

i=1
ζiβ
−1
i

�

� n
∑

i=1
β−1

i

�� n
∑

i=1
ζ 2

i β
−1
i

�

−
� n
∑

i=1
ζiβ
−1
i

�2















YU [r,k]r (23)

and

λ∗2,k =
n
∑

r=1















ζrβ
−1
r

� n
∑

i=1
β−1

i

�

−β−1
r

� n
∑

i=1
ζiβ
−1
i

�

� n
∑

i=1
β−1

i

�� n
∑

i=1
ζ 2

i β
−1
i

�

−
� n
∑

i=1
ζiβ
−1
i

�2















YU [r,k]r . (24)

Clearly, the estimators given in Equations (23) and (24) are linear in YU [r,k]r for r =
1,2, . . . , n, and can be written as

θ∗2,k =
n
∑

r=1

ar,n,k YU [r,k]r , (25)

λ∗2,k =
n
∑

r=1

br,n,k YU [r,k]r , (26)

where ar,n,k and br,n,k , r = 1,2, . . . , n are appropriate constants defined from Equations
(23) and (24), respectively. The variances given in Equations (21) and (22) can also be
simplified as

Var(θ∗2,k ) =

n
∑

i=1
ζ 2

i β
−1
i

� n
∑

i=1
β−1

i

�� n
∑

i=1
ζ 2

i β
−1
i

�

−
� n
∑

i=1
ζiβ
−1
i

�2 λ2
2 (27)

and

Var(λ∗2,k ) =

n
∑

i=1
β−1

i

� n
∑

i=1
β−1

i

�� n
∑

i=1
ζ 2

i β
−1
i

�

−
� n
∑

i=1
ζiβ
−1
i

�2 λ2
2. (28)
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REMARK 3. In real life applications, IGURRSS as explained in Definition 1 has its own
limitations when used with large n, as one may not be successful to realize many generalized
(k) records on the measurements of the auxiliary variable from a given sequence of units
of the population. Hence the igurrss size n is usually chosen small. However, if one insists
in more precision of the igurrss based estimates θ∗2 and λ∗2 as given in Equations (23) and
(24), respectively, then repeated cycles of IGURRSS are recommended. Thus, if N repeated
cycles of IGURRSS are carried out, and the estimates for θ2,k and λ2,k based on the j -th
igurrss are denoted by θ∗2,k , j and λ∗2,k , j , respectively, for j = 1,2, . . . ,N, then the improved

estimates of θ2 and λ2 are defined by θ̃2,k =

N
∑

j=1
θ∗2,k , j

N and λ̃2,k =

N
∑

j=1
λ∗2,k , j

N , respectively, with

Var(θ̃2,k ) =
Var(θ∗2,k )

N and Var(λ̃2,k ) =
Var(λ∗2,k )

N , where Var(θ∗2,k ) and Var(λ∗2,k ) are defined as
in Equations (27) and (28), respectively. The choice of N depends on the desired extent of the
precision of the estimates θ̃2,k and λ̃2,k .

In the following subsections we further deal with two special cases of the problem
discussed above. Subsection 3.1 deals with the BLUE of θ2 when λ2 is known. Subsec-
tion 3.2 deals with the BLUE of λ2 when θ2 is known.

3.1. Case I: Estimation of θ2 when λ2 is known

Now, we consider the problem of obtaining the BLUE ofθ2 based on the observations of
an igurrss arising from an arbitrary distribution belonging to the Morgenstern family of
distributions for the case, when λ2 and γ are known. For convenience we take λ2 = 1. If
YU [i ,k]i , i = 1,2, . . . , n are the observations of the igurrss arising from Eq. (6) for λ2 = 1,

then we have E
�

YU [i ,k]i

�

= θ2+ ζi and

E
�

ZU [i ,k]i

�

= θ2, (29)

where ZU [i ,k]i = YU [i ,k]i − ζi . Also we have

Var
�

ZU [i ,k]i

�

= βi , (30)

for i = 1,2, . . . , n, and

Cov
�

ZU [i ,k]i ,ZU [ j ,k] j

�

= 0, i ̸= j , (31)

where ζi and βi are as defined in Equations (12) and (15), respectively.

Let ZU [n,k] =
�

ZU [1,k]1,ZU [2,k]2, . . . ,ZU [n,k]n

�′

. Then, from Eq. (29) and Eq. (31),
we can write the mean vector and dispersion matrix of ZU [n,k] as

E
�

ZU [n,k]

�

= θ21

and
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D
�

ZU [n,k]

�

= G ,

where 1 is a column vector of n ones and G=diag(β1,β2, . . . ,βn). If γ is known,
then the equations for E

�

ZU [n,k]

�

and D
�

ZU [n,k]

�

together define a generalized Gauss-

Markov set up, and consequently the BLUE θ(0)
2,k of θ2 is given by

θ(0)
2,k =
�

1
′
G−11
�−1

1
′
G−1ZU [n,k] (32)

and

Var(θ(0)
2,k ) =
�

1
′
G−11
�−1

. (33)

Clearly, from Eq. (32) and Eq. (33) we can further write

θ(0)
2,k =
�

n
∑

i=1

β−1
i

�−1 n
∑

r=1

β−1
r ZU [r,k]r =

n
∑

r=1

cr,n,k ZU [r,k]r , (34)

where cr,n,k , r = 1,2, . . . , n are appropriate constants and

Var(θ(0)
2,k ) =
�

n
∑

i=1

β−1
i

�−1

. (35)

3.2. Case II: Estimation of λ2 when θ2 is known

Suppose θ2 involved in the Morgenstern family of bivariate distributions with pdf in Eq.
(6) is known. Then, for convenience, we write θ2 = 0. Now, we obtain the BLUE λ(0)

2,k
of λ2, when γ is known. Let YU [i ,k]i , i = 1,2, . . . , n, be the observations of the igurrss

drawn from Eq. (6) for θ2 = 0. Let YU [n,k] =
�

YU [1,k]1,YU [2,k]2, . . . , YU [n,k]n

�′

. Then,
from Eq. (10) and Eq. (11), for θ2 = 0, the mean vector and dispersion matrix of YU [n,k]
are given by

E
�

YU [n,k]

�

= λ2ζ , (36)

D
�

YU [n,k]

�

= λ2
2G , (37)

where ζ = (ζ1,ζ2, . . . ,ζn)
′

and G=diag(β1,β2, . . . ,βn) in which ζr and βr are defined
as in Eq. (12) and Eq. (15), respectively. If γ is known, then Equations (36) and (37)
together define a generalized Gauss-Markov set up, and hence the BLUE λ(0)

2,k of λ2 is
obtained as

λ(0)
2,k =
�

ζ
′
G−1ζ
�−1
ζ
′
G−1YU [n,k] (38)
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with

Var(λ(0)
2,k ) =
�

ζ
′
G−1ζ
�−1

λ2
2. (39)

The above expressions can be further simplified to

λ(0)
2,k =
�

n
∑

i=1

ζ 2
i β
−1
i

�−1 n
∑

r=1

ζrβ
−1
r YU [r,k]r =

n
∑

r=1

dr,n,k YU [r,k]r , (40)

where dr,n,k , r = 1,2, . . . , n are appropriate constants and

Var(λ(0)
2,k ) =
�

n
∑

i=1

ζ 2
i β
−1
i

�−1

λ2
2. (41)

The expression for the BLUEs of the parameters associated with the distribution of the
variable of primary interest for various cases presented in this section based on the ob-
servations of an igurrss have much importance, since these results are applicable as such
to a very large class of bivariate distributions called Morgenstern family of bivariate dis-
tributions.

4. ESTIMATION OF PARAMETERS OF MTBLD

A bivariate random vector (X ,Y ) is said to have a MTBLD if its cdf is of the form (see,
Kotz et al., 2000)

FX ,Y (x, y) =
1
�

1+ e−
(x−θ1)
λ1

�

1
�

1+ e−
(y−θ2)
λ2

�









1+ γ
e−

(x−θ1)
λ1 e−

(y−θ2)
λ2

�

1+ e−
(x−θ1)
λ1

��

1+ e−
(y−θ2)
λ2

�









, (42)

where −∞< x <∞, −∞< y <∞,−∞<θi <∞, λi > 0, i = 1,2 and − 1≤ γ ≤ 1.
The pdf fX ,Y (x, y) corresponding to the cdf of Eq. (42) is then given by

fX ,Y (x, y) =
e−

(x−θ1)
λ1

λ1

§

1+ e−
(x−θ1)
λ1

ª2

e−
(y−θ2)
λ2

λ2

§

1+ e−
(y−θ2)
λ2

ª2









1+ γ

§

1− e−
(x−θ1)
λ1

ª§

1− e−
(y−θ2)
λ2

ª

§

1+ e−
(x−θ1)
λ1

ª§

1+ e−
(y−θ2)
λ2

ª









.

(43)
Lam et al. (1996) considered the problem of estimating the parameters θ2 and λ2 of a

logistic distribution using ranked set sampling. They also improved these estimators by
identifying units having maximum information. Chacko and Thomas (2009) have de-
rived the BLUEs of θ2 and λ2 based on the observations of RSS. Lesitha et al. (2010) have
derived the Fisher information in concomitants of order statistics and thereby identified
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the units having maximum Fisher information. Using this knowledge, they suggested
an extreme ranked set sampling (ERSS) procedure and thereby modified the estimates
of the parameters obtained by Chacko and Thomas (2009).

Chacko and Thomas (2006) have dealt with the distribution of the concomitants of
record values arising from an MTBLD. Chacko and Mary (2013) studied the distribution
of concomitants of GURVs arising from an MTBLD and estimated some of its parame-
ters. We utilize the basic distribution theory of concomitants of GURVs arising from an
MTBLD as given in Chacko and Mary (2013) for developing a technique of estimating
the parameters θ2 and λ2 based on IGURRSS.

Now, we consider a population of units on which the measurement of an auxiliary
variable X and that on a variable Y of primary interest are such that they are jointly
distributed as an MTBLD with cdf given in Eq. (42). We consider a situation where it
is inexpensive and straightforward to measure the auxiliary variable X on any number
of units. However, it is hard and/or expensive to make measurements on variable Y
of primary interest. Hence in this situation, there is much relevance for application of
IGURRSS from the population under discussion.

Applying Definition 1 on a population, if measurements made on units for (X ,Y )
follow a distribution with pdf in Eq. (43), then it results in an igurrss involving obser-
vations YU [i ,k]i , i = 1,2, . . . , n. Clearly, YU [i ,k]i is distributed as the concomitant of the
i -th GURV arising from (43). Chacko and Mary (2013) have derived the means, vari-
ances and covariances of concomitants of record values arising from Eq. (43). Hence,
from Chacko and Mary (2013) we write the following:

α = E
�

Y −θ2

λ2

�

= 0, α(2) = E

�

�

Y −θ2

λ2

�2�

=
π2

3
,

α2:2 = E
�

Y2:2−θ2

λ2

�

=ψ(2)−ψ(1)

and

α(2)2:2 = E

�

�

Y2:2−θ2

λ2

�2�

=ψ
′
(2)+ψ

′
(1)+ {ψ(2)−ψ(1)}2 ,

whereψ(.) andψ
′(.) are the well known digamma and trigamma functions, respectively,

with the property that ψ(2)−ψ(1) = 1 and ψ
′(2)+ψ′(1) = π2

3 − 1. Then we have

E
�

YU [r,k]r

�

= θ2+ ζrλ2, (44)

Var
�

YU [r,k]r

�

= βrλ
2
2, (45)

where

ζr = γ
�

1− 2
� k

k + 1

�r�

, (46)
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and

βr =
π2

3
− γ 2
�

1− 2
� k

k + 1

�r�2

. (47)

Now, by substituting the values of ζr and βr as defined in Equations (46) and (47),
respectively, in the estimators of location and scale parameters derived in Section 3 and
each of its Subsections 3.1 and 3.2, we get the required estimators of the parameters.
Those results are given in the following Subsections.

4.1. Case I: Estimators of θ2 and λ2

Let YU [i ,k]i , i = 1,2, . . . , n be the igurrss obtained from an MTBLD with pdf as in Eq.
(43). Then the BLUEs for the location parameter θ2 and scale parameter λ2 are obtained
by substituting the values of ζr and βr defined by Eq. (46) and Eq. (47), respectively in
Equations (23) and (24). The corresponding variances are also obtained by substituting
the values of ζr and βr defined by Equations (46) and (47) in Equations (27) and (28),
respectively.

REMARK 4. If we write the estimators of θ2 and λ2 based on an igurrss from an MT-
BLD as given in Equations (23) and (24) as θ∗2,k (γ ) and λ∗2,k (γ ) (provided γ is known),
respectively, then the estimators of θ2 and λ2 when γ is replaced by −γ will be θ∗2,k (γ ) and
−λ∗2,k (γ ), respectively. The reason for this is that when γ is replaced by −γ , the value of ζr

become −ζr while βr remains unchanged for n = 1,2, . . . , n. Clearly, from Eq. (27) and
Eq. (28) we have Var[θ∗2,k (−γ )] =Var[θ∗2,k (γ )] and Var[λ∗2,k (−γ )] =Var[λ∗2,k (γ )].

We have evaluated the coefficients ai ,n,k and bi ,n,k of YU [i ,k]i , 1≤ i ≤ n involved in
the BLUEs θ∗2,k and λ∗2,k and the values of λ−2

2 Var(θ∗2,k ) and λ−2
2 Var(λ∗2,k ) for n = 2(1)10,

γ = 0.25(0.25)0.75 and k = 2. Results are presented in Tables 1, 2, and 3. By using
Remark 4 we can use the same tables to obtain the coefficients ai ,n,k and bi ,n,k of YU [i ,k]i ,
1 ≤ i ≤ n in θ∗2,k and λ∗2,k and their variances for n = 2(1)10, γ = −0.25,−0.50,−0.75
and k = 2, as well.

Chacko and Mary (2013) considered the problem of concomitants of GURVs arising
from Eq. (43). They have also tabulated the coefficients of the concomitants of GURVs
involved in the BLUEs as well as the numerical values of λ−2Var(θ̂2,k ) and λ−2Var(λ̂2,k )
for k = 2. In order to analyze the performance of the estimators θ∗2,2 and λ∗2,2 derived
in this section, we have obtained the values of λ−2Var(θ∗2,2), λ

−2Var(λ∗2,2), relative effi-

ciency e1 =
Var(θ̂2,2)
Var(θ∗2,2)

of θ∗2,2 relative to θ̂2,2, relative efficiency e2 =
Var(λ̂2,2)
Var(λ∗2,2)

of λ∗2,2 relative

to λ̂2,2. These results are also included in Table 3. From Table 1 we can observe that

the estimate θ∗2,2 based on IGURRSS is uniformly better than the BLUE θ̂2,2 based on
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TABLE 1
The coefficients ai ,n,2 of YU [i ,1]i in the BLUE θ∗2,2 =

n
∑

i=1
ai ,n,2YU [i ,2]i of θ2.

The coefficients ai ,n,2 in the BLUE θ∗2,2 =
n
∑

i=1
ai ,n,2YU [i ,2]i

n γ a1,n,2 a2,n,2 a3,n,2 a4,n,2 a5,n,2 a6,n,2 a7,n,2 a8,n,2 a9,n,2 a10,n,2

2 0.25 0.250 0.750
0.5 0.250 0.750
0.75 0.250 0.750

3 0.25 0.421 0.322 0.257
0.5 0.422 0.320 0.258
0.75 0.423 0.318 0.259

4 0.25 0.460 0.284 0.167 0.089
0.5 0.461 0.282 0.167 0.090
0.75 0.462 0.280 0.167 0.091

5 0.25 0.467 0.281 0.158 0.075 0.020
0.5 0.467 0.279 0.158 0.076 0.020
0.75 0.469 0.277 0.158 0.077 0.020

6 0.25 0.464 0.281 0.160 0.080 0.026 -0.011
0.5 0.465 0.280 0.161 0.081 0.026 -0.012
0.75 0.465 0.277 0.162 0.082 0.026 -0.013

7 0.25 0.459 0.282 0.165 0.086 0.034 -0.001 -0.025
0.5 0.459 0.280 0.165 0.088 0.035 -0.001 -0.026
0.75 0.460 0.278 0.166 0.090 0.036 -0.002 -0.028

8 0.25 0.454 0.282 0.168 0.093 0.042 0.008 -0.015 -0.031
0.5 0.454 0.280 0.169 0.094 0.043 0.008 -0.016 -0.032
0.75 0.454 0.278 0.170 0.096 0.045 0.008 -0.017 -0.035

9 0.25 0.449 0.282 0.171 0.097 0.048 0.015 -0.007 -0.022 -0.032
0.5 0.449 0.280 0.172 0.099 0.049 0.015 -0.008 -0.023 -0.034
0.75 0.449 0.278 0.173 0.102 0.052 0.016 -0.008 -0.025 -0.037

10 0.25 0.445 0.281 0.173 0.101 0.053 0.020 -0.001 -0.016 -0.025 -0.032
0.5 0.445 0.280 0.174 0.103 0.054 0.021 -0.001 -0.016 -0.027 -0.033
0.75 0.445 0.277 0.175 0.106 0.057 0.023 -0.001 -0.017 -0.029 -0.036

6 1 0.467 0.274 0.163 0.085 0.027 -0.016
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TABLE 2
The coefficients bi ,n,2 of YU [i ,2]i in the BLUE λ∗2,2 =

n
∑

i=1
bi ,n,2YU [i ,2]i of λ2, for n = 2(1)10 and

γ = 0.25(0.25)0.75.

The coefficients bi ,n,2 in the BLUE λ∗2,2 =
n
∑

i=1
bi ,n,2YU [i ,2]i

n γ b1,n,2 b2,n,2 b3,n,2 b4,n,2 b5,n,2 b6,n,2 b7,n,2 b8,n,2 b9,n,2 b10,n,2

2 0.25 -9.000 9.000
0.5 -4.500 4.500
0.75 -3.000 3.000

3 0.25 -5.683 0.708 4.975
0.5 -2.840 0.349 2.490
0.75 -1.891 0.228 1.663

4 0.25 -4.250 -0.695 1.676 3.269
0.5 -2.122 -0.351 0.829 1.643
0.75 -1.410 -0.238 0.542 1.106

5 0.25 -3.488 -1.063 0.551 1.635 2.365
0.5 -1.739 -0.533 0.265 0.814 1.194
0.75 -1.154 -0.358 0.165 0.538 0.809

6 0.25 -3.030 -1.175 0.059 0.886 1.443 1.817
0.5 -1.510 -0.588 0.019 0.435 0.723 0.920
0.75 -1.000 -0.393 0.001 0.281 0.483 0.627

7 0.25 -2.732 -1.207 -0.194 0.486 0.942 1.249 1.455
0.5 -1.361 -0.603 -0.106 0.234 0.468 0.629 0.738
0.75 -0.901 -0.401 -0.081 0.145 0.308 0.424 0.506

8 0.25 -2.527 -1.211 -0.338 0.248 0.641 0.905 1.082 1.200
0.5 -1.258 -0.604 -0.177 0.115 0.315 0.453 0.547 0.610
0.75 -0.832 -0.402 -0.127 0.066 0.204 0.302 0.371 0.419

9 0.25 -2.380 -1.206 -0.427 0.094 0.445 0.680 0.838 0.943 1.013
0.5 -1.185 -0.601 -0.221 0.038 0.216 0.338 0.421 0.477 0.515
0.75 -0.784 -0.399 -0.155 0.015 0.136 0.223 0.284 0.326 0.354

10 0.25 -2.271 -1.198 -0.487 -0.010 0.309 0.524 0.668 0.764 0.828 0.871
0.5 -1.130 -0.597 -0.250 -0.014 0.148 0.259 0.334 0.386 0.420 0.443
0.75 -0.748 -0.395 -0.174 -0.019 0.091 0.169 0.223 0.261 0.287 0.305

6 1 -0.743 -0.295 -0.012 0.200 0.363 0.488
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concomitants of GURVs obtained from a single sequence of units from the given popu-
lation. From Table 3 we observe a similar tendency, though there is a slight fall in the
relative efficiency on the estimate λ∗2,2 based on IGURRSS with four or less observations

the relative efficiency surpassed the performance of its competitor λ̂2,2 for n > 6. It may

be noted that the evaluation of θ̂2,2 and λ̂2,2 involves a variance-covariance matrix of or-
der n with all elements non-zero and its inverse, whereas the evaluation of θ∗2,2 and λ∗2,2
involves a variance-covariance matrix that is just a diagonal matrix of order n. Hence
there is a real advantage in using θ∗2,2 and λ∗2,2 instead of θ̂2,2 and λ̂2,2 as estimators of θ2
and λ2.

TABLE 3
Values of λ−2

2 Var(θ̂2,2), λ
−2
2 Var(θ∗2,2), e1 = relative efficiency of θ∗2,2 relative to θ̂2,2 , λ−2

2 Var(λ̂2,2),

λ−2
2 Var(λ∗2,2), e2 = relative efficiency of λ∗2,2 relative to λ̂2,2, n = 2(1)10 and γ = 0.25(0.25)0.75.

Variances Efficiency Variances Efficiency
n γ λ−2

2 Var(θ̂2,2) λ−2
2 Var(θ∗2,2) e1 λ−2

2 Var(λ̂2,2) λ−2
2 Var(λ∗2,2) e2

2 0.25 2.055 2.059 1.002 532.334 530.834 0.997
0.5 2.053 2.067 1.007 132.615 131.115 0.989
0.75 2.048 2.080 1.015 58.593 57.093 0.974

3 0.25 1.140 1.145 1.005 188.859 188.497 0.998
0.5 1.134 1.155 1.019 46.854 46.492 0.992
0.75 1.124 1.171 1.042 20.556 20.194 0.982

4 0.25 1.078 1.083 1.005 105.021 104.895 0.999
0.5 1.072 1.092 1.019 25.955 25.829 0.995
0.75 1.061 1.106 1.042 11.312 11.186 0.989

5 0.25 1.075 1.080 1.005 71.589 71.544 0.999
0.5 1.069 1.089 1.018 17.642 17.597 0.997
0.75 1.059 1.103 1.042 7.650 7.606 0.994

6 0.25 1.075 1.080 1.005 54.748 54.740 1.000
0.5 1.069 1.088 1.019 13.466 13.459 0.999
0.75 1.059 1.103 1.042 5.819 5.813 0.999

7 0.25 1.072 1.077 1.005 45.001 45.014 1.000
0.5 1.066 1.086 1.019 11.055 11.069 1.001
0.75 1.055 1.101 1.043 4.767 4.782 1.003

8 0.25 1.068 1.073 1.005 38.814 38.842 1.001
0.5 1.061 1.082 1.020 9.530 9.558 1.003
0.75 1.051 1.097 1.044 4.104 4.133 1.007

9 0.25 1.063 1.069 1.005 34.621 34.658 1.001
0.5 1.057 1.078 1.020 8.498 8.536 1.004
0.75 1.046 1.094 1.045 3.659 3.697 1.011

10 0.25 1.059 1.065 1.005 31.634 31.679 1.001
0.5 1.053 1.074 1.020 7.765 7.810 1.006
0.75 1.042 1.090 1.047 3.343 3.389 1.014

6 1 1.036 1.118 1.08 2.202 2.233 1.014

4.2. Case II: Estimation of θ2 when λ2 is known

Suppose the scale parameter λ2 involved in the MTBLD defined by the pdf in Eq. (43)
is known. For convenience, we may take λ2 = 1. Let YU [i ,k]i , i = 1,2, . . . , n be an
igurrss drawn from Eq. (43) for λ2 = 1. Define ZU [r,k]r = YU [r,k]r − ζr , r = 1,2, . . . , n,
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where the constant ζr is defined by Eq. (46). By making use of the theory developed in
Subsection 3.1, we can derive the BLUE θ(0)2,2 of θ2 based on ZU [r,k]r , r = 1,2, . . . , n, and

its variance Var(θ(0)2,2).

REMARK 5. If we write the estimator of θ2 based on an igurrss drawn from an MTBLD
with λ2 = 1 as θ(0)2,2(γ ), then the estimator of θ2 for γ replaced by −γ will be also θ(0)2,2(γ ).
As discussed already, the reason for this is that when γ is replaced by −γ , the value of βr
involved in Eq. (34) remains unchanged for all r = 1,2, . . . , n. The same argument further
proves that Var(θ(0)2,2(γ )) =Var(θ(0)2,2(−γ )). This establishes that the coefficients ci of ZU [i ,k]i

in the BLUE θ(0)2,2 of θ2 and Var(θ(0)2,2) remain unchanged when we replace γ by −γ .

The coefficients ci ,n,2 of ZU [i ,2]i , i = 1,2, . . . , n in θ(0)2,2 and Var(θ(0)2,2) for n = 2(1)10,
γ = 0.25(0.25)0.75 are evaluated and presented in Tables 4 and 5.

TABLE 4
The coefficients ci ,n,2 of ZU [i ,2]i in the BLUE θ(0)2,2 =

n
∑

i=1
ci ,n,2ZU [i ,2]i of θ2, for n = 2(1)10 and

γ = 0.25(0.25)0.75.

The coefficients ci ,n,2 in the BLUE θ(0)2,2 =
n
∑

i=1
ci ,n,2ZU [i ,2]i

n γ c1,n,2 c2,n,2 c3,n,2 c4,n,2 c5,n,2 c6,n,2 c7,n,2 c8,n,2 c9,n,2 c10,n,2

2 0.25 0.500 0.500
0.5 0.502 0.498
0.75 0.504 0.496

3 0.25 0.333 0.333 0.334
0.5 0.334 0.331 0.335
0.75 0.334 0.328 0.337

4 0.25 0.250 0.249 0.250 0.251
0.5 0.249 0.247 0.250 0.254
0.75 0.248 0.243 0.250 0.259

5 0.25 0.200 0.199 0.200 0.200 0.201
0.5 0.198 0.197 0.199 0.202 0.205
0.75 0.195 0.192 0.197 0.204 0.211

6 0.25 0.166 0.166 0.166 0.167 0.167 0.168
0.5 0.164 0.163 0.165 0.167 0.170 0.172
0.75 0.161 0.158 0.162 0.168 0.174 0.178

7 0.25 0.142 0.142 0.142 0.143 0.143 0.144 0.144
0.5 0.140 0.139 0.140 0.143 0.145 0.146 0.147
0.75 0.136 0.134 0.137 0.142 0.147 0.151 0.154

8 0.25 0.124 0.124 0.124 0.125 0.125 0.126 0.126 0.126
0.5 0.122 0.121 0.122 0.124 0.126 0.127 0.128 0.129
0.75 0.118 0.116 0.119 0.123 0.127 0.130 0.133 0.135

9 0.25 0.110 0.110 0.110 0.111 0.111 0.112 0.112 0.112 0.112
0.5 0.108 0.107 0.108 0.110 0.112 0.113 0.114 0.114 0.115
0.75 0.103 0.102 0.104 0.108 0.112 0.115 0.117 0.119 0.120

10 0.25 0.099 0.099 0.099 0.100 0.100 0.100 0.100 0.101 0.101 0.101
0.5 0.097 0.096 0.097 0.099 0.100 0.101 0.102 0.103 0.103 0.103
0.75 0.092 0.091 0.093 0.097 0.100 0.102 0.104 0.106 0.107 0.108

Remark 5 will help to use the same coefficients ci ,n,2 of ZU [i ,2]i to obtain θ(0)2,2 for

negative values of γ as well. Chacko and Mary (2013) derived the BLUE θ̂2,0 of θ2 based
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on concomitants of GURVs arising from Eq. (43) with λ2 = 1 using a single sequence of
units for known γ . They have also tabulated the numerical coefficients of concomitants
of GURVs involved in the BLUE θ̂2,0 and Var(θ̂2,0) for n = 2(1)10, γ = 0.25(0.25)0.75

and k = 2. We compared our estimator θ(0)2,2 derived in this section with θ̂2,0 by com-

puting the relative efficiency e3 =
Var(θ̂2,0)

Var(θ(0)2,2)
. These results are also given in Tables 4 and

5.

TABLE 5
Values of Var(θ(0)2,2), Var(θ̂2,0), e3 = relative efficiency of θ(0)2,2 relative to θ̂2,0, λ−2

2 Var(λ̂2,0) of λ2,

λ−2
2 Var(λ(0)2,2), e4 = relative efficiency of λ(0)2,2 relative to λ̂2,0, n = 2(1)10 and γ = 0.25(0.25)0.75.

Variances Efficiency Variances Efficiency
n γ λ−2

2 Var(θ̂2,0) λ−2
2 Var(θ(0)2,2) e3 λ−2

2 Var(λ̂2,0) λ−2
2 Var(λ(0)2,2) e4

2 0.25 1.648 1.643 1.003 424.826 425.547 0.998
0.5 1.656 1.637 1.011 105.047 105.771 0.993
0.75 1.669 1.627 1.026 45.823 46.553 0.984

3 0.25 1.100 1.095 1.005 181.084 181.385 0.998
0.5 1.110 1.089 1.020 44.686 44.987 0.993
0.75 1.127 1.078 1.045 19.426 19.728 0.985

4 0.25 0.825 0.820 1.006 79.933 79.910 1.000
0.5 0.832 0.812 1.025 19.693 19.672 1.001
0.75 0.844 0.799 1.056 8.534 8.515 1.002

5 0.25 0.659 0.655 1.007 43.676 43.611 1.001
0.5 0.663 0.646 1.027 10.720 10.656 1.006
0.75 0.669 0.630 1.062 4.614 4.552 1.014

6 0.25 0.549 0.545 1.007 27.826 27.769 1.002
0.5 0.550 0.535 1.028 6.799 6.743 1.008
0.75 0.551 0.518 1.063 2.902 2.847 1.019

7 0.25 0.470 0.467 1.007 19.634 19.591 1.002
0.5 0.468 0.456 1.027 4.776 4.733 1.009
0.75 0.465 0.438 1.061 2.021 1.980 1.021

8 0.25 0.410 0.408 1.006 14.857 14.824 1.002
0.5 0.407 0.397 1.026 3.599 3.567 1.009
0.75 0.401 0.379 1.058 1.512 1.481 1.021

9 0.25 0.364 0.362 1.006 11.813 11.789 1.002
0.5 0.360 0.352 1.024 2.852 2.828 1.008
0.75 0.352 0.334 1.055 1.190 1.167 1.020

10 0.25 0.327 0.326 1.006 9.742 9.723 1.002
0.5 0.323 0.315 1.022 2.345 2.327 1.008
0.75 0.313 0.298 1.051 0.973 0.956 1.018

Table 5 shows that the estimate θ(0)2,2 based on igurrss performs better than that of θ̂2,0

based on concomitants of GURVs of a single sequence of units for all values of n ≥ 2.

It is to be noted that determination of Var(θ̂2,0) requires the additional evaluation
of
�n

2

�

integrals for product moments of concomitants of generalized (2) record values

when compared with the determination of integrals to obtain Var(θ(0)2,2). This makes our

estimator θ(0)2,2 superior when compared with θ̂2,0.
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4.3. Case III : Estimation of λ2 when θ2 is known

In this subsection we deal with the problem of estimating the BLUE of λ2 involved in
an MTBLD by using the procedure derived in Subsection 3.2. Let YU [i ,k]i , i = 1,2, . . . , n
be the igurrss obtained from an MTBLD for known θ2 and γ . For convenience, we take
θ2 = 0. Then the estimator λ(0)

2,k of λ2 can be computed using Eq. (40) and Var(λ(0)
2,k ) by

Eq. (41). It is to be noted that ζr and βr involved in Equations (40) and (41) are given
in Equations (46) and (47), respectively.

REMARK 6. If we write the estimator of λ2 based on an igurrss from an MTBLD for
θ2 = 0 as λ(0)

2,k (γ ), given in Eq. (40), then the estimator of λ2 for γ replaced by −γ will

be −λ(0)
2,k (γ ). This is so, since if we replace γ by −γ , then the value of ζr becomes −ζr

while βr remains unchanged for r = 1,2, . . . , n. Clearly, from Eq. (41), we further have
Var
�

λ(0)
2,k (−γ )
�

=Var
�

λ(0)
2,k (γ )
�

.

The numerical coefficients di ,n,2 of YU [i ,2]i , i = 1,2, . . . , n involved in the BLUE λ(0)2,2

and the values of λ−2
2 Var(λ(0)2,2), for n = 2(1)10,γ = 0.25(0.25)0.75 are evaluated and

presented in Table 6. Clearly, Remark 6 helps us to use Tables 5 and 6 to obtain the
coefficients of di ,n,2 of YU [i ,2]i , i = 1,2, . . . , n in λ(0)2,2 and its variance for n = 2(1)10,
γ =−0.25,−0.50,−0.75 as well.

Once λ(0)2,2 is derived as an estimator of λ2, an immediate quest is to consider the

BLUE λ̂2,0 as an estimator of λ2 based on concomitants of the first n GURVs of a single
sequence of independent observations drawn from Eq. (43) for θ2 = 0 so as to have a
comparison of λ(0)2,2 with λ̂2,0. Though Chacko and Mary (2013) have obtained the si-

multaneous BLUEs θ̂2,k and λ̂2,k involved in (43) based on the first n concomitants of

GURVs, they have not derived the expression for the BLUE λ̂2,0 of λ2 in the correspond-
ing cases when θ2 = 0. However using the derived expressions provided by Chacko and
Mary (2013) for the means, variances and covariances of concomitants of record values
arising from Eq. (43) for θ1 = θ2 = 0, λ1 = λ2 = 1, we have computed and tabulated
λ−2

2 Var(λ̂2,0) for n = 3(1)10,γ = 0.25(0.25)0.75 in Tables 5 and 6.

The relative efficiency e4 =
Var(λ̂2,0)

Var(λ(0)2,2)
of λ(0)2,2 relative to λ̂2,0 also has been evaluated

for n = 3(1)10,γ = 0.25(0.25)0.75, and the results are presented in Table 6. From
these tables we observe that except for the case n = 3, k = 2, the estimate λ(0)2,2 based
on IGURRSS is better than that of the estimate based on concomitants of GURVs of a
single sequence of independent units. It is to be noted that the determination of Var(λ̂2,0)
requires the additional evaluation of

�n
2

�

integrals for product moments of concomitants

of record values when compared with the determination of Var(λ(0)2,2). This makes our
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estimator λ(0)2,2 superior when compared with λ̂2,0.

TABLE 6
The coefficients di ,n,2 of YU [i ,2]i in the BLUE λ(0)2,2 =

n
∑

i=1
di ,n,2YU [i ,2]i for n = 2(1)10 and

γ = 0.25(0.25)0.75.

The coefficients di ,n,2 in the BLUE λ(0)2,2 =
n
∑

i=1
di ,n,2YU [i ,2]i

n γ d1,n,2 d2,n,2 d3,n,2 d4,n,2 d5,n,2 d6,n,2 d7,n,2 d8,n,2 d9,n,2 d10,n,2

2 0.25 -10.802 3.594
0.5 -5.404 1.788
0.75 -3.606 1.182

3 0.25 -4.604 1.532 5.633
0.5 -2.298 0.760 2.821
0.75 -1.528 0.501 1.886

4 0.25 -2.028 0.675 2.482 3.699
0.5 -1.005 0.333 1.234 1.860
0.75 -0.660 0.216 0.814 1.253

5 0.25 -1.107 0.368 1.354 2.019 2.467
0.5 -0.544 0.180 0.668 1.008 1.244
0.75 -0.353 0.116 0.435 0.670 0.843

6 0.25 -0.705 0.235 0.862 1.285 1.571 1.762
0.5 -0.345 0.114 0.423 0.638 0.787 0.891
0.75 -0.221 0.072 0.272 0.419 0.527 0.606

7 0.25 -0.497 0.165 0.608 0.907 1.108 1.243 1.334
0.5 -0.242 0.080 0.297 0.448 0.553 0.625 0.675
0.75 -0.153 0.050 0.189 0.291 0.367 0.421 0.460

8 0.25 -0.376 0.125 0.460 0.686 0.838 0.941 1.010 1.056
0.5 -0.182 0.060 0.224 0.337 0.417 0.471 0.509 0.534
0.75 -0.115 0.038 0.142 0.218 0.274 0.315 0.344 0.364

9 0.25 -0.299 0.100 0.366 0.546 0.667 0.748 0.803 0.839 0.864
0.5 -0.144 0.048 0.177 0.267 0.330 0.374 0.403 0.424 0.437
0.75 -0.090 0.030 0.112 0.172 0.216 0.248 0.271 0.287 0.298

10 0.25 -0.247 0.082 0.302 0.450 0.550 0.617 0.662 0.692 0.713 0.726
0.5 -0.119 0.039 0.146 0.220 0.272 0.307 0.332 0.349 0.360 0.367
0.75 -0.074 0.024 0.091 0.141 0.177 0.203 0.222 0.235 0.244 0.250

5. REAL DATA GENERATION USING IGURRSS AND BIVARIATE MODEL CON-
STRUCTION

Usually, two types of problems arise when investigating a bivariate population. Less
severity is experienced when information about the form of the distribution of the pop-
ulation random variable is available. In addition to the problem of determining the
parameters of the available form of the bivariate distribution completely, if we face a
constraint describing the difficulty on measuring the variable Y of primary interest,
then, in this case, the results of this paper developed in the previous sections will be
very useful. However, more complexity is involved in modelling the parent bivariate
distribution if its form as well is not available. If a methodology evolves in this situation
to model the parent bivariate distribution, then it will be ingenious and priceless. We
describe such a methodology below.
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Suppose that fX ,Y (x, y) is an absolutely continuous bivariate density function of a
random vector (X ,Y )with pdf fX (x) and cdf FX (x) on the marginal random variable X .
Then the pdf of the n-th concomitant of the generalized lower (k) record value YU [n,k]
arising from fX ,Y (x, y) can be written as

fYU [n,k]
(y) =

kn

Γ (n)

∫

x

[− log (1− FX (x))]
n−1 [1− FX (x)]

k−1 fX ,Y (x, y)dx. (48)

Thomas et al. (2014) have used an auxiliary family of pdf’s fYA[ω,k]
(y) with reference

to Eq. (48) as

fYA[ω,k]
(y) =

kω

Γ (ω)

∫

x

[− log (1− FX (x))]
ω−1 [1− FX (x)]

k−1 fX ,Y (x, y)dx, ω> 0, (49)

and established that fX (x) and fYA[ω,k]
(y) together determine uniquely the parent bivari-

ate distribution fX ,Y (x, y). As a consequence of the above theory, they further used a
process of impounding fX (x) with fYA[ω,k]

(y) and through an inverse Mellin transform
determined fX ,Y (x, y).

Thus, if the measuring mechanism on Y is very costly or difficult, whereas one
can take any number of observations on the auxiliary variable X , then to get the re-
quired data for applying the theory explained above for modelling fX ,Y (x, y), it is enough
to apply IGURRSS in several, say N , cycles. If the maximum order of generalized
upper (k) record value that we intend to observe is n, then for given k and any m
(1≤ m ≤ n) we get a group of N independent observations YU [m,k]i for i = 1,2, . . . ,N ,
and in this case we can use these observations for modelling the univariate distributions
with pdf fYU [m,k]

(y). If by the above process we could model fYU [m,k]
(y) for m = 1,2, . . . , n

and further model fX (x) using the marginal X observations observed on each of the enu-
merated units, then the methodology explained in the previous paragraph helps us to
identify fX ,Y (x, y) of the parent bivariate distribution.

Paul and Thomas (2017) have applied the above methodology for k = 1 to model
fX ,Y (x, y), where X is the height of acacia trees which can be measured very quickly
from the ground by a hypsometer, whereas Y represents the volume of usable timber of
acacia trees, which is very difficult to measure keeping the trees alive. It is to be noted
that for k = 1, the generated data by IGURRSS are only classical upper record values.
Thus, to obtain the required data, one has to enumerate a huge number of trees. The oc-
currence of outliers, in that case, arrests the further occurrence of higher-ranked classical
record values. Hence in this illustration, we fix k = 2 and thereby carry out IGURRSS
for k = 2 only. Thus, to apply the results given here to this modelling problem, we have
measured the height of the randomly selected acacia trees belonging to each of 6 differ-
ent lines of each of the six randomly chosen blocks of acacia (Acacia Auriculiformis, A.
Cunn. ex Benth.) trees planted in an extensive area of barren lands of Kerala Univer-
sity campus, Trivandrum, using a hypsometer. The number of trees selected randomly
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for enumeration of their height in the i -th line of any block is up to a number that is
enough to observe i generalized (2) record values for i = 1,2,3,4,5,6. We have engaged
a labourer to take the perimeter of the usable pieces of timber (those pieces whose top
parts have at least 20 inches perimeter) at each multiple of 5 feet height from the bottom
of the tree in the i -th line whose height is the i -th generalized upper (2) record value for
i = 1,2,3,4,5,6 in each block. We then computed the timber volume of each piece of
a tree by approximating it as a cylinder whose radius is the mean radius of its top and
bottom points. By adding the volume of each piece of a tree, the usable timber volume
is calculated for each of the selected trees by the IGURRSS strategy. We may call the
IGURRSS data collected from the j -th block as the data of the j -th cycle of IGURRSS
(as defined in Remark 3). The details of the data collected are given below in Table 7.

It is well known that random variables such as height of trees and timber volume
of trees often have an apporoximately normal distribution. Also the existing literature
contains discussions on the similarity between normal and logistic distributions in terms
of shape and some basic properties (for details see Balakrishnan, 1992, p. 8 and Johnson
et al., 1994, p. 119). Now for constructing an appropriate bivariate model for the distri-
bution of the population random vector (X ,Y ) based on the data available with us, first
we ascertain whether the Normal distribution with pdf

gX (x; ν ,α) =
1
p

2πα
e−

(x−ν)2

2α2 , (50)

or the logistic distribution with pdf

fX (x;θ1,λ1) =
e−

(x−θ1)
λ1

λ1

�

1+ e−
(x−θ1)
λ1

�2 (51)

fits the marginal data on the variable X representing the height of acacia trees well. In
the process of IGURRSS, in order to realize the required record values on X , altogether
308 trees were enumerated, while enumeration of the timber volume was made on only
36 trees. In the supplementary material the enumerated X values from 308 trees and
the timber volume from 36 trees are provided. If we use the marginal X observations of
308 units considered in IGURRSS to fit the models in Equations (50) and (51) using the
maximum likelihood method, then the estimated values of the parameters in the models
and the associated K-S statistics with the p-values are given in Table 8.

From Table 8, we observe that, though both normal and logistic distributions fit the
data on tree height well, it is evident that the logistic distribution can be taken as the
most suitable model for the data on the height of acacia trees. Hence we may take

fX (x; 74.4681,11.2002) =
1

11.2002
e

x−74.4681
11.2002

�

1+ e
x−74.4681

11.2002

�2 (52)
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TABLE 7
igurrss data on height and timber volume of acacia trees.

Cycle Line no.

Generalized (2) Record
Value rank of the Generalized (2) Record Timber

selected tree height volume YU [i ,2]
trees (i ) XU (i ,2) in feet in cubic feet

1 1 76.3780 8.1291
2 2 89.3701 11.4060
3 3 103.7730 13.7987

I 4 4 104.9869 20.7435
5 5 82.6772 3.24591
6 6 102.4278 9.6731

1 1 78.2152 7.1187
2 2 60.8596 10.7052
3 3 83.6942 20.4190

II 4 4 100.0656 9.7888
5 5 101.0499 5.2839
6 6 137.1391 23.6338

1 1 71.0302 4.5978
2 2 79.1667 5.9110
3 3 81.8898 25.1125

III 4 4 72.6378 6.2172
5 5 95.9646 29.2668
6 6 124.0157 12.5485

1 1 61.8110 8.4915
2 2 70.7677 22.2393
3 3 74.1470 2.1296

IV 4 4 79.8885 11.7794
5 5 87.1063 8.0686
6 6 97.1129 17.8589

1 1 57.9396 5.9888
2 2 66.2730 2.2890
3 3 96.1286 44.9545

V 4 4 82.6443 47.8350
5 5 77.2638 8.2584
6 6 101.7060 10.0898

1 1 51.8373 1.4341
2 2 96.6207 16.0036
3 3 88.4843 16.7355

VI 4 4 92.5197 12.5897
5 5 103.8714 11.7407
6 6 94.3242 11.3510
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TABLE 8
Summary of the fitted distributions.

Model Estimated values of the parameters K-S statistic p-value

Normal ν=75.4443, α = 19.6555 0.0639 0.1551
Logistic θ1=74.4681, λ1=11.2002 0.0476 0.4736

as the fitted model for the pdf of X . We may expect trees’ height and timber volume
as similarly behaving variables. As X is observed to be distributed as logistic, we may
expect the same type of distribution for Y as well. For the data given in Table 7 we
have evaluated the Pearson correlation coefficient r between height and timber volume
of trees as r = 0.3253, which is not a high correlation. The well-known Morgenstern
bivariate distribution is an ideal bivariate model with a known form of distributions for
the marginals and contains the knowledge that the marginal random variables are not
highly correlated. This information guides us to postulate for the random vector (X ,Y )
a Morgenstern type bivariate logistic distribution with pdf given by

fX ,Y (x, y) =
e−

(x−74.4681)
11.2002

11.2002×
¦

1+ e−
(x−74.4681)

11.2002

©2

e−
(y−θ2)
λ2

λ2

§

1+ e−
(y−θ2)
λ2

ª2 (53)

×









1+ γ

¦

1− e−
(x−74.4681)

11.2002

©

§

1− e−
(y−θ2)
λ2

ª

¦

1+ e−
(x−74.4681)

11.2002

©

§

1+ e−
(y−θ2)
λ2

ª









,

to the population from which the igurrss data as given in Table 7 were drawn. There are
limitations to validate the model postulated as above using the data available in Table 7
as each X observation in the Table 7 is a generalized (2) record value and the correspond-
ing Y observation is a concomitant of a generalized (2) record value. The 36 bivariate
observations in the data are those which are enumerated from 36 different independent
sets of units by choosing one unit from each set. The usual classical methods fail to pro-
vide a suitable technique to validate the model of Eq. (53) using the data of above nature
at hand.

It is to be noted that if XU (i ,k) is the i -th GURV observed on the variable X of a
unit arising from a sequence of independent units of the population with a bivariate
distribution defined in Eq. (53), then the pdf of the concomitant YU [i ,k] of the i -th
GURV XU (i ,k) on X is given by (for details see, Chacko and Mary, 2013)

fYU [i ,k]i
(y) =

e
− y−θ2

λ2

λ2

�

1+ e
− y−θ2

λ2

�2







1+ γ
�

1− 2
� k

k + 1

�i
�





1− e
− y−θ2

λ2

1+ e
− y−θ2

λ2











, (54)
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for i = 1,2, . . . , and k = 2. Using the pdf in Eq. (53), we can evaluate the correlation
coefficient of the MTBLD as ρ = 3γ

π2 . Thus the method of moments type estimate of
γ can be taken as (see Chacko and Thomas, 2006; Chacko and Mary, 2013„ for further
details)

γ̂ =







−1, if r ≤−3/π2,
1, if r ≥ 3/π2,

rπ2

3 , otherwise.
(55)

Since the correlation coefficient for the data is r=0.3253, we obtain the estimate
of γ as γ̂ = 1.0. Therefore, by considering the known value of γ as γ̂ = 1, we can
utilize the estimators given in Subsection 4.1. We have evaluated the coefficients ai ,6,2,

i = 1,2, . . . , 6, involved in θ∗2,2 =
6
∑

i=1
ai ,6,2YU [i ,2]i and the variance

Var (θ∗2,2,i )
λ2 based on a

single cycle. These are included in the last row of Tables 1 and 3. If we write θ∗2,2,i as the
estimate obtained from the i -th cycle, i = 1,2, . . . , 6, then those values and their overall
means θ̃2 with its variance are given in Table 9.

TABLE 9
Estimate θ∗2,2,i of θ2 from the cycle i , i = 1, . . . , 6, = with the mean θ̃2 =

6
∑

i=1

θ∗2,2,i
6 of all those estimates

and λ−2Var(θ̃2).

Cycle No. 1 2 3 4 5 6 Mean Variance

Estimates θ∗2,2,1 θ∗2,2,2 θ∗2,2,3 θ∗2,2,4 θ∗2,2,5 θ∗2,2,6 θ̃2
Var(θ̃2)
λ2

Values 10.86 10.19 8.98 11.35 14.87 8.99 10.87 0.17

If the interest is to obtain a similar estimate of λ2 based on 6 cycles, then one can

use the coefficients bi ,6,2 of YU [i ,2], i = 1,2, . . . , 6 in λ∗2,2 =
6
∑

i=1
bi ,6,2YU [i ,2]i , its variance

Var(λ∗2,2)
λ2 , based on a single cycle as presented in Table 2. As in the case of estimating θ,

if we write λ∗2,2,i to denote the estimate of λ2 from cycle 2, then the refined estimate of

λ2 is obtained by λ̃2 =
∑6

i=1
λ∗2,2,i

6 . The obtained estimate of λ2 is 12.1156. Thus, the
obtained estimates θ̃2 = 10.8733 for θ and λ̃2 = 12.1156 are very valuable information
for the University of Kerala, to ascertain its timber wealth. If Eq. (53) is the parent
bivariate distribution for our population random variable (X ,Y ), then the YU [1,2] values
collected from all six cycles (in Table 7) viz. 8.129, 7.119, 4.598, 8.492, 5.989, 1.434, can
be considered as a random sample of size 6 drawn from a distribution with pdf fYU [1,2]

, i.e.,
one obtained from Eq. (54) with i = 1. Based on the above 6 i i d observations assumed
to be drawn from fYU [1,2]

we have worked out the K-S statistic between the empirical cdf
and the distribution corresponding to fYU [1,2]

, and have observed that it is not significant
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at 5% level, indicating the validation of the assumed model fYU [1,2]
. In general, YU [i ,2]

values collected from all six cycles can be considered as a random sample of size 6 drawn
from a distribution with pdf fYU [i ,2]

(y), i.e., obtained from the distribution defined in
Eq. (54). We have repeated the above stated procedure. The details are given in Table
10, and we noticed that data on YU [i ,2] validate the model fYU [i ,2]

, for all i = 1,2, . . . , 6.

TABLE 10
Model suitability of the distribution fYU [i ,2]

, i = 1,2, . . . , 6 for the IGURRSS data ( Table 7).

Distrib- Observations viewed as a sample of size 6 K-S Tabled Infe-
utional from the considered distribution statistic Critical rence
Model Value (at 5%)

fYU (1,2)
8.129, 7.119, 4.598, 8.492, 5.989, 1.434 0.144 0.563

M
od

el
V

al
id

at
ed

fYU (2,2)
11.406, 10.705, 5.911, 22.239, 2.289, 16.004 0.201 0.563

fYU (3,2)
13.799, 20.419, 25.113, 2.130, 44.955, 16.736 0.262 0.563

fYU (4,2)
20.744, 9.789, 6.217, 11.779, 47.835, 12.590 0.282 0.563

fYU (5,2)
3.246, 5.284, 29.267, 8.067, 8.258, 11.741 0.380 0.563

fYU (6,2)
9.673, 23.634, 12.549, 17.859, 10.090, 11.351 0.457 0.563

REMARK 7. Since the sample size in Table 10 for each case is small with 6 observations,
we have chosen the 5% critical value of the K-S test rather than computing the p - value for
validating the model.

Since the model fYU [i ,k]
is validated for all i = 1, . . . , 6, we recursively accept the pdf fYU [n,2]

of the concomitant of YU [n,2] of generalized upper (2) record height of acacia trees as

fYU [n,2]
(y) =

e−
y−10.8733

6.4842

6.4842
�

1+ e−
y−10.8733

6.4842

�2

¨

1+(1− 21−n)
�

1− e−
y−10.8733

6.4842

1+ e−
y−10.8733

6.4842

�«

. (56)

Based on the data generated from the characteristics of acacia trees, we have modelled
the pdf of the marginal distribution fX (x; 74.4681,11.2002) of the random variable X in
(X ,Y ) as

fX (x; 74.4681,11.2002) =
1

11.2002
e

x−74.4681
11.2002

¦

1+ e
x−74.4681

11.2002

©−2
(57)

and modelled the pdf of the auxiliary density determined by the pdf given in Eq. (56) as

fYA(ω,2)
(y) =

1
6.4842

e−
y−10.8733

6.4842

¦

1+ e−
y−10.8733

6.4842

©

¨

1+
�

1− 2
�

2
3

�ω� 1− e−
y−10.8733

6.4842

1+ e−
y−10.8733

6.4842

«

. (58)
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As a consequence of the results established in Thomas et al. (2014), we now state the
following theorem and outline its proof.

THEOREM 8. Let (X ,Y ) be a bivariate random vector with marginal pdf
fX (x; 74.4681,11.2002) of X as given by Eq. (57). Suppose the auxiliary pdf fYA[ω,2]

(y)
determined by the n-th concomitant of generalized upper (2) record value is defined as in Eq.
(58). Then, fX (x; 74.4681,11.2002) and fYA[ω,2]

(y) together determine uniquely the parent
bivariate density fX ,Y (x, y) as

fX ,Y (x, y) =
e−

x−74.4681
11.2002

11.2002
¦

1+ e−
x−74.4681

11.2002

©2

e−
x−10.8733

6.48421

6.48421
¦

1+ e−
x−10.8733

6.48421

©2

×
¨

1+
1− e−

x−74.4681
11.2002

1+ e−
x−74.4681

11.2002

1− e−
x−10.8733

6.4842

1+ e−
x−10.8733

6.4842

«

. (59)

PROOF. Using Eq. (57) we conveniently write

fX (x) =
e−

x−74.4681
11.2002

11.2002
¦

1+ e−
x−74.4681

11.2002

©2 , (60)

FX (x) =
1

1+ e−
x−74.4681

11.2002

. (61)

If we also write

fY (y) =
e−

x−10.8733
6.4842

6.48421
¦

1+ e−
x−10.8733

6.4842

©2 , (62)

FY (y) =
1

1+ e−
x−10.8733

6.4842

, (63)

then, instead of Eq. (59), it is enough to prove that

fX ,Y (x, y) = fX (x) fY (y){1+(1− 2FX (x)) (1− 2FY (y))} . (64)

From Eq. (58) we have

fYA[ω,2]
(y) = fY (y)
§

1−
�

1− 2
�

2
3

�ω�

[1− 2FY (y)]
ª

, (65)

but by definition

fYA[ω,2]
(y) =

2ω

Γ (ω)

∫

x

[− log (1− FX (x))]
ω−1 [1− FX (x)]

k−1 fX ,Y (x, y)dx.
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Putting U = 1− log (1− FX (x)) we get

fYA[ω,2]
(y) =

fY (y)2
ω

Γ (ω)

∞
∫

0

uω−1e−u fU |Y (u|y)du. (66)

Then we have
∞
∫

0

uω−1e−u fU |Y (u|y)du =
fYA[ω,2]

(y)Γ (ω)

fY (y)2ω
. (67)

Clearly, the left side integral is the Mellin transform of the function e−u fU |Y (u|y). Hence,
from Equations from (65) to (66) we write

∞
∫

0

uω−1e−u fU |Y (u|y)du =
Γ (ω)
2ω
−
§

Γ (ω)
2ω
−

2Γ (ω)
3ω

ª

(1− 2FY (y)) . (68)

We may write M−1(h(ω)) as the inverse Mellin transform of h(ω). Now from Bateman
(1954, p.312), we use the expressions M−1

¦

Γ (ω)
2ω

©

= (e−u )2 and M−1
¦

Γ (ω)
3ω

©

= (e−u )3 in
Eq. (68) to solve for fU |Y (u|y). It is given by

fU |Y (u|y) = e−u −
�

e−u − 2e−2u	 (1− 2FY (y)) .

As 1− FX (x) = e−u , we have FX (x) = 1− e−u , and consequently we have

fX ,Y (x, y) = fX (x) fY (y){1+(1− 2FX (x)) (1− 2FY (y))} .
From this we obtain Eq. (64). Thus, the theorem is proved. 2

As a consequence of the revalidation of the Morgenstern type bivariate logistic dis-
tribution, we conclude that the estimated mean timber volume of usable timber of acacia
trees in the plantation from which the igurrss data were generated is ν̃2=10.8733. This
estimate will be of much use to the authorities of the University of Kerala if they take a
decision to dispose this tree wealth.

The IGURRSS strategy of sampling together with the approach adopted in this sec-
tion can be adopted as such to modelling problems in similar situations for other bivari-
ate populations as well.
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