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1. INTRODUCTION

Since the seminal work by Kaplan and Meier (1958), the product limit estimator (or
Kaplan-Meier curve) had become the main (almost single) way of summarizing survival
data. The Kaplan Meier curve is a non-parametric maximum likelihood estimator of sur-
vival probability with efficacy comparable to the more sophisticated parametric models
(Meier et al., 2004). The main attractiveness of the Kaplan-Meier curve is the simple but
elegant way of handling incomplete data, a common feature of survival analysis. This
partial loss of information due to censoring ought to inflate the variance of the estimated
probabilities. Functionals of the Kaplan-Meier curve, namely the restricted mean sur-
vival time (Akritas, 2000; Stute, 1995a,b, 2003) or life expectancy (Yang, 1977) received
a fair share of interest, regarding the issue of the variance under censoring. As far as
we know Cantor (2001) was the first to study the issue of variance inflation of Kaplan-
Meier curves under censoring. Prior to that, Brooks (1982) considered the information
loss for exponential survival times due to censoring while Zheng and Gastwirth (2001)
derived the Fisher information under censoring for parameter estimates. The relative
inattention towards this issue is likely to be due to the existence of standard routines for
statistical inference that can be applied to survival curves, some of which predates the
Kaplan-Meier curve, such as the Greenwood variance estimator (Greenwood, 1926) or
Irwin’s accrual estimates (Irwin, 1949).
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In this paper we derive a simple estimator for the variance inflation due to incomplete
observations. This estimator allows the estimation of the expected variance under dif-
ferent assumptions for survival and censoring times. The properties of the proposed es-
timator are illustrated using simulation studies and its applicability is highlighted based
on published data.

2. NOTATION

We assume that survival times to an event of interest X1, . . . ,Xn to be independently and
identically distributed according to the distribution function F (t ) and survival function
S (t ) = 1−F (t ) = exp

�

−
∫ t

0 λ (u)d u
	

, where λ (t ) is the hazard function for the event.
However, we do not have information for all subjects due to loss to follow-up or insuf-
ficient follow-up time. The times to censoring are denoted by C1, . . .Cn , and assumed
to be independently and identically distributed according to the distribution function
C (t ) and survival function G (t ) = exp

�

−
∫ t

0 γ (u)d u
	

where γ (t ) is the hazard func-

tion for censoring. Thus the actual observed time for subject j is T j = min
�

X j , C j

�

.
Furthermore, we assume independence between failure and censoring time.

Additionally, we define δ j = I
¦

X j ≤C j

©

as an event indicator, taking values 1 if
an event is recorded prior to censoring, otherwise 0. We define N (t ) to be the count-
ing process that counts the number of individuals experiencing the event in the interval
[0, t ]. For a right censored subject N j (t ) = I

�

T j ≤ t ,δ j = 1
�

. The aggregated pro-
cess is given by N (t ) =

∑n
j=1 N j (t ) =

∑

t j≤t δ j . N j (t ) is a right-continuous piecewise

constant function with jumps of size 1. The jumps dN (t ) = N (t + d t )− −N (t )− are
changes in the process over a short interval [t + d t ). Similarly we define the number at
risk at time t as Y (t ) =

∑n
j=1 I

�

T j ≥ t
�

. Y (t ) is a decreasing step function with steps
of size 1 at each event or censoring time.

3. VARIANCE INFLATION OF THE KAPLAN-MEIER ESTIMATE

When survival times are censored the distribution function for the survival time F can
be estimated by the Kaplan-Meier estimator F̂ , commonly expressed as the survival func-
tion

Ŝ (t ) =
∏

Ti≤t

�

1−
dN (Ti )
Y (Ti )

�

, (1)

where Ti is the ordered sequence of event times. In case of no censoring, the variance of
the survival function should equal the variance of a binomially distributed variable, i.e.
Ŝ (t )

�

1− Ŝ (t )
�

/n (Meier, 1975; Aalen et al., 2008).
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Several expressions for the variance of Ŝ (t ) are available when censoring is present.
Among these, the Greenwood estimator is well known and most used. According to
the Greenwood estimator the standard deviation is given by

p

Óvar (S (t )), where

Óvar (S (t )) = Ŝ2 (t )
∑

Ti≤t

dN (Ti )
Y (Ti ) [Y (Ti )− dN (Ti )]

. (2)

If the exact survival time is unknown for some subjects, i.e. censoring is present then
Óvar (S (t ))> Ŝ (t )

�

1− Ŝ (t )
�

n−1.
We let the time dependent variance inflation factor ϕ(t ) quantify how much the

variability of a survival probability estimate increases due to censoring.
Assuming a multiplicative effect of censoring on the estimated variance we postulate

that

var (S (t )) = ϕ (t ) S (t ) (1− S (t ))n−1. (3)

Derivation of ϕ (t ) proceeds with division of the observed follow-up times Ti into m
equally sized intervals∆y = yi−yi−1 = m−1 t on [0, t ] as {0< y1 < ...< ym = t}. The
number of events recorded in each time interval depends on the numbers at risk, the
hazard and the length of the interval, dN (yi ) = λ (yi )Y (yi )∆y. Additionally, we can
express the number of patients at risk as the expectation of a binomial distribution with
parameters, n the sample size and the probability of being at risk given by the product
of probabilities of not experiencing the event and the probability of not being censored.
Thus, Y (yi ) = nS (yi )G (yi ) (Andersen et al., 2012).

We can rewrite

∑

yi≤t

dN (yi )
Y (yi ) [Y (yi )− dN (yi )]

=
∑

yi≤t

λ (yi )Y (yi )∆y
Y (yi ) [Y (yi )−λ (yi )Y (yi )∆y]

.

This can be simplified to

∑

yi≤t

λ (yi )∆y
[Y (yi )−λ (yi )Y (yi )∆y]

.

If we increase the number of intervals m→∞ then∆y → 0 and

lim
∆y→0

∑

yi≤t

λ (yi )∆y
[Y (yi )−λ (yi )Y (yi )∆y]

= n−1
∫ t

0

λ (u)
1− F (u)G (u)

d u. (4)

We can see that due to Eq. (3)

ϕ (t ){1− S (t )}= S (t )
∫ t

0

λ (u)
S (u)G (u)

d u
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and thereby

ϕ (t ) =
S (t )

1− S (t )

∫ t

0

λ (u)
S (u)G (u)

d u. (5)

REMARK 1. If there is no censorship then ϕ (t ) = 1 ∀t > 0.

PROOF. If there is no censorship the Greenwood estimator is simplifies to a bino-
mial variance thus var (S (t )) = S (t ) (1− S (t ))n−1. This equality holds if and only if
ϕ(t ) = 1. 2

REMARK 2. If there is censorship (i.e. C (t ) = P (C < t )> 0), then ϕ (t )> 1.

PROOF. S(t ) ∈ (0,1) and G(t ) ∈ (0,1) thus G(t )S(t )< S(t )⇒ λ(t ) (S(t )G(t ))−1 >

λ(t )S(t )−1 and
∫ t

0
λ(u)

(S(u)G(u)) d u >
∫ t

0
λ(u)
(S(u)) d u ⇒ φ(t )> 1. 2

REMARK 3. Median survival time is often of special interest in research planing/anal-
ysis of data, at S(t ) = 0.5 the equation simplifies to

ϕ(t ) = 2
∫ t0.5

0
λ(u)G(u)−1d u. (6)

REMARK 4. Let G(t ) be the assumed survival function for the censoring and G∗(t ) is
the true survival function for the censoring. Then the difference between the projected (ϕ(t ))
and true (ϕ∗(t )) variance inflation is given by

∆ϕ(t ),ϕ∗(t ) =
S (t )

1− S (t )

∫ t

0

λ (u)
S (u)

�

1
G(u)

− 1
G∗(u)

�

d u.

From Remark 4 it follows that

1. if G(t )≡G∗(t ) then∆ϕ(t ),ϕ∗(t ) = 0;

2. if G(t )<G∗(t ) then∆ϕ(t ),ϕ∗(t ) > 0;

3. if G(t )>G∗(t ) then∆ϕ(t ),ϕ∗(t ) < 0.

In practical applications it may be convenient to provide the deviation from the expec-
tation on a percentage scale (i.e. percent bias) (Burton et al., 2006) which can be assessed
numerically by∆ϕ(t ),ϕ∗(t )/ϕ

∗(t )× 100.
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4. SIMULATION STUDIES

4.1. Exponential distribution

The distribution for the survival time and censoring time can take various forms. For
most distributions closed form solutions for ϕ (t ) are difficult or impossible to obtain. If
we assume that both X and C are exponentially distributed with survival functions S (t )
and G (t ) and hazard for event λ and hazard for censoring, γ then the variance inflation
due censoring can be expressed as

ϕ (t ) =
f (t )
F (t )

∫ t

0

1
S (u)G (u)

d u =
λ

λ+ γ

�

e t (λ+γ )− 1
�

(e tλ− 1)
. (7)

This estimator has some interesting intrinsic properties. The first componentλ(λ+ γ )−1

is an estimate for P (X <C ) =
∫ t

0 C (u) f (u) d u (Nadarajah, 2003) and the asymptotic
relative efficiency (ARE) of the estimate of the rate parameter under censoring vs non-
censoring. The second component is the ratio of odds recording and event within time
t when censoring is present,

�

e t (λ+γ )− 1
�

and the odds recording and event within time
t when no censoring is present

�

e tλ− 1
�

.

Figure 1 summarizes the results of the simulation study. Assuming exponential dis-
tribution for both the event of interest (λ = 1/365) and censoring (γ = 1/365) we sim-
ulated 1000 observations. A survival curve was fitted to the data and its variability was
estimated with the Greenwood formula.

If there would be no censoring the variance of the survival function would be e−tλ(1−
e−tλ)n−1. Under censoring the expected variance is given by ϕ (t ) e−tλ(1− e−tλ)n−1.
Bias was defined as the projected standard error minus the standard error returned by
the Greenwood formula. We iterated this procedure 104 times. If there is no censoring
the standard error of a survival curve reaches its maximum at the median survival time
(S(t ) = 0.5) thereafter decreases again. Given the assumed hazard (λ= 1/365) and expo-
nential distribution this corresponds to 252 days. As shown on Figures 1a and 1b, the
estimated SE of the survival curves does not decrease after 252 days but monotonically
increases with time, in concordance with the increase in variance inflation due to cen-
soring. The projected SE (ϕ (t ) e−tλ(1− e−tλ)n−1) coincides well with the SE estimated
by the Greenwood estimator (Figure 1c). The empirical bias is negative and it increases
with time (Figure 1d). However this bias is negligible compared to the estimated SE.
The bias is roughly 700 times smaller than the estimated SE (range: 300-1800).
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Figure 1 – Results of a simulation study assuming exponential survival and censoring times depict-
ing (a) the expected SE for the survival curves with and without censoring, (b) the time dependent
variance inflation due to censoring, (c) the expected (thick black) and estimated (thin grey lines)
SE of the survival curve and (d) the bias of the projected SE with 95 % Monte Carlo confidence
intervals.
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4.2. Accelerated failures

In many practical applications failure rates are not constant over time but increasing (or
decreasing) with time. The Weibull and log-logistic distributions are commonly used
for modelling accelerated failure models.

The Weibull distribution can be described by two parameters, shape (k > 0) and
scale (θ > 0), with survival and hazard function given by

S(t ) = exp
§

−
� t
θ

�kª

and λ(t ) =
k
θ

� t
θ

�k−1
.

If the scale parameter θ > 1 the failure rate is increasing with time, a natural ageing
process. Here we assumed the survival time follows the Weibull distribution with scale
of 3 and shape of 365. We assumed memoryless/exponential censoring (γ = 1/100). For
Weibull survival times and exponential censoring, the variance inflation factor is given
by

ϕ (t ) =
e−(t/θ)

k

1− e−(t/θ)k
k
θ

∫ t

0

(uθ−1)k−1

e−(u/θ)k e−uγ
d u.
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Figure 2 – Results of a simulation study assuming Weibull survival and exponential censoring times
depicting (a) the expected (thick black) and estimated (thin grey lines) SE of the survival curve and
(b) the bias of the projected SE with 95 % Monte Carlo confidence intervals.

Figure 2 summarizes the results of 104 simulations with the above described parame-
ters. At the very beginning of the follow up period we observed a negative bias, however
the bias was small compared to the variance.
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The log-logistic is another distribution commonly used in accelerated failures mod-
els, described by the scale (α > 0) and shape (β> 0) parameters with survival and hazard
function given by

S(t ) =
1

1+(t/α)β
and λ(t ) =

(β/α) (t/α)β−1

1+(t/α)β
.

Unlike the Weibull distribution, the hazard of the log-logistic distribution can take
non-monotonic forms. The form of the hazard is governed by the shape parameter. We
assumed thatβ= 1.5 resulting in a quadratic like hazard that increases up to 200 days and
thereafter decreases. The scale parameter was set to 500 giving a mean survival time of
approximately 730 days. We assumed exponential censoring with γ = 1/100, resulting
in heavy censoring with around 90 % of the subjects having censored follow-up times.
For log-logistic survival times and exponential censoring, the variance inflation factor is
given by

ϕ (t ) =
β

tβ

∫ t

0

uβ−1

e−uγ
d u.
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Figure 3 – Results of a simulation study assuming log-logistic survival times with non-monotonic
hazard and exponential censoring times depicting (a) the expected (thick black) and estimated (thin
grey lines) SE of the survival curve and (b) the bias of the projected SE with 95 % Monte Carlo
confidence intervals.

The solution for ϕ (t ) results in equations involving the incomplete gamma func-
tion, thus we proceeded with numerical integration. Figure 3 presents the results of the
simulation study, reiterated with the above described settings 104 times. The estimation
showed decreasing precision with time, as was expected due to the heavy censoring.
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5. APPLICATION IN RESEARCH PLANNING

5.1. Confidence intervals estimation

Rajkumar et al. (2010) in an open-label randomised controlled trial examined the com-
bination lenalidomide with low or high-dose dexamethasone as therapy for newly di-
agnosed multiple myeloma. The trial showed that the high-dose group of 221 subjects
had higher mortality. This was assessed and illustrated with Kaplan-Meier curves. Like-
wise, for the sake of visibility the confidence intervals were not included. However,
the figure (Fig. 2 in Rajkumar et al., 2010) does present numbers at risk at 6, 12 and 18
months. Using this information and Eq. (5) we could assess standard errors and con-
struct confidence intervals for the survival probabilities. We assumed that the survival
times are exponentially distributed. We estimated the hazard as λ = t−1 log(S(t )), and
the assessed hazard at 6, 12 and 18 months to be 0.0139, 0.0135 and 0.0138. Thus we con-
cluded that the survival times were exponentially distributed with a hazard of 0.0137,
the average of the 6, 12 and 18 months hazards. Given that Y (t ) = nS(t )G(t ) we esti-
mated G(t ) = Y (t ) (nS(t ))−1. Fitting an exponential distribution to the censoring times
suggested accelerated drop-out rate with time. The estimated hazard at 6 months was
0.009, at 12 months 0.05 and at 18 months 0.85. Assuming a Weibull distribution we
set up the equation log(G(t )) =−(tθ−1)k and estimated the scale (θ= 15.05) and shape
(k = 2.43) using nonlinear least-squares. We run 104 simulations which suggested that
the assumed distributions for the survival and censoring times are feasible with a certain
bias for censoring at the beginning of the follow-up period (Table 1).

TABLE 1
Survival probabilities (Ŝ(t )) and numbers at risk(Ŷ (t )) reported by Rajkumar et al. (2010) and mean

survival probabilities (S∗(t )) and numbers at risk(Y ∗(t )) form 104 simulations.

Ŝ(t ) Ŷ (t ) S∗(t ) Y ∗(t )

6 m 0.92 192 0.92 183
12 m 0.85 103 0.85 105
18 m 0.78 37 0.78 37

TABLE 2
Standard error for the survival probabilities reported by Rajkumar et al. (2010) under the

assumption of no censoring (SE(b i n)), the variance inflation factor (ϕ (t )), the expected variance
under the censoring assumption SE(ϕ)and mean SEs for 104 Monte Carlo simulations and the

estimated 95 % confidence intervals.

SE(b i n) ϕ (t ) SE(ϕ) SE(M C ) 95 % CI

6 m 0.0181 1.0328 0.0184 0.0184 0.875; 0.949
12 m 0.0265 1.2100 0.0265 0.0265 0.789; 0.894
18 m 0.0385 1.8159 0.0374 0.0385 0.695; 0.843
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Table 2 summarizes the standard errors for 6, 12 and 18 months under the assump-
tion of no censoring. In this case the variance estimation simplifies to binomial variance.
The inflation factor increases, as expected, with time almost to factor 2 by 18 months.
The SE estimate calculated using Eq. (3) equals the standard error calculated from the
Monte Carlo simulations. Using standard confidence interval techniques, it is straight-
forward to construct confidence intervals.

5.2. Sample size for open-label single-arm studies

Once efficacy is proven against placebo or against standard-of-care, new treatments of
diseases with high mortality rate can proceed with open-label single-arm studies. Open-
label single-arm studies often do not assess sample size with respect to statistical power,
but precision, i.e. width of the confidence interval around the point estimate. There are
several competing methods for confidence estimation for survival probabilities, however
the log transformation of the cumulative hazard is one of the most commonly used
(Klein and Moeschberger, 2006). The 100(1− α)% confidence interval for the survival
function is given by {Ŝ(t )1/θ; Ŝ(t )θ} where

θ= exp

(

Z1−α/2SE(t )Ŝ(t )−1

ln Ŝ(t )

)

.

From Eq. (3) we know that SE(t ) =
Ç

ϕ (t ) Ŝ (t )
�

1− Ŝ (t )
�

n−1. Using this SE(t ) esti-
mator as plug-in and setting the width of a confidence interval to

d (t ) = Ŝ(t )θ− Ŝ(t )1/θ, (8)

we can use numerical root finding to assess the required sample size to obtain the desired
precision around the survival probability estimate.

Idiopathic pulmonary fibrosis (IPF) causes scarring (fibrosis) of the lungs until the
lungs cannot take in enough oxygen. The reasons behind IPF are unknown and there is
an unmet need of efficacious medication. Current standard-of-care involves treatment
with Nintedanib, which showed a numerical reduction (but non-significant) in the risk
of all-cause mortality compared to placebo (Richeldi et al., 2018). In Richeldi et al. (2018)
survival probabilities and numbers at risk at different time points are shown. The sur-
vival probability at 52 weeks was 0.66. Together with the survival probabilities, the
authors also present numbers at risk at different time points. Using the methodology
described in the previous subsection we concluded that survival time is best described by
a Weibull distribution with scale parameter of 143.95 and shape parameter of 0.92. Simi-
larly, the censoring can be described by a Weibull distribution. Assuming S(52w) = 0.66
and the above listed shape and scale parameter values Eq.(5) gives ϕ(52w) = 1.606. For
a hypothetical trial with the same efficacy but better safety profile to have a 95 % confi-
dence interval with width of 0.2 at 52 weeks with Eq. (8) and the above listed parameter
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Figure 4 – Sample size estimation for a given confidence interval width under type I censoring
(a) and the empirical with of the 95 % confidence interval at 52 weeks based on data from the
TOMORROW trial (b).

values we estimated that we need 135 subjects (Figure 4a). Thereafter, we conducted 104

simulations, which show that the average width of the confidence intervals at 52 weeks
was 0.200 (SD of 0.013) (Figure 4b).

5.3. Estimation under model misspecification

Application of Eq. (5) requires parametric assumptions. While for the endpoint of in-
terest there might be subject specific knowledge or empirical results that favor one or
another distribution, generally less information is available for the censoring distribu-
tion. Phase II clinical trials with time-to-event endpoints in asthma trials often assume
exponential survival times. Empirical data suggest approximately 35 % of subjects will
have an event in the placebo arm and up to 15% will be lost for follow-up. In a simula-
tion study with 200 subjects and 12 weeks follow-up we assumed exponential survival
times with hazard of 0.0358. We examined the effect of falsely assuming exponential
censoring times when the true censoring distribution is Weibull. The scale parameter
was set so that exp(− (12/θ)k ) = 0.85.

Figure 5 summarises the finding of the simulations. As expected, deviations from
k = 1 when the Weibull distribution simplifies to the exponential distribution induced
bias. The bias of the variance inflation factor and the bias of the variance of the Kaplan-
Meier survival curve coincide well (Table 3).
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Figure 5 – The effect of model misspecification on the proposed estimator when the underlying
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TABLE 3
The effect of model misspecification for the censoring distribution on the variance inflation factor and

the variance of the survival curve at 12 weeks. The assumed censoring distribution is exponential,
while the true is Wiebull with shape k and scale θ. The table present the assumed variance inflation

(ϕ(t )) the ϕ∗(t ) and the expected % bias of the inflation factor and the variance of the survival at
t = 12 weeks.

k θ ϕ(t ) ϕ∗(t ) % Bias ϕ(t ) % Bias σ2
t

0.2 105842.8 1.092 1.148 -4.887 -4.428
0.4 1126.9 1.092 1.128 -3.206 -2.824
0.6 247.9 1.092 1.113 -1.903 -1.285
0.8 116.2 1.092 1.102 -0.858 -0.380
1.0 73.8 1.092 1.092 0.000 0.534
1.2 54.5 1.092 1.084 0.719 0.943
1.4 43.9 1.092 1.078 1.331 1.750
1.6 37.3 1.092 1.072 1.858 2.380
1.8 32.9 1.092 1.067 2.317 2.848
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6. CONCLUDING REMARKS

Herein we have derived a simple to use analytic expression that allows estimation of the
variance inflation due to censoring. The advantage of the proposed formula is the rel-
ative ease of estimation. For the exponential distribution, that is routinely assumed in
most clinical trials, there exists a closed form solution. For other distributions, or com-
bination of distributions, routine programming skills would suffice to obtain estimates.

Irrespective of the distribution assumed we observed that the proposed variance in-
flation estimator is negatively biased. The projected SE under censoring marginally
exceeds the SE of the survival curves estimated by the Greenwood estimator. This
is not unexpected as the Kaplan-Meier estimator under right censoring is upward bi-
ased. The magnitude of the bias depends on the numbers at risk Y (t ), as e x p{−Y (t )}
(Meier, 1975). Klein (1991) and Zhao (1996) assessed the small sample properties of the
Greenwood variance estimator and concluded that it is negatively biased. However, the
recorded bias was smaller than the competing estimators. Given these aspects we did
not attempt to conduct a more in-depth examination of the bias of the proposed esti-
mator. Zhang (1999) and Wang (2016) proposed new unbiased/improved estimators,
but these did not gain traction either in the statistical literature or software implemen-
tation. While we solely focused on the accuracy of the proposed estimator, there are
other aspects that are worth mentioning and perhaps these can be further examined in
future publications. For example we did not examine how the proposed estimator would
translate to other estimates in survival analysis that are in direct relationship with the
Kaplan-Meier estimator (the Nelson -Aalen for the cumulative hazard rate) or of which
the Kaplan-Meier estimator is an integral part (Aalen-Johansen estimator for cumula-
tive incidences). Furthermore, herein we did attempt to establish a direct connection
between the variance inflation and sample size calculations, a subject that deserves more
interest.

As we exemplified, the proposed equation and framework can be used, among other
things, to understand the variability around point estimates of survival probability, or
to sample size estimations based on confidence interval width. This is particularly in-
teresting, as existing sample size estimation software provide such estimates only under
type II censoring, which is useful in engineering but have lite applicability in medical
statistics (Leung et al., 1997).

The variance inflation estimator proposed here, is more indicative than informative
in nature. This is due to the fact that its estimation requires distributional assumptions.
Assumptions that are likely to be violated by real life data. However, this kind of assump-
tions are routinely made in statistical research design, where we believe this estimator
is useful and researchers can have a quick assessment of the excess variability caused by
censoring and loss to follow-up.
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APPENDIX

A. VARIANCE ESTIMATORS UNDER NO CENSORING

If there is no censoring the Greenwood estimator simplifies to the binomial variance

Óvar (S (t )) = Ŝ (t )
�

1− Ŝ (t )
�

n−1.

To prove this equality we can divide both sides of Eq. (2) with Ŝ2 (t ) giving

1− Ŝ (t )

nŜ (t )
=
∑

Ti≤t

dN (Ti )
Y (T ) [Y (Ti )− dN (Ti )]

.

Under no censorship Y (0) = n and Y (Ti ) = n−
∑

dN (Ti ) and S(Ti ) = Y (Ti )n
−1.

The RHS can be rewritten as

∑

Ti≤t

dN (Ti )
Y (T ) [Y (Ti )− dN (Ti )]

=
1

n(n− 1)
+

1
(n− 1)(n− 2)

+
1

(n− 2)(n− 3)
+ ...

thus the increment is

1
(n−

∑

dN (T )+ 1)(n−
∑

dN (T )+ 1)
.

The LHS can be rewritten as

1− Ŝ (Ti )

nŜ (Ti )
=

n−Y (Ti )
nY (Ti )

=
∑

dN (ti )
n(n−

∑

dN (ti ))
,

again with the increment

1
(n−

∑

dN (T )+ 1)(n−
∑

dN (T )+ 1)
.

Additionally, we know that Ŝ (t ) and its variance is constant between the observed
survival times. This together with the equality of the increments proves that the Green-
wood estimator reduces to the binomial variance if there is no censoring in the data.
This property of the Greenwood estimator is not shared by other estimators for the vari-
ance of survival probabilities. For example Cantor (2001) considered the Peto estimator
(Peto et al., 1977) in its modified form due to Slud et al. (1984) as S (t ) (1− S (t ))Y (t )−1.
As noted above Y (t ) = nS (t )G (t ) (Andersen et al., 2012) so the Peto estimator is
(1− S (t )) (nG(t ))−1. If there is no censoring, i.e. G(t ) ≡ 1 then the Peto estimator
simplifies to (1− S (t ))n−1, which is not a valid variance estimator for binomial proba-
bility.
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B. USING THE R COMPUTING ENVIRONMENT AS A TOOL

As we highlighted in subsection 4.1 for exponential survival and censoring times we can
obtain closed form solution for the time dependent variance inflation factor ϕ(t ) (Eq.
6). However we can use readily available routines of the R computing environment (R
Core Team, 2019) to estimate ϕ(t ). We assume that both S (t ) and G (t ) are exponen-
tially distributed with hazard for event λ and hazard for censoring, γ then the variance
inflation due censoring can be expressed as

ϕ (t ) =
e−λt

1− e−λt

∫ t

0

λ

e−λu e−γ u
d u.

The closed form solution can be easily implemented in any programming language, or
we can use numerical integration. We start by defining the survival and censoring haz-
ards, λ and γ , and the follow-up time of interest.

lambda <- 1/365 # survival hazard

gamma <- 1/365 # censoring hazard

x <- 50:100 # follow-up times

Thereafter we need to define the integrand, the RHS of the equation above

integrand <- function(x) {lambda/(exp(-x*lambda)*exp(-x*gamma))}

Then we can use numerical integration to estimate ϕ(t )

phi = vector("numeric", length(x))

for(i in 1:length(x)){

phi[i] <- exp(-x[i]*lambda)/(1-exp(-x[i]*lambda))*

integrate(integrand, lower = 0, upper = x[i])$value }

It is easy to check that the numerical estimates equals the estimates from the closed form
solution

(lambda/(lambda+gamma))*(exp(x*(lambda+gamma))-1)/(exp(x*lambda)-1)
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SUMMARY

One of the most obvious features of time-to-event data is the occurrence of censoring. Rarely,
if ever, studies are conducted until all participants experience the event of interest. Some par-
ticipants survive beyond the end of follow-up time, some drop out from the studies for various
non-study related reasons. During research planning it is paramount to consider the effect of
censoring the follow-up times on the estimates. Herein, we look into the possibility of assessing
the loss of information, as measured by the variability of the survival probability estimates under
right censoring. We provide the researchers with an easy to use formula to assess the magnitude
of variance inflation due to censoring. Additionally, we conducted simulation studies assuming
various survival distributions. We conclude that the provided variance inflation estimator can be
an accurate practical tool for applied statisticians.

Keywords: Survival; Right-censoring; Standard error; Kaplan-Meier.


	Introduction
	Notation 
	Variance inflation of the Kaplan-Meier estimate
	Simulation studies
	Exponential distribution
	Accelerated failures

	Application in research planning
	Confidence intervals estimation
	Sample size for open-label single-arm studies
	Estimation under model misspecification

	Concluding remarks
	Variance estimators under no censoring 
	Using the R computing environment as a tool

