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1. INTRODUCTION

In reliability analysis, the lifetime of any electronic device or items is varying in nature.
Hence, it seems to be logical to model the lifetime of equipments/items with a specific
probability distribution. The exponential distribution and it’s different generalizations,
e.g., Weibull, gamma, exponentiated exponential etc. have been often used to model the
data with constant, monotone hazard rate etc. Sometimes, the finite mixtures of two or
more probability distributions might be the better alternative choice to analyze any life
time data sets, such as Lindley [see, Lindley (1958)], generalized Lindley [see, Nadarajah
et al. (2011)], xgamma [see, Sen et al. (2016)], Akash distribution [see, Shankar (2015)].
In the same era of generalization of statistical distributions, the one parameter xgamma
distribution (XGD) is one of them, a special finite mixture of exponential and gamma
distributions, proposed by Sen et al. (2016). In many situations, finite mixture distri-
butions arising from the standard distributions, play a better role in modelling lifetime
phenomena as compared to the standard distributions. Recently, Yadav et al. (2019) in-
troduced the inverted version of XGD which possesses the upside-down bathtub-shaped
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hazard function. The XGD did not provide enough flexibility for analyzing different
types of lifetime data as it is of one parameter. It will be useful to consider further al-
ternatives of XGD to increase the flexibility for modelling purposes. In this article, we
propose a two parameter family of distribution which generalizes the XGD, named as
the exponentiated xgamma distribution (EXGD) and hence the name proposed. The
procedure used is based on certain finite mixtures of exponential and gamma distribu-
tions. The shape parameter provides more flexibility for describing different types of
data allowing hazard rate modelling. Moreover, we also derived some statistical char-
acteristics, viz., moments, conditional moments, order statistics, reliability curves and
indices in this present study.

However, the main objective of this article is three fold: First, we have introduced
a new probability distribution and studied its several statistical properties as the gener-
alized version of XGD, introduced by Shankar (2015). Second, we have estimate the
model parameters, the survival function and the hazard rate function for a specified
mission time by using different classical methods of estimation, viz., method of maxi-
mum likelihood (ML), method of ordinary least square and weighted least square (LS
and WLS), method of Cramèr-von-Mises (CM) and method of maximum product spac-
ing (MPS), respectively. Third, Monte Carlo simulations study has been carried out to
compare the performances of considered methods of estimation of the proposed model.
Recently, many authors have contributed in development of new distributions and es-
timation of model parameters by using different estimation methods, viz., Sen et al.
(2019), Afify and Mohamed (2020), Nassar et al. (2020) and Afify et al. (2020) have in-
troduced Quasi Xgamma-Geometric distribution, three parameter exponential distri-
bution, estimation methods of alpha power exponential distribution, heavy tailed expo-
nential distribution, Weibull Marshall-Olkin Lindley distribution, respectively. Here,
our aim is to fill up this gap through this present study. To the best of our knowledge
thus so far, no attempt has been made to introduced the generalized version of XGD as
well as the different methods of estimation of model parameters, the survival function
and the hazard rate functions, respectively.

Rest of the article is organized as follows: Section 2 introduced EXGD and it’s reli-
ability characteristics. Moments, generating function, mean deviation, conditional mo-
ments, order statistics and reliability curve etc. and algorithm of random number gen-
eration from EXGD are discussed in Section 3. Section 4 discussed the different meth-
ods of estimation, viz., maximum likelihood estimate (MLE), ordinary least square and
weighted least square estimate (LSE and WLSE), Cramèr-von-Mises estimate (CME) and
maximum product spacing estimate (MPSE) of the parameters (α,θ), survival function
and hazard rate function. Monte Carlo simulation study is carried out to compare the
performances among the estimators (MLE, LSE, WLSE, CME, MPSE) of the survival
and hazard rate functions in terms of their mean squared errors (MSEs) in Section 5.
Two data sets are analyzed to illustrate the applicability of the proposed model in real
life scenario in Section 6 and finally concluding remarks are made in Section 7.
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2. THE MODEL AND ITS RELIABILITY CHARACTERISTICS

Recently, Sen et al. (2016) introduced a finite mixture of exponential (θ) and gamma
(3,θ) distributions with mixing proportion π1 =

θ
1+θ and π2 = 1−π1 =

1
1+θ to obtain a

probability distribution, named as xgamma distribution (XGD), given with the follow-
ing probability density function (PDF) and cumulative distribution function(CDF)

f (x;θ) =
θ2

(1+θ)

�

1+
θ

2
x2
�

e−θx ; x > 0, θ > 0 (1)

and

F (x;θ) = 1−

�

1+θ+θx + θ
2 x2

2

�

(1+θ)
e−θx ; x > 0, θ > 0, (2)

respectively, where θ is a scale parameter. They have also investigated some important
mathematical, structural and survival properties and shown that XGD has more flexibil-
ity than the exponential as well as the Lindley distributions. In the era of generalization
of new distributions by introducing an extra parameter to any baseline distributions, nu-
merous methods are available in literature which possess different shapes of hazard rate.
For example, Gupta and Kundu (2001) introduced the exponentiated exponential dis-
tributions as an alternative to Weibull and gamma distributions, Nadarajah et al. (2011)
proposed generalized version of the Lindley distribution and shown the superiority of
that model compared to the Lindley distribution, exponentiated Rayleigh distribution
[see, Surles and Padgett (2001)], exponentiated gamma distribution [see, Shawky and
Bakoban (2006)], exponentiated Weibull distribution [see, Mudholkar and Srivastava
(1993)], exponentiated transmuted generalized Rayleigh distribution [see, Afify et al.
(2015)], exponentiated Weibull-Pareto distribution [see, Afify et al. (2016)] and expo-
nentiated Weibull-H family of distributions [see, Cordeiro et al. (2017)] etc. All these
models are generalized by introducing a shape parameter as power of CDF of the base
line model. Obviously, the model with more parameters provides more flexibility but it
adds the complexity in the estimation procedure at the same time. Moving on the same
path, here we proposed the exponentiated version of XGD, i.e., exponentiated XGD,
named as EXGD.

Let X be a continuous random variable with CDF, given in Equation (3), then by
introducing shape parameter α as the power of CDF, i.e., [F (x;θ)]α, where, α ∈ R+,
provides more flexible shapes than the base line distribution. The CDF and PDF of
EXGD are respectively obtained as

F (x;α,θ ) =
�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�α

; x > 0, α > 0, θ > 0

(3)
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and hence the corresponding PDF is obtained as

f (x;α,θ) =
αθ2

1+θ

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�(α−1)�

1+
θx2

2

�

e−θx .

(4)

If α= 1, then the PDF, given in Equation (4), coincide with the PDF, given in Equation
(1), i.e., converted to XGD. Now, the shape of PDF and CDF for different values of
α and θ are presented in Figure 1 which indicates that EXGD is right-skewed and uni-
model or inverted J-shaped distribution.
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Figure 1 – PDF and CDF plots of EXGD.

It is to be noted that the basic tools for studying the ageing and associated character-
istics of any lifetime equipments, may be a living organism or a system of components
are the survival and hazard rate functions. The probability that a patient, component
or system will survive beyond any specified time (t > 0) is called the survival function,
where as hazard rate function is the conditional probability that the failure will be in
time interval (t , t+∆t ), where∆t is very small time interval, given that a patient, com-
ponent or system will survive beyond time (t > 0). The survival function and hazard
rate function of EXGD(α,θ) for given values of t are

S(t ;α,θ) = 1−
�

1−
�

1+θ+θt +
θ2 t 2

2

�

e−θt

1+θ

�α

(5)
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and

H (t ;α,θ) =











αθ2
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h
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2
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e−θt
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2
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�
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�
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2 t 2

2

�

e−θt

1+θ

�α











, (6)

respectively and typical shapes of the survival and hazard rate functions for EXGD are
displayed in Figure 2 for certain choices of α and θ.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reliability function plot

x

S
(x

)

α = 0.5 , θ = 0.5
α = 1 , θ = 2
α = 3 , θ = 3
α = 5 , θ = 2
α = 3 , θ = 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Hazard function plot

x

H
(x

)

α = 0.5 , θ = 0.5

α = 1 , θ = 2

α = 0.75 , θ = 3

α = 5 , θ = 2

α = 0.5 , θ = 0.5

Figure 2 – Survival and hazard rate functions plot EXGD.

It is to be noted that for α= 1, hazard rate function coincide with hazard rate func-
tion of baseline distribution [see, Sen et al. (2016)], while for other choices of shape and
scale parameters, viz., α≥ 1, θ > 1, it follows the pattern of increasing failure rate (IFR),
decreasing failure rate (DFR) when α < 1 , θ < 1 and the pattern of bathtub shaped haz-
ard rate may be traced for α < 1,θ > 1.

3. SOME STATISTICAL PROPERTIES

In this section, we have studied some statistical properties of EXGD such as moments,
generating function, mean deviation, quantile function, conditional moments, order
statistics etc.
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3.1. Moments

Here, we have derived the expression for the moments of the EXGD(α,θ). The c -th
order raw moment about origin for EXGD is given as

E(x c ) =

∞
∫

0

x c f (x)d x

=

∞
∫

0

x c αθ
2

1+θ
e−θx

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�(α−1)�

1+
θx2

2

�

d x

=

∞
∫

0

x c αθ
2

1+θ
e−θx

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�(α−1)

d x

+
θ

2

∞
∫

0

x c+2 αθ
2

1+θ
e−θx

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�(α−1)

d x.

Moreover, the expression for moments is not in explicit form, thus, the results based on
the following Lemma 1, stated below, has been used to calculate the moments.

LEMMA 1. Let

K1(a, b , c ,δ) =

∞
∫

0

x c e−δx
�

1−
�

1+ b + b x +
b 2x2

2

�

e−b x

1+ b

�(a−1)

d x

=
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

×
(−1)i b j (b/2)l Γ (c + k + l + 1)
(1+ b )i (b i +δ)(c+k+l+1)

and

K2(a, b , c ,δ) =

∞
∫

0

x c+2e−δx
�

1−
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1+ b + b x +
b 2x2

2

�

e−b x
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�(a−1)

d x,

=
∞
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i

��

i
j

��
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(−1)i b j (b/2)l Γ (c + 2+ k + l + 1)
(1+ b )i (b i +δ)(c+2+k+l+1)

.
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PROOF.

K1(a, b , c ,δ) =
∞
∑

i=0

�

a− 1
i

�

(−1)i
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∞
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x c e−δx−i b x
�
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b 2x2

2
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d x

=
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∑
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b j
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∑
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�

∞
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0

x (c+k)
�

1+
b x
2

�k

e−δx−i b x d x

=
∞
∑

i=0

�

a− 1
i

�

(−1)i

(1+ b )i

i
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�

i
j

�

b j
j
∑

k=0
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j
k

� k
∑

l=0

�

k
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�

(b/2)l
∞
∫

0

x c+k+l e−δx−i b x d x, (7)

by use of gamma function, the above equation is written as

K1(a, b , c ,δ) =
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

×
(−1)i b j (b/2)l Γ (c + k + l + 1)
(1+ b )i (b i +δ)(c+k+l+1)

.

Similarly solve the K2(a, b , c ,δ)-

K2(a, b , c ,δ) =
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

×
(−1)i b j (b/2)l Γ (c + 2+ k + l + 1)
(1+ b )i (b i +δ)(c+2+k+l+1)

.

2

By putting α= a, θ= b , δ = θ, c = r in the above Lemma 1, the expression of r -th
raw moment is given as

E(x r ) =
αθ2

1+θ

�

K1(α,θ, r,θ)+
θ

2
K2(α,θ, r,θ)

�

. (8)

Hence, the first four raw moments of EXGD are obtained as

E(x) =
αθ2

1+θ

�

K1(α,θ, 1,θ)+
θ

2
K2(α,θ, 1,θ)

�

,

E(x2) =
αθ2

1+θ

�

K1(α,θ, 2,θ)+
θ

2
K2(α,θ, 2,θ)

�

,



310 A.S. Yadav, M. Saha, H. Tripathi and S. Kumar

E(x3) =
αθ2

1+θ

�

K1(α,θ, 3,θ)+
θ

2
K2(α,θ, 3,θ)

�

,

E(x4) =
αθ2

1+θ

�

K1(α,θ, 4,θ)+
θ

2
K2(α,θ, 4,θ)

�

.

Moreover, the first four central moments can be obtained by using the relation between
the raw moments and central moments. Hence, the Pearson measures of skewness (SK)
and kurtosis (KR) based on second(µ2), third (µ3) and fourth (µ4) central moments are
obtained by using the following relation, given below:

SK =
µ2

3

µ3
2

and KR=
µ4

µ2
2

.

3.2. Generating functions

Here, in this subsection, the different generating functions, namely, moment generating
function Mx (t ), characteristics functionΦx (t ) and Kumulants generating function Kx (t )
are derived and presented in the following equations:

Mx (t ) = E(e t x ) =

∞
∫

0

e t x f (x)d x

=

∞
∫

0

αθ2

1+θ

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�(α−1)�

1+
θx2

2

�

×e−x(θ−t )d x.
(9)

By using the Lemma 1, the moment generating is given as

Mx (t ) =
αθ2

1+θ

�

K1(α,θ, 0,θ− t )+
θ

2
K2(α,θ, 0,θ− t )

�

.

The characteristic function for EXGD is simply obtained by replacing dummy param-
eter t by i t , where, i2 =−1, given as

Φx (t ) =
αθ2

1+θ

�

K1(α,θ, 0,θ− i t )+
θ

2
K2(α,θ, 0,θ− i t )

�

.

The kumulants generating function is the logarithm of the moment generating function
and is obtained as

Kx (t ) = logΦx (t ) = log
�

αθ2

1+θ

�

+ log
�

K1(α,θ, 0,θ− i t )+
θ

2
K2(α,θ, 0,θ− i t )

�

.
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3.3. Mean deviation

The mean deviation about mean of random variable X , having density function (3) is
obtained by;

M .D =

∞
∫

0

|(x −µ)| f (x)d x

where, µ=E(x)

M .D =

µ
∫

o

(µ− x) f (x)d x +

∞
∫

µ

(x −µ) f (x)d x,

M .D =µF (µ)−

µ
∫

0

x f (x)d x +

∞
∫

µ

x f (x)d x −µ+µF (µ),

M .D = 2µF (µ)− 2µ+ 2

∞
∫

µ

x f (x)d x,

where, F (µ) stands for CDF of X upto point µ and

∞
∫

µ

x f (x)d x =
αθ2

1+θ

�

L1(α,θ, 1,θ, x)+
θ

2
L2(α,θ, 1,θ, x)

�

.

Using the value from the above integral one can evaluate mean deviation about mean.

3.4. Quantile Function

If Q(p) be the quantile of order p of the EXGD random variable X , then the quantile
function will be the solution of the following equation

p =
�

1−
�

1+θ+θQ(p)+
θ2Q(p)2

2

�

e−θQ(p)

1+θ

�α

. (10)

The skewness and kurtosis are the two important measures to study the symmetry and
convexity of the curve. The Bowley measure of skewness [see, Bowley (1920)] and
Moors measure of kurtosis [see, Moors (1988)] based on quantile can be used and are
given as follows:

SK =
Q( 34 )− 2Q( 12 )+Q( 14 )

Q( 34 )−Q( 14 )
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and

KR =
Q( 78 )−Q( 58 )+Q( 38 )−Q( 18 )

Q( 68 )−Q( 28 )
.

3.5. Conditional moments

The conditional moments about origin is defined as:

E(X n |X > x) =

∞
∫

x

xn f (x)
1− F (x)

d x

where, F(x) is CDF of EXGD, given in Equation (3).

E(X n |X > x) =
1

1− F (x)
αθ2

1+θ





∞
∫

x

xnη(xi ,θ)d x +

∞
∫

x

θ

2
xn+2η(xi ,θ)d x



 , (11)

where η(xi ,θ) = e−θx
h

1−
�

1+θ+θx + θ
2 x2

2

�

e−θx

1+θ

i(α−1)
. The above Equation (11) in-

volves two integral which can not be easily tractable. Thus, the following Lemma is used
to evaluate the integral.

LEMMA 2. Let

L1(a, b , c ,δ, t ) =

∞
∫

t

x c e−δx
�

1−
�

1+ b + b x +
b 2x2

2

�

e−b x

1+ b

�(a−1)

d x

=
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

(−1)i b j (b/2)l

(1+ b )i

×
Γ c + k + l + 1, t (b i +δ)
(b i +δ)(c+k+l+1)

and

L2(a, b , c ,δ, t ) =

∞
∫

t

x c+2e−δx
�

1−
�

1+ b + b x +
b 2x2

2

�

e−b x

1+ b

�(a−1)

d x

=
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

(−1)i b j (b/2)l

(1+ b )i

×
Γ c + 2+ k + l + 1, t (b i +δ)

(b i +δ)(c+2+k+l+1)
.
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PROOF. The proof of the above lemmas are straight forward as the previous one.

L1(a, b , c ,δ, t ) =
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

(−1)i b j (b/2)l

(1+ b )i

×
∞
∫

t

x c+k+l e−x(b i+δ)d x,

On simplifications,

L1(a, b , c ,δ, t ) =
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

(−1)i b j (b/2)l

(1+ b )i

×
Γ c + k + l + 1, t (b i +δ)
(b i +δ)(c+k+l+1)

.

and in similar way

L2(a, b , c ,δ, t ) =
∞
∑

i=0

i
∑

j=0

j
∑

k=0

k
∑

l=0

�

a− 1
i

��

i
j

��

j
k

��

k
l

�

(−1)i b j (b/2)l

(1+ b )i

×
Γ c + 2+ k + l + 1, t (b i +δ)

(b i +δ)(c+2+k+l+1)
.

2

Hence, the expression of E(X n |X > x) is given as

E(X n |X > x) =
1

1− F (x)
αθ2

1+θ

�

L1(α,θ, n,θ, x)+
θ

2
L2(α,θ, n,θ, x)

�

.

Using Lemma 2, the conditional moments are given as

E(X |X > x) =
1

1− F (x)
αθ2

1+θ

�

L1(α,θ, 1,θ, x)+
θ

2
L2(α,θ, 1,θ, x)

�

,

E(X 2|X > x) =
1

1− F (x)
αθ2

1+θ

�

L1(α,θ, 2,θ, x)+
θ

2
L2(α,θ, 2,θ, x)

�

,

E(X 3|X > x) =
1

1− F (x)
αθ2

1+θ

�

L1(α,θ, 3,θ, x)+
θ

2
L2(α,θ, 3,θ, x)

�

and

E(X 4|xX > x) =
1

1− F (x)
αθ2

1+θ

�

L1(α,θ, 4,θ, x)+
θ

2
L2(α,θ, 4,θ, x)

�

.
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3.6. Order statistics

Let X1, X2, X3, ..., Xn is a random sample of size from EXGD(α,θ). Then, the ordered
observations X(1) < X(2) < X(3) < .....< X(n) constitute the order statistic. Let X(k;n) de-
notes the k-th order statistic, then the CDF and PDF of k-th order statistic are computed
as

F (X(k;n) = t ) =
n
∑

j=k

n− j
∑

l=0

�

n
j

��

n− j
l

�

(−1)l F ( j+l )(t )

and

f (X(k;n) = t ) =
n!

(n− k)!(k − 1)!

n−k
∑

l=0

�

n− k
l

�

(−1)l [F (t )]l F k−1(t ) f (t ),

respectively. Using Equations (3) and (4), the CDF and PDF of k-th order statistic are

F (X(k;n) = t ) =
n
∑

j=k

n− j
∑

l=0

�

n
j

��

n− j
l

�

(−1)l
�

1−
�

1+θ+θt +
θ2 t 2

2

�

e−θt

1+θ

�α( j+l )

(12)

and

f (X(k;n) = t ) =
αθ2

1+θ
n!

(n− k)!(k − 1)!
e−θt (1+

θt 2

2
)

n−k
∑

l=0

�

n− k
l

�

(−1)l

×
�

1−
�

1+θ+θt +
θ2 t 2

2

�

e−θt

1+θ

�α(k+l )−1

, (13)

respectively. The distribution X(1) = min(X(1) < X(2) < X(3) < ..... < X(n)) and X(n) =
max(X(1) < X(2) < X(3) < ..... < X(n)) can be computed with help of above Equations
(12) and (13) by putting k = 1 and k = n respectively.

3.7. Reliability curves and indices

Bonferroni and Lorenz curves are very important tools in actuarial and population sci-
ence to study the income and poverty level. Besides these filed, the reliability curve also
evaluated based on specific probability distributions. Let X be a random variable with
PDF f (x), defined in Equation (4) then Bonferroni curve B(p) and Lorenz curve L(p)
are defined by the following Equations (14) and (15)

B(p) =
1

pµ

q
∫

0

x f (x)d x,
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B(p) =
1

pµ






µ−

∞
∫

q

x f (x)d x






,

B(p) =
1

pµ

�

µ− αθ
2

1+θ

�

L1(α,θ, 1,θ, q)+
θ

2
L2(α,θ, 1,θ, q)

�

�

(14)

and

L(p) =
1
µ

q
∫

0

x f (x)d x,

L(p) =
1
µ






µ−

∞
∫

q

x f (x)d x






,

L(p) =
1
µ

�

µ− αθ
2

1+θ

�

L1(α,θ, 1,θ, q)+
θ

2
L2(α,θ, 1,θ, q)

�

�

, (15)

where µ= E(x) and the indices based on these two curves are given as

B = 1−
1
∫

0

B(p)d p

and

G = 1− 2

1
∫

0

L(p)d p.

3.8. Random number generation

To generate random number from EXGD (α,θ). The following steps may be used.

1. Specify the values of α, θ and n.

2. Generate Ui from uniform(0,1) distribution (i = 1,2, ..., n).

3. Generate Vi from gamma(α,θ) distribution (i = 1,2, ..., n).

4. Generate Wi from gamma(α+ 2,θ) distribution (i = 1,2, ..., n).
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5. If Ui ≤
θ
θ+1 , set Xi =Vi , otherwise set Xi =Wi .

If we take α= 1, then we get the random variates from XGD(θ).

4. DIFFERENT METHODS OF ESTIMATION

In this section, we have used five methods of estimation to estimate the unknown param-
eters as well as survival function S(t ) and hazard rate function H (t ), namely, maximum
likelihood estimation (MLE), least squares estimation (LSE), weighted least squares esti-
mation (WLSE), Cramèr-von-Mises estimator estimation (CME) and maximum product
of spacings estimation (MPSE) respectively for the EXGD(α,θ).

4.1. Maximum likelihood estimator

Let X1, X2, . . . , Xn be a random sample of size n from Equation (4). Then, the log-
likelihood function for the observed random sample x1, x2, . . . , xn is given as

ℓ(α,θ) = n logα+ 2n logθ− n log(1+θ)−θ
n
∑

i=1

xi +(α− 1)
n
∑

i=1

log U (xi )

+
n
∑

i=1

log

�

1+
θx2

i

2

�

where,

U (xi ) =
�

1−
�

1+θ+θxi +
θ2x2

i

2

�

e−θxi

1+θ

�

.

The resulting partial derivatives of the log-likelihood function are

∂ ℓ(α,θ)
∂ α

=
n
α
+

n
∑

i=1

log U (xi ) = 0 (16)

and

∂ ℓ(α,θ)
∂ θ

= −
n(θ+ 2)
θ(1+θ)

−
n
∑

i=1

(x2
i /2)

(1+(θx2
i /2))

+
n
∑

i=1

xi +

(1−α)
(1+θ)2

n
∑

i=1

e−θxi (2θxi +θ
2xi +(θ

2x2
i /2)+ (θ

2x3
i /2)+ (θ

3x3
i /2))

U (Xi )
.

(17)

Equating these partial derivatives to zero do not yield closed-form solutions for the
MLEs and thus a numerical method is used for solving these equations simultaneously.
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Substituting the MLEs (α̂ml e , θ̂ml e ) of (α,θ) and using the invariance properties of MLES,
we can get the estimators of S(t ) and H (t ) as

Ŝ(t )ml e = 1−



1−



1+ θ̂ml e + θ̂ml e t +
θ̂2

ml e t 2

2





e−θ̂ml e t

1+ θ̂ml e





α̂ml e

(18)

and

Ĥ (t )ml e =















αθ̂2
ml e

1+θ̂ml e

[b1]
(α̂ml e−1)× a1

1− [b1]
α̂ml e















,

(19)

where

a1 =

 

1+
θ̂ml e t 2

2

!

e−θ̂ml e t

and

b1 = 1−



1+ θ̂ml e + θ̂ml e t +
θ̂2

ml e t 2

2





e−θ̂ml e t

1+ θ̂ml e

,

respectively for the given value of t .

4.2. Ordinary least square and weighted least square estimator

The least square estimator (LSE) and the weighted least square estimator (WLSE) were
proposed by Swain et al. (1988) to estimate the parameters of the Beta distribution. Sup-
pose F (x( j )) denotes the CDF of the ordered random variables x(1) < x(2) < · · · < x(n),
where, {x1, x2, · · · , xn} is a random sample of size n from a distribution function F (·).
Therefore, in this case, the LSEs of (α,θ), say, (α̂l s e , θ̂l s e ) can be obtained by minimizing

L (α,θ) =
n
∑

i=1

�

F (xi :n |α,θ)− i
n+ 1

�2

with respect to α and θ, where, F (·) is the CDF, given in Equation (3). Equivalently, it
can be obtained by solving

∂L (α,θ)
∂ α

=
n
∑

i=1

�

F (xi :n |α,θ)− i
n+ 1

�

∂ F (xi :n |α,θ)
∂ α

= 0
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and
∂L (α,θ)
∂ θ

=
n
∑

i=1

�

F (xi :n |α,θ)− i
n+ 1

�

∂ F (xi :n |α,θ)
∂ θ

= 0,

where

∂ F (xi :n |α,θ)
∂ α

=
�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�α

×

log
�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�

(20)

and

∂ F (xi :n |α,θ)
∂ θ

= α

�

1−
�

1+θ+θx +
θ2x2

2

�

e−θx

1+θ

�α−1

× a2, (21)

where a2 =
h

e−θx

(1+θ)2

�

1+θ+θx + θ
2 x2

2

�

(1+ x +θx)− (1+ x +θx2) e−θx

(1+θ)

i

.

Hence, substituting the LSEs, we can get the estimators of survival and hazard rate
functions as

Ŝ(t )l s e = 1−



1−



1+ θ̂l s e + θ̂l s e t +
θ̂2

l s e t 2

2





e−θ̂l s e t

1+ θ̂l s e





α̂l s e

(22)

and

Ĥ (t )l s e =















αθ̂2
l s e

1+θ̂l s e

[b2]
(α̂l s e−1)× a3

1− [b2]
α̂l s e















, (23)

respectively. Where,

a3 =

 

1+
θ̂l s e t 2

2

!

e−θ̂l s e t

and

b2 = 1−



1+ θ̂l s e + θ̂l s e t +
θ̂2

l s e t 2

2





e−θ̂l s e t

1+ θ̂l s e

.
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WLSE proposed by Swain et al. (1988). The WLSEs of (α,θ), say, (α̂w l s e , θ̂w l s e ) can
be obtained by minimizing the functionW (α,θ)

W (α,θ) =
n
∑

i=1

(n+ 1)2(n+ 2)
i(n− i + 1)

�

F (xi :n |α,θ)− i
n+ 1

�2

.

These estimators can also be obtained by partial derivatives ofW (α,θ) with respect to
α and θ and by equating both the equations to zero

∂W (α,θ)
∂ α

=
n
∑

i=1

(n+ 1)2(n+ 2)
i(n− i + 1)

�

F (xi :n |α,θ)− i
n+ 1

�

∂ F (xi :n |α,θ)
∂ α

= 0

and

∂W (α,θ)
∂ θ

=
n
∑

i=1

(n+ 1)2(n+ 2)
i(n− i + 1)

�

F (xi :n |α,θ)− i
n+ 1

�

∂ F (xi :n |α,θ)
∂ θ

= 0,

where ∂ F (xi :n |α,θ)
∂ α and ∂ F (xi :n |α,θ)

∂ θ are already defined in Equations (20) and (21) respec-
tively. Hence, the estimators of survival and hazard rate functions are obtained as

Ŝ(t )w l s e = 1−



1−



1+ θ̂w l s e + θ̂w l s e t +
θ̂2

w l s e t 2

2





e−θ̂w l s e t

1+ θ̂w l s e





α̂w l s e

(24)

and

Ĥ (t )w l s e =















αθ̂2
w l s e

1+θ̂w l s e

[b3]
(α̂w l s e−1)× a4

1− [b3]
α̂w l s e















.

(25)

Where

a4 =

 

1+
θ̂w l s e t 2

2

!

e−θ̂w l s e t

and

b3 = 1−



1+ θ̂w l s e + θ̂w l s e t +
θ̂2

w l s e t 2

2





e−θ̂w l s e t

1+ θ̂w l s e

.
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4.3. Cramèr-von-Mises estimator

To motivate our choice of Cramèr-von-Mises type minimum distance estimators, Shawky
and Bakoban (2006) provided empirical evidence that the bias of the estimator is smaller
than the other minimum distance estimators. Thus, the Cramer-von-Mises estimators
of (α,θ), say, (α̂c me , θ̂c me ) can be obtained by minimizing the function

C (α,θ) =
1

12n
+

n
∑

i=1

�

F (xi :n |α,θ)− 2i − 1
2n

�2

with respect to α and θ. The estimators can also be obtained by solving the non-linear
equations

∂ C (α,θ)
∂ α

=
n
∑

i=1

�

F (xi :n |α,θ)− 2i − 1
2n

�

∂ F (xi :n |α,θ)
∂ α

= 0

and
∂ C (α,θ)
∂ θ

=
n
∑

i=1

�

F (xi :n |α,θ)− 2i − 1
2n

�

∂ F (xi :n |α,θ)
∂ θ

= 0,

where ∂ F (xi :n |α,θ)
∂ α and ∂ F (xi :n |α,θ)

∂ θ are defined in Equations (20) and (21) respectively. Hence,
substituting the CMEs, we can get the estimators of survival and hazard rate functions
as

Ŝ(t )c me = 1−



1−

 

1+ θ̂c me + θ̂c me t +
θ̂2

c me t 2

2

!

e−θ̂c me t

1+ θ̂c me





α̂c me

(26)

and

Ĥ (t )c me =











αθ̂2
c me

1+θ̂c me

[b4]
(α̂c me−1)× a5

1− [b4]
α̂c me











,

(27)

where

a5 =

 

1+
θ̂c me t 2

2

!

e−θ̂c me t

and

b4 = 1−

 

1+ θ̂c me + θ̂c me t +
θ̂2

c me t 2

2

!

e−θ̂c me t

1+ θ̂c me

.
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4.4. Maximum product spacings estimator

The maximum product spacing method has been introduced by H and K (1979), Cheng
and Amin (1983) as an alternative to MLE for the estimation of the unknown parameters
of continuous univariate distributions. This method was also derived independently by
Ranneby (1984) as an approximation to the Kullback-Leibler measure of information.
To motivate our choice, Cheng and Amin (1983) proved that this method is as efficient
as the MLE and consistent under more general conditions. Let us define

Di (α,θ) = F (xi :n | α,θ)− F
�

xi−1:n | α,θ
�

i = 1,2, . . . , n,

where F (x0:n | α,θ) = 0, F (xn+1:n | θ) = 1− F (xn | θ) and clearly
∑n+1

i=1 Di (θ) = 1.

The MPSEs of the parameters (α,θ), say, (α̂m p s e , θ̂m p s e ) are obtained by maximizing the
geometric mean of the spacings with respect to α and θ as

GM =
�

n+1
∏

i=1

Di (α,θ)
�

1
n+1

,

or, equivalently, by maximizing the function

H = logGM =
1

n+ 1

n+1
∑

i=1

logDi (α,θ)

with respect to α and θ. The estimates of α and θ are obtained by solving the following
non-linear equations

∂ H
∂ α
=

1
n+ 1

n+1
∑

i=1

1
Di (α,θ)

∂ Di (α,θ)
∂ α

= 0

and
∂ H
∂ θ
=

1
n+ 1

n+1
∑

i=1

1
Di (α,θ)

∂ Di (α,θ)
∂ θ

= 0,

where
∂ Di (α,θ)
∂ α

=
∂ F (xi :n | α,θ)

∂ α
−
∂ F

�

xi−1:n | α,θ
�

∂ α
and

∂ Di (α,θ)
∂ θ

=
∂ F (xi :n | α,θ)

∂ θ
−
∂ F

�

xi−1:n | α,θ
�

∂ θ

can be computed from Equations (21) and (22) respectively. Hence, by using (α̂m p s , θ̂m p s )
the estimators of survival and hazard rate functions are obtained as

Ŝ(t )m p s = 1−



1−



1+ θ̂m p s + θ̂m p s t +
θ̂2

m p s t 2

2





e−θ̂m p s t

1+ θ̂m p s





α̂m p s

(28)
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and

Ĥ (t )m p s =















αθ̂2
m p s

1+θ̂m p s

[b5]
(α̂m p s−1)× a6

1− [b5]
α̂m p s















(29)

where a6 =
�

1+
θ̂m p s t 2

2

�

e−θ̂m p s t and

b5 = 1−



1+ θ̂m p s + θ̂m p s t +
θ̂2

m p s t 2

2





e−θ̂m p s t

1+ θ̂m p s

.

5. SIMULATION STUDY

In this section, the numerical comparisons have been made through Monte Carlo simu-
lation study to assess the performances of the proposed estimators (MLE, LSE, WLSE,
CME and MPSE) of the parameters α ,θ, survival function S(t ) and hazard rate func-
tion H (t ) for EXGD, discussed in Section 5. For this purpose, we considered differ-
ent choices of the parameters values, such as, (α,θ)=(0.5,0.75), (0.75,0.75), (1.5,0.75),
(1.5,1.5), specified time points t = 2,3,4,2,1 and different sample sizes n = 10, 20, 30, 50
and 100 respectively. For each design, sample with each of size n are drawn from the
original sample and replicated 3,000 times. It is to be noted that the estimates of the pa-
rameters are not explicitly available. Therefore, we may use any numerical methods of
solution for so. The estimates of α and θ are obtained by using non-linear minimization
(NLM) [see, Dennis and Schnabel (1983)]method. Using NLM method, we have to it-
erate the negative log-likelihood function with some initial guess value for the estimator
say α0 = 0.01 and θ0 = 0.01, and get the estimates of α and θ as α̂ and θ̂ respectively.
For the specified time t > 0, S(t ) and H (t ) are nothing but the functions of the param-
eters, the estimates of S(t ) and H (t ) are computed by plug-in principle. First, we have
calculated the average estimates and corresponding mean squared errors (MSEs) of the
parameters (α,θ), S(t ) and H (t ) using MLE, LSE, WLSE, CME, MPSE. The results are
reported in Tables 1 2, 3, and 4 respectively.
From Tables 1, 2, 3 and 4 it has been observed that as the sample sizes increases, the
MSEs of all the estimators decreases, which actually verified the consistency of the es-
timators that we have considered. Also from Tables 1, 2, it is observed that MLE is
the best as it produces the least MSEs for most of the considered set ups in our stud-
ies for α, and θ. From Table 3, 4, the similar patterns are observed in case of S(t ) and
H (t ) respectively. The overall positions of the estimators in terms of MSEs are followed
the order M LE <W LSE < LSE <C M E <M P SE for α, θ, S(t ) and H (t ) respectively.
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0.007282

0.007821
0.007552

0.008625
0.006682

0.076568
0.090570

0.083327
0.124689

0.054504
30

0.281957
0.287333

0.286369
0.277702

0.301298
0.883529

0.838095
0.846844

0.896782
0.772641

0.004702
0.005134

0.004902
0.005501

0.004512
0.045595

0.053816
0.048364

0.065621
0.039191

50
0.285078

0.286636
0.286300

0.280773
0.298435

0.864992
0.840389

0.846701
0.874912

0.789806
0.002943

0.003327
0.003127

0.003465
0.002933

0.023981
0.029877

0.026453
0.033573

0.022907
100

0.284581
0.283505

0.283750
0.280534

0.292501
0.846417

0.837091
0.840746

0.853967
0.802834

0.001406
0.001599

0.001489
0.001641

0.001423
0.010749

0.014387
0.012321

0.014979
0.011682

10
0.32036

1.73342
1

0.407736
0.418699

0.418642
0.405615

0.428332
1.722624

1.483976
1.485237

1.801969
1.315671

0.025291
0.025164

0.024922
0.027553

0.024045
0.545891

0.657963
0.614588

1.051728
0.463718

20
0.413095

0.418067
0.417550

0.411390
0.426320

1.557050
1.448767

1.460423
1.587018

1.325180
0.017028

0.017977
0.017629

0.018023
0.017904

0.228013
0.315897

0.287453
0.323967

0.299034
30

0.417170
0.419832

0.419567
0.415420

0.427007
1.500063

1.427147
1.440818

1.514267
1.331370

0.015349
0.015945

0.015792
0.015695

0.016385
0.175238

0.229519
0.214170

0.207198
0.250380

50
0.416309

0.416978
0.416891

0.414230
0.423311

1.469416
1.428586

1.440390
1.479716

1.355142
0.012433

0.012800
0.012651

0.012486
0.013450

0.131785
0.168420

0.154152
0.147497

0.193786
100

0.418175
0.416920

0.417395
0.415539

0.422357
1.443538

1.428760
1.434238

1.453913
1.376747

0.011214
0.011111

0.011121
0.010899

0.011935
0.113801

0.131036
0.122886

0.118222
0.153576
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All the computations are performed using programs written in the open source sta-
tistical package R [see, Ihaka and Gentleman (1996)].

6. REAL DATA ANALYSIS

In this Section, we considered two real data sets for illustrative purpose to show the appli-
cability of the proposed study and calculated S(t ) and H (t ) using considered methods of
estimation, namely, MLE, LSE, WLSE, CME and MPSE for EXGD. At first, we checked
whether the considered data sets actually come from EXGD or not by goodness-of-fit
test and compared it with the following lifetime distributions:

Exponential distribution (ED)

F (x;θ) = 1− e−θx ;

Lindley distribution (LD)

F (x;θ) = 1− 1+θ+ xθ
(1+θ)

e−θx ;

Xgamma distribution (XGD)

F (x;θ) = 1−

�

1+θ+θx + θ
2 x2

2

�

(1+θ)
e−θx ;

Inverted exponential distribution (IED)

F (x;θ) = e−1/θx ;

Akash distribution (AKD)

F (x;θ) = 1−
�

1+
θx(θx + 2)
θ2+ 2

�

e−θx ;

Generalized exponential distribution (GED)

F (x;θ,α) = (1− e−θx )α;

Weibull distribution (WD)
F (x;θ,α) = 1− e−θxα ;
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Exponential power distribution (EPD)

F (x;α,θ) = 1− e1−e (x/θ)
α

;

Pareto type II (Pty2)

F (x;θ,α) = 1−
�

1+
x
θ

�−α
;

Frechet distribution (FD)
F (x;θ,α) = e−(α/x)

θ

;

Transmuted burr XII distribution (TBXIID)

F (x;α,θ, ν) = 1+[(ν − 1)(1+ xθ)−α−λ(1+ xθ)−2α] |ν | ≤ 1;

Generalized inverted Kumaraswamy distribution (GIKD)

F (x;α,θ,λ) = [1− (1+ xλ)−α]θ;

Exponentiated exponential weibull distribution (EEWD)

F (x;a,α,λ,θ) = [1− e−α(e
λxθ−1)]a ;

Exponentiated Rayleigh weibull distribution (ERWD) :

F (x;a,α,λ,θ) = [1− e−α((e
λxθ−1)2)]a ;

where, x ∈R+ and Θ = (a,α,λ,θ) ∈R+, |ν | ≤ 1.
This procedure is based on the Kolmogorov-Smirnov (KS) statistic which compare

an empirical and a theoretical CDFs and is defined as Dn = S u px |Fn(x)− F (x;α,θ)|,
where S u px is the supremum of the set of distances, Fn(x) is the empirical distribution
function and F (x;α,θ) is the theoretical CDF.

Note that, KS statistic to be used only to verify the goodness-of-fit and not as a dis-
crimination criteria. Therefore, we considered four discrimination criteria based on the
log-likelihood function evaluated at the MLEs. The criteria are: AIC (Akaike Informa-
tion Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian Infor-
mation Criterion) HQIC (Hannan-Quinn Information Criterion). These statistics are
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given by AI C =−2l (Θ̂)+2 p, BI C =−2l (Θ̂)+2 ln(n), C AI C =−2l (Θ̂)+ p ln(n)+1,
H QI C = −2l (Θ̂) + 2 p ln(ln(n)), where l (Θ̂), Θ̂ = (α̂, θ̂), denotes the log-likelihood
function evaluated at the MLEs, p is the number of model parameters and n is the sample
size. Information-theoretic criteria are used because they are valid even for non-nested
models [see, Burnham and Anderson (2002)]. The model with lowest values for these
statistics could be chosen as the best model to fit the data.

The values of MLEs of the parameters, l (Θ̂), AIC, CAIC, HQIC, BIC, KS statistic
and p-value are displayed in Table 5 which indicated that EXGD is best choices among
the popular one parameter, two parameters, three parameters and four parameters prob-
ability distributions. Hence, EXGD may be chosen as an alternative model. Further,
the fitted density for all the considered distributions with the histogram of the data sets
and empirical CDFs plots are presented in Figures 3 and 4 respectively which indicated
that the proposed model provides adequate fitting to the considered data sets. The de-
tails of the summary statistics for the considered data sets are given in Table 6. It is to be
noted that for both the considered data sets coefficient of skewness (CS) and coefficient
of kurtosis (CK) are greater than 0 and 3 respectively. Hence, both the data sets are pos-
itively skewed having higher pick than mesokurtic curve. Thus, we may conclude that
the considered data sets may fit our proposed model. Again the estimates of (α,θ), S(t )
and H (t ) are obtained for the specified value of t using different methods of estimation,
mentioned in Table 7.

Data Set I: The data set is considered by Hinkley (1977) and consists of thirty suc-
cessive values of March precipitation in Minneapolis/St Paul. The details description
of the data set are also available in Barreto-Souza and Cribari-Neto (2009) in fitting the
generalized exponential-Poisson distribution.

0.77,1.74,0.81,1.2,1.95,1.2,0.47,1.43,3.37,2.2,3,3.09,1.51,2.1,0.52

1.62,1.31,0.32,0.59,0.81,2.81,1.87,1.18,1.35,4.75,2.48,0.96,1.89,0.9,2.05.

Data Set II:Following observations represents the new cases of Covid-19 in Italy
during 31st May 2020 to 30th June 2020 [see, https://www.worldometers.info/
coronavirus/country/italy/] and the observations are:

334,200,319,322,177,519,270,197,280,283,202,380,163,347,337,

301,210,329,332,251,264,224,221,113,190,296,255,175,174,126,142.

7. CONCLUDING REMARKS

In this article, we have proposed a new positively skewed probability distribution, namely,
EXGD by considering the generalization of XGD, introduced by Sen et al. (2016). Dif-
ferent statistical properties have been discussed. Different methods of estimation, viz.,
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Fitted density for Data I
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Figure 3 – Fitted PDF and ECDF plot of EXGD for data set-I.

Fitted density for Data II
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Figure 4 – Fitted PDF and ECDF plot of EXGD for data set-II.
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TABLE 5
The model fitting summary for the considered data sets.

Data-I

Model MLE -LogL AIC CAIC HQIC BIC KS p-value

ED 0.5970 45.4743 92.9487 94.3499 93.3970 95.3499 0.2352 0.0723

LD 0.9096 43.1437 88.2874 89.6886 88.7357 90.6886 0.1882 0.2383

XGD 1.1899 44.5735 91.1470 92.5482 91.5953 93.5482 0.2226 0.1022

IED 0.8760 46.2726 94.5452 95.9464 94.9934 96.9464 0.2539 0.0417

AKD 1.2618 43.4281 88.8562 90.2574 89.3044 91.2574 0.1839 0.2618

WD [1.8086, 1.8923] 38.6432 81.2865 84.0889 82.1830 85.0889 0.0689 0.9988

EPD [1.2187, 2.7383] 40.4768 84.9537 87.7561 85.8502 88.7561 0.1163 0.8113

Pty2 [217.6379, 130.3267] 45.5498 95.0996 97.9020 95.9961 98.9020 0.2355 0.0716

FD [1.5497, 1.0160] 41.91701 87.8340 90.6364 88.7305 91.6364 0.1524 0.4882

TBXIID [0.9786, 2.4267, -0.7736] 39.4976 84.9952 89.1988 86.3399 90.1988 0.1042 0.9004

GIKD [1.9507, 3.9386, 1.422397] 39.3173 84.6346 88.8381 85.9793 89.8381 0.1094 0.8649

EEWD [3.593647e+00,4.013854e+02, 38.3911 84.7822 90.3870 86.5752 91.3870 0.0645 0.9996
2.975671e-03,9.801200e-01]

ERWD [1.178358e-01, 6.708125e+01, 45.8590 99.7180 105.3228 101.5111 106.3228 0.5256 1.261e-07
4.865773e-04, 3.876810e+00]

EXGD [3.1190, 1.8712] 38.1657 80.3315 83.1339 81.2280 84.1339 0.0549 0.9999

Data-II

Model MLE -LogL AIC CAIC HQIC BIC KS p-value

ED 0.0039 202.8888 407.7776 409.2116 408.2450 410.2116 0.3745 0.0002

LD 0.0077 192.7683 387.5367 388.9706 388.0040 389.9706 0.2685 0.0183

XGD 0.0116 187.9498 377.8997 379.3336 378.3670 380.3336 0.2086 0.1162

IED 0.0045 202.9955 407.9909 409.4249 408.4584 410.4250 0.4082 3.474e-05

AKD 0.0117 187.7058 377.4116 378.8455 377.8790 379.8456 0.2051 0.1275

GED [17.6204, 74.0342] 180.8895 365.7790 368.6470 366.7139 369.6470 0.0950 0.9174

WD [3.1477, 285.6479] 181.8270 367.6539 370.5219 368.5889 371.5220 0.0935 0.9258

EPD [1.9917, 357.3169] 184.8707 373.7413 376.6093 374.6763 377.6094 0.1438 0.4977

Pty2 [18161.8239, 71.1638] 203.0816 410.1632 413.0312 411.0981 414.0312 0.3737 0.0002

FD [2.9061, 203.2252] 183.7472 371.4944 374.3624 372.4293 9375.3624 0.1303 0.6217

GWD [0.5684, 0.5325, 0.0020] 231.0539 468.1077 472.4097 469.5101 473.4098 0.5652 7.043e-10

GIKD [1.4051, 141.6643, 0.6726] 205.8233 417.6467 421.9486 419.0489 422.9486 0.3637 0.0003

EEWD [0.2112,0.0777, 281.1283 570.2566 575.9925 572.1264 576.9925 0.5791 2.147e-10
0.0140,0.4207]

ERWD [0.6880, 1.1898, 218.0393 444.0786 449.8146 445.9484 450.8145 1.0000 2.2e-16
0.0022, 0.9552]

EXGD [4.3109, 0.0193] 180.7038 365.4075 368.2755 366.3425 369.2756 0.0852 0.9637

TABLE 6
Descriptive statistics of the considered data sets I and II.

Data n Min- 1st Median 3rd Max- Mean Standard CS CK
imum Quartile Quartile imum deviation

I 30 0.320 0.915 1.470 2.087 4.750 1.675 1.000616 1.086682 4.206884

II 31 113.0 193.5 255.0 320.5 519.0 255.9 86.96565 0.6954319 3.859879
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TABLE 7
Estimates of α,θ, S(t ) and H (t ) using different methods of estimation.

Data Methods α̂ θ̂ t S(t) H(t)

I MLE 3.11950 1.87116 0.50 0.9332 0.3138
LSE 2.60052 1.74781 1.0 0.7136 0.6124

WLSE 2.60025 1.74335 1.5 0.5001 0.8143
CVM 2.89159 1.83137 2.0 0.3082 1.0448
MPS 8.72348 48.62405 0.15 0.0099 43.6020

II MLE 4.30925 0.01936 100 0.9929 0.0005
LSE 3.20334 0.01744 105 0.9815 0.0009

WLSE 3.54571 0.01819 110 0.9796 0.0010
CVM 3.62415 0.01815 115 0.9762 0.0012
MPS 7.23657 22.08711 0.50 0.0004 19.28633

MLE, LSE, WLSE, CME and MPSE have been discussed for estimating the unknown
parameters as well as reliability characteristics of the proposed model. Monte Carlo sim-
ulation study has been carried out to compare the performances of different methods
of estimation of the parameters as well as survival and hazard rate functions in terms of
their corresponding MSEs. Finally, two real data sets have been analyzed for illustration
purposes of the proposed study. The Bayesian estimation of the parameters and the reli-
ability characteristics may be further studied under different types of censoring scheme
with suitable priors and loss function.
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SUMMARY

In this article, the exponentiated version of xgamma distribution (XGD) has been introduced,
named as exponentiated xgamma distribution (EXGD). The proposed model is positively skewed
and possess some interesting shapes of hazard rate, i.e., increasing, decreasing and bathtub. Dif-
ferent distributional properties of proposed model, viz., moments, generating functions, mean
deviation, quantile function, order statistics, reliability curves and indices etc. have been derived.
The estimation of the parameters, survival function and hazard function of EXGD have been ap-
proached by different methods of estimation. A Simulation study is carried out to compare the
performances of the different estimators obtained via different methods of estimation. Two real
data sets have been analyzed to illustrate the applicability of the proposed model.

Keywords: Xgamma distribution; Moments; Generating function; Conditional moments; Relia-
bility curve; Different methods of estimation.
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