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SUMMARY

In this article, we utilize the method proposed by Tahir and Cordeiro (2016) to study a new family
of distributions called the McDonald Generalized Poisson (McGP) family. This family is defined
by using the genesis of the McDonald distribution and the zero truncated Poisson (ZTP) distri-
bution. We provide some mathematical properties and parameter estimation procedures of the
McGP family. Three real-life data are analyzed to illustrate the potential applications of the McGP
family. Our examples illustrate that the development of new probability distributions is of great
interest to capture the nature of the data under study. However, one can’t guarantee a better fit
just because a probability distribution possesses a larger number of parameters than its sub-model.

Keywords: McDonald distribution; McDonald-G family; Truncated Poisson distribution; Param-
eter estimation.

1. INTRODUCTION

The probability distribution plays a major role in statistical modeling and analysis.
There are numerous probability distributions in the literature that are widely used to de-
scribe data under study from many different areas including engineering, environmental

1 Corresponding Author. E-mail: aryalg@pnw.edu
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sciences, medical sciences, sports, finance and economics, among others. Various stud-
ies have shown that a particular data set following a standard probability distribution is
more often the exception rather than the reality. Therefore, developing a more flexible
distribution that can capture larger variability of data is of prime interest in the field ap-
plied statistics. A more flexible distribution can be developed by generalizing a classical
distribution. Generalizations have been achieved in many different ways including com-
pounding distributions or adding a new parameter(s) including a frailty parameter or a
tilt parameter as discussed in Marshall and Olkin (2007). For the survey of compounding
of distributions, readers are referred to Tahir and Cordeiro (2016). The generalization
of classical distributions by adding different parameters have been discussed in many
articles in the statistics literature. A brief survey of such techniques can be found in
Ahmad et al. (2019). Although the addition of a parameter makes a given distribution
more flexible, it may not produce significantly different results from that of the base
distribution. Hence, having a higher number of parameters in a given distribution does
not assure a better fit for given data. That is, a particular generalization might not end
up with a better fit just because it possesses a larger number of parameters. In this paper,
we have addressed the effectiveness of the generalization of McDonald-G Poisson fam-
ily, which is generalized using the method introduced by Tahir and Cordeiro (2016). We
also provide three different types of examples to address the usefulness of this general-
ized family. The McDonald generalized Poisson family is developed using the genesis of
the zero truncated Poisson (ZTP) distribution by David and Johnson (1952) and the Mc-
Donald distribution by McDonald (1984). The McDonald distribution is also known
as the generalized beta of first kind (GB1). The probability density function (PDF) and
cumulative distribution function (CDF) of the McDonald (“Mc” for short) distribution
are, respectively, given by

f (x) =
c

B(ac−1, b )
xa−1 (1− x c )b−1 , 0< x < 1 (1)

and

F (x) = Ix c

�

ac−1, b
�

=
1

B(ac−1, b )

∫ x c

0
ω

a
c −1 (1−ω)b−1 dω, (2)

where a > 0, b > 0 and c > 0 are the shape parameters.
The McDonald distribution is very flexible, as it approaches different distributions

when its parameters are appropriately chosen as below:

• for c = 1 Mc distribution reduces to the beta distribution.

• for a = c Mc distribution reduces to the Kumaraswamy distribution.

• for a = b = 1/2 and c = 1 Mc distribution reduces to the arcsine distribution.

Note that the CDF of the McDonald distribution can be written in terms of the hyper-
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geometric function as

F (x) =
c xa

aB (ac−1, b ) 2
F1

�

ac−1, 1− b ;ac−1+ 1; xa� , (3)

where

2F1(a, b ; c ; x) =
Γ (c)

Γ (a)Γ (b )

∞
∑

j=0

Γ (a+ j )Γ (b + j )
Γ (c + j )

x j

j !
. (4)

First, we provide a physical interpretation for the motivation behind the study as
outlined in Tahir and Cordeiro (2016). This will illustrate the situation where the newly
generalized family will be useful in practice. Suppose that a system has N subsystems
functioning independently at a given time where N has a ZTP distribution with proba-
bility mass function (PMF)

P (N = n) =
1

[1− exp (−λ)]
exp (−λ)λn

n!
for n = 1,2, . . . . (5)

Also, suppose that the failure time of each subsystem has the McDonald Generalized
distribution with its CDF and PDF given by

H (x;a, b , c ,ϕ) = IGc (x;ϕ)(a, b ) =
1

B(ac−1, b )

∫ Gc (x;ϕ)

0
ω

a
c −1 (1−ω)b−1 dω (6)

and
h(x;a, b , c ,ϕ) =

c
B(ac−1, b )

�

G(x;ϕ)
�a−1 �

1−Gc (x;ϕ)
�b−1

g (x;ϕ), (7)

respectively, where a > 0, b > 0 and c > 0 are the shape parameters and ϕ is the set of
parameters for the random variable X with CDF G(x;ϕ). Let Yi denote the failure time
of the i th subsystem and let X = min{Y1,Y2, . . . ,YN }. Then, the conditional CDF of
X given N is

F (x |N ) = 1− P (X > x |N )

= 1−
�

1−H
�

x;a, b , c ,ϕ
��N

. (8)

Therefore, using Eq. (5) and Eq. (8) the unconditional CDF of X can be expressed as

F (x) = P (X ≤ x)

=
∞
∑

n=1

F (x|N )P (N = n)

=
1− exp[−λH (x;a, b , c ,ϕ)]

1− exp(−λ)
. (9)
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The CDF in Eq. (9) is called the McDonald-G Poisson (McGP) family of distributions.
The corresponding PDF is given by

f
�

x;a, b , c ,λ,ϕ
�

=
λh(x;a, b , c ,ϕ)exp[−λH (x;a, b , c ,ϕ)]

1− exp(−λ)
(10)

=
cλg (x)

B(ac−1, b )
[G(x)]a−1[1−{G(x)}c]b−1 exp[−λIGc (a, b )]

1− exp(−λ)
.

In the rest of the Section 1 we establish the relationship between the McGP fam-
ily and the McDonald-G family as well as the relationship between McGP family and
exponentiated-G family via Lemma 1 and Lemma , respectively. Section 2 explores six
different cases of McGP family. Some mathematical and statistical characteristics of the
McGP family are provided in Section 3. In Section 4 we describe different parameter es-
timation procedures. Real life application of the McGP family to model three different
types of data is presented in Section 5. Section 6 provides some concluding remarks.

LEMMA 1. The McDonald-G Poisson family of distribution can be expressed as a linear
combination of McDonald-G (McG) distributions.

PROOF. We know that the power series expansion of exp(−y) is given by

exp(−y) =
∞
∑

k=0

(−y)k

k!
=
∞
∑

k=0

(−1)k yk

k!
.

Therefore, using power series expansion to exp[−λH (x;a, b , c ,ϕ)] the PDF in Eq. (10)
becomes

f (x;a, b , c ,λ,ϕ) =
λh(x;a,b ,c ,ϕ)
[1−exp(−λ)]

∑∞
k=0

(−1)kλk H k (x;a,b ,c ,ϕ)
k!

= h(x;a, b , c ,ϕ)
∑∞

k=0
(−1)kλk+1

k![1−exp(−λ)]H
k (x;a, b , c ,ϕ)

= h(x;a, b , c ,ϕ)
∑∞

k=0 uk H k (x;a, b , c ,ϕ), (11)

where uk =
(−1)kλk+1

k![1−exp(−λ)] and k = 0,1,2, . . ..

By using the power series expansion of (1−ω)b−1, we have

H (x;a, b , c ,ϕ) =
1

B(ac−1, b )

∫ Gc (x;ϕ)

0
ω

a
c −1(1−ω)b−1dω

=
1

B(ac−1, b )

∞
∑

i=0

(−1)i
�

b − 1
i

�

�

Gc (x;ϕ)
�

a
c +i

a
c + i

=
Ga(x;ϕ)

B(ac−1, b )

∞
∑

i=0

c(−1)i

a+ c i

�

b − 1
i

�

�

G(x;ϕ)
�c i

. (12)
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On letting vi =
c(−1)i

a+c i

�b−1
i

�

, the PDF in Eq. (10) reduces to

f (x) = h(x;a, b , c ,ϕ)
∞
∑

k=0

uk

� Ga(x;ϕ)

B(ac−1, b )

∞
∑

i=0

c(−1)i

a+ c i

�

b − 1
i

�

�

G(x;ϕ)
�c i
�k

= h(x;a, b , c ,ϕ)
∞
∑

k=0

uk

Gak (x;ϕ)

[B(ac−1, b )]k

� ∞
∑

i=0

vi G
c i (x;ϕ)

�k

. (13)

From Section 0.314 of Gradshteyn and Ryzhik (2000), we know that for any positive
integer k

� ∞
∑

i=0

mi n i

�k

=
∞
∑

i=0

dk ,i n i , (14)

where the coefficients dk ,i for i = 1,2,3, . . . can be determined from the recurrence equa-
tion dk ,0 = mk

0 and dk ,i = (i m0)
−1∑i

q=1[q(k + 1)− i]mq dk ,i−q .
Thus, the PDF of McGP can be further simplified as

f (x) = h(x;a, b , c ,ϕ)
∞
∑

k=0

uk

Gak (x;ϕ)

[B(ac−1, b )]k

∞
∑

i=0

dk ,i G
c i (x;ϕ)

=
∞
∑

k=0

∞
∑

i=0

uk dk ,i

[B(ac−1, b )]k
Gak+c i (x;ϕ)h(x;a, b , c ,ϕ)

=
∞
∑

k=0

∞
∑

i=0

uk dk ,i

[B(ac−1, b )]k
×

×
�

c
B(ac−1, b )

�

G(x;ϕ)
�a−1 �

1−Gc (x;ϕ)
�b−1

g (x;ϕ)
�

Gak+c i (x;ϕ)

=
∞
∑

k=0

∞
∑

i=0

uk dk ,i

[B(ac−1, b )]k
×

×
�

c
B(ac−1, b )

�

G(x;ϕ)
�a(k+1)+c i−1 �

1−Gc (x;ϕ)
�b−1

g (x;ϕ)
�

=
∞
∑

k=0

∞
∑

i=0

uk dk ,i B
�

(k + 1)ac−1+ i , b
�

[B(ac−1, b )]k+1

×
�

c
B ((k + 1)ac−1+ i , b )

�

G(x;ϕ)
�a(k+1)+c i−1 �

1−Gc (x;ϕ)
�b−1

g (x;ϕ)
�

=
∞
∑

k=0

∞
∑

i=0

πki h(x;a(k + 1)+ c i , b , c ,ϕ), (15)

where πki =
uk dk ,i B((k+1)ac−1+i ,b)

[B(ac−1,b )]k+1 .
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The CDF corresponding to Eq. (15) can be expressed as

F (x;a, b , c ,λ,ϕ) =
∞
∑

k=0

∞
∑

i=0

πki H (x;a(k + 1)+ c i , b , c ,ϕ) (16)

=
∞
∑

k=0

∞
∑

i=0

πki IGc (x;ϕ)(a(k + 1)+ c i , b , c). (17)

2

LEMMA 2. The McDonald-G Poisson family of distributions can be expressed as a linear
combination of exponentiated-G distributions.

PROOF. Consider a random variable X with its CDF G(x) and let α > 0 be a param-
eter. Then the exponentiated-G will have its PDF and CDF given by
Ψα(x;ϕ) =Gα(x;ϕ) and ψα(x;ϕ) = αg (x;ϕ)Gα−1(x;ϕ), respectively.

Substituting Eq. (7) into Eq. (15) and using a binomial expansion, we get

f (x) =
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

πki (−1)l
�

b − 1
l

�

c
B ((k + 1)ac−1, b )

�

G(x;ϕ)
�a(k+1)+c i+l−1

g (x;ϕ)

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

(−1)l
�b−1

l

�

cπki

B ((k + 1)ac−1, b ) [a(k + 1)+ c i + l ]
ψa(k+1)+c i+l (x;ϕ). (18)

Therefore, we have

f (x;a, b , c ,λ,ϕ) =
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki lψa(k+1)+c i+l (x;ϕ), (19)

where δki l =
(−1)l (b−1

l )cπki

B((k+1)ac−1,b )[a(k+1)+c i+l ] .
We integrate Eq. (19) to get the corresponding CDF as

F (x;a, b , c ,λ,ϕ) =
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki lΨa(k+1)+c i+l (x;ϕ), (20)

where
Ψa(k+1)+c i+l =

�

G(x;ϕ)
�a(k+1)+c i+l

(21)

is the CDF of the exp-G distribution with power parameter a(k + 1)+ c i + l and

ψa(k+1)+c i+l = [a(k + 1)+ c i + l ]
�

G(x;ϕ)
�a(k+1)+c i+l−1

g (x;ϕ) (22)

is the PDF of exp-G distribution with power parameter a(k + 1)+ c i + l . 2
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2. SPECIAL MODELS

In this Section we present some special models of the McGP family. The PDF in Eq.
(10) will be most tractable when the CDF G(x;ϕ) and PDF g (x;ϕ) have simple ana-
lytical expressions. These sub-models generalize several important distributions in the
literature. We will consider the following distributions listed in Table 1: Exponential
(Ex), Weibull (W), Pareto (Pa), Log-logistic (LL), Fréchet (Fr) and Lindley (Li).

TABLE 1
The PDF and CDF of base models of McGP family.

Model P DF : g (x;ϕ) C DF : G(x;ϕ) Support

Ex α exp(−αx) 1− exp(−αx) (0,∞)
W βαβxβ−1 exp

�

− (αx)
β�

1− exp
�

− (αx)
β�

(0,∞)
Pa

�α
x

�

�

θ
x

�α
1−

�

θ
x

�α
(θ,∞)

LL βα−βxβ−1
�

1+
� x
α

�β
�−2 �

1+
�α

x

�β
�−1

(0,∞)

Fr βαβx−(β+1) exp
h

−
�α

x

�β
i

exp
h

−
�α

x

�β
i

(0,∞)

Li α2

1+α (1+ x)exp (−αx) 1− 1+α+αx
1+α exp (−αx) (0,∞)

2.1. The McExP distribution

The CDF and PDF of the McDonald-exponential Poisson (McExP) distribution are
given, respectively, by

F (x) =
1− exp

�

−λIGc (x;α)(a, b )
�

[1− exp (−λ)]
(23)

and

f (x) =
cλα exp(−αx)exp[−λIGc (x;α)(a, b )]

B(ac−1, b )[1− exp(−λ)]
(24)

×[1− exp{−(αx)}]a−1[1−{1− exp(−αx)}c]b−1, (25)

where

IGc (x;α)(a, b ) =
1

B(ac−1, b )

∫ [1−exp(−αx)]c

0
w

a
c −1(1−w)b−1dw. (26)
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Plots of the PDF and CDF of the McExP distribution are displayed in Figure 1 for
selected parameter values.
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Figure 1 – PDF (left panel) and CDF (right panel) of McExP distribution.

2.2. The McWP distribution

The CDF and PDF of the McDonald-Weibull Poisson (McWP) distribution are given,
respectively, by

F (x) =
1− exp

�

−λIGc (x;α,β)(a, b )
�

[1− exp (−λ)]
(27)

and

f (x) =
cλβαβxβ−1 exp[−(αx)β]exp

�

−λIGc (x;α,β)(a, b )
�

B(ac−1, b )[1− exp(−λ)]
(28)

×[1− exp{−(αx)β}]a−1
�

1−
¦

1− exp(−(αx))β
©c�b−1

, (29)
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where

IGc (x;α,β)(a, b ) =
1

B(ac−1, b )

∫

h

1−exp{−(αx)
β
}
ic

0
w

a
c −1(1−w)b−1dw. (30)

Plots of the PDF and CDF of the McWP distribution are displayed in Figure 2 for
selected parameter values.
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Figure 2 – PDF (left panel) and CDF (right panel) of McWP distribution.

2.3. The McPaP distribution

The CDF and PDF of the McDonald-Pareto Poisson (McPaP) distribution are given,
respectively, by

F (x) =
1− exp

�

−λIGc (x;α,θ)(a, b )
�

[1− exp (−λ)]
(31)
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and

f (x) =
cλαθα

B(ac−1, b )xα+1

�

1− (θx )
α
�a−1 �

1−
¦

1− (θx )
α
©c�b−1

[1− exp(−λ)]
exp

�

−λIGc (x;α,θ)(a, b )
�

,

(32)

where

IGc (x;α,β)(a, b ) =
1

B(ac−1, b )

∫

�

1−
�

θ
x

�α�c

0
w

a
c −1(1−w)b−1dw. (33)

Plots of the PDF and CDF of the McPaP distribution are displayed in Figure 3 for
selected parameter values.
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Figure 3 – PDF (left panel) and CDF (right panel) of McPaP distribution.
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2.4. The McFrP distribution

The CDF and PDF of the McDonald Fréchet Poisson (McFrP) distribution are given,
respectively, by

F (x) =
1− exp

�

−λIGc (x;α,β)(a, b )
�

[1− exp (−λ)]
(34)

and

f (x) =
cλβαβ exp

�

−a(αx )
β
�

B(ac−1, b )xβ+1

¦

1− exp[−c
�α

x

�β]
©b−1

[1− exp(−λ)]
exp

�

−λIGc (x;α,β)(a, b )
�

,

(35)

where

IGc (x;α,β)(a, b ) =
1

B(ac−1, b )

∫ exp[−c( αx )
β
]

0
w

a
c −1(1−w)b−1dw. (36)

Plots of the PDF and CDF of the McFrP distribution are displayed in Figure 4 for
selected parameter values.
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Figure 4 – PDF (left panel) and CDF (right panel) of McFrP distribution.
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2.5. The McLLP distribution

The CDF and PDF of the McDonald log-logistic Poisson (McLLP) distribution are
given, respectively, by

F (x) =
1− exp

�

−λIGc (x;α,β)(a, b )
�

[1− exp (−λ)]
(37)

and

f (x) =
cλβα−βxβ−1

�

1+
� x
α

�β
�−2

B(ac−1, b )[1− exp(−λ)]

h

1−
�

1+
�α

x

�β
�−cib−1

�

1+
�α

x

�β
�a−1 exp

�

−λIGc (x;α,β)(a, b )
�

,

(38)

where

IGc (x;α,β)(a, b ) =
1

B(ac−1, b )

∫

h

1+( αx )
β
i−c

0
w

a
c −1(1−w)b−1dw. (39)

Plots of the PDF and CDF of the McLLP distribution are displayed in Figure 5 for
selected parameter values.
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Figure 5 – PDF (left panel) and CDF (right panel) of McLLP distribution.
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2.6. The McLiP distribution

The CDF and PDF of the McDonald-Lindley Poisson (McLiP) distribution are given,
respectively, by

F (x) =
1− exp

�

−λIGc (x;α)(a, b )
�

[1− exp (−λ)]
(40)

and

f (x) =
cλα2(1+ x)exp(−αx)
(1+α)B(ac−1, b )

exp
�

−λIGc (x;α)(a, b )
�

[1− exp (−λ)]
(41)

×
�

1− 1+α+αx
1+α

exp(−αx)
�a−1 �

1−
�

1− 1+α+αx
1+α

exp(−αx)
�c�b−1

,(42)

where

IGc (x;α)(a, b ) =
1

B(ac−1, b )

∫ [1− 1+α+αx
1+α exp(−αx)]c

0
w

a
c −1(1−w)b−1dw. (43)

Plots of the PDF and CDF of the McLiP distribution are displayed in Figure 6 for
selected parameter values.
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Figure 6 – PDF (left panel) and CDF (right panel) of McLiP distribution.
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3. MATHEMATICAL PROPERTIES

In this Section we provide some structural and mathematical properties of the MGP
distribution including the quantile function, moments, probability weighted moment,
and components of reliability model.

3.1. Quantile function

The quantile function of a distribution is the real solution of F (xq ) = q for
0 ≤ q ≤ 1. The quantile function is obtained by inverting Eq. (9) provided that a
closed form expression is available. Setting

F (x) =
1− exp[−λH (x;a, b , c ,ϕ)]

[1− exp(−λ)]
=

1− exp
h

−λIGc (x;ϕ)(a, b )
i

[1− exp (−λ)]
= q , (44)

we have

IGc (x;ϕ)(a, b ) =−λ−1 ln[1− q + q exp(−λ)]. (45)

Since the quantile function for the beta distribution has no closed form, we make use of
the beta distribution’s quantile function qbeta in statistical software R. Therefore,

G(x;ϕ) =
�

qbeta
�

−λ−1 ln[1− q + q exp(−λ)],a, b
�	1/c . (46)

Given the CDF G(x;ϕ) of a random variable X , it is easy to obtain the quantiles of the
McGP distribution from the equation above. That is,

xq =G−1
h

¦

qbeta(−λ−1 ln[1− q + q exp(−λ)],a, b ),ϕ
©1/c

i

. (47)

Further, one can use Eq. (47) to obtain the median, as well as octiles and then the
measure of Bowley’s skewness and Moors kurtosis. These measures are quartile alterna-
tives to the traditional skewness and kurtosis, and are more robust.
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3.2. Moments

The r -th order moment of the McGP distribution is given by

E(X r ) =
∫ ∞

−∞
x r f (x;a, b , c ,λ,ϕ)dx

=
∫ ∞

−∞
x r

∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki lψa(k+1)+c i+l (x;ϕ)dx

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki l

∫ ∞

−∞
x rψa(k+1)+c i+l (x;ϕ)dx

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki l

∫ ∞

−∞
x r [a(k + 1)+ c i + l ]

�

G(x;ϕ)
�a(k+1)+c i+l−1

g (x;ϕ)dx

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki l

∫ ∞

−∞
x r [a(k + 1)+ c i + l ]

�

G(x;ϕ)
�a(k+1)+c i+l−1

g (x;ϕ)dx

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki l [a(k + 1)+ c i + l ]
∫ ∞

−∞
x r
�

G(x;ϕ)
�a(k+1)+c i+l−1

g (x;ϕ)dx

=
∞
∑

k=0

∞
∑

i=0

∞
∑

l=0

δki l [a(k + 1)+ c i + l ]ζr,a(k+1)+c i+l−1, (48)

where ζr,s =
∫∞
−∞ x r G s (x;ϕ)g (x;ϕ)dx.

3.3. Reliability analysis

The usefulness of the reliability function R(x), the hazard rate function h(x), and the
reversed hazard rate function r (x) is well-known in literature. For an McGP random
variable X , these quantities are given respectively by

R(x) =
exp

h

−λIGc (x;ϕ)(a, b )
i

− exp[−λ]

[1− exp (−λ)]
, (49)

h(x) =
cλg (x;ϕ)

�

G(x;ϕ)
�a−1 �

1−Gc (x;ϕ)
�b−1

B(ac−1, b )
h

1− exp
n

−λ(1− IGc (x;ϕ)(a, b ))
oi (50)

and

r (x) =
cλg (x;ϕ)

�

G(x;ϕ)
�a−1 �

1−Gc (x;ϕ)
�b−1

B(ac−1, b )
h

exp
n

λIGc (x;ϕ)(a, b )
o

− 1
i . (51)
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4. PARAMETER ESTIMATION

4.1. Method of maximum likelihood

In this Section the parameter estimation using the method of maximum likelihood is
described. Let X1,X2, . . . ,Xn be a random sample from the McGP distribution with
parameters λ,a, b , c and ϕ. Let Θ = (a, b , c ,λ,ϕᵀ)ᵀ be a (p + 4)× 1 parameter vector,
where ϕ is a (p × 1) baseline parameter vector. For determining the MLE of Θ, the
likelihood function may be expressed as

L = c nλn
n
∏

i=1

g (xi ;ϕ)exp

�

−
n
∑

i=1

λIGc (xi ;ϕ)
(a, b )

�

�

B(ac−1, b )
	−n [1− exp(−λ)]−n

×
n
∏

i=1

n

�

G(xi ;ϕ)
�a−1
[1−Gc (xi ;ϕ)]

b−1
o

. (52)

Therefore, the log-likelihood function `= ln(L) reduces to

` = n ln(c)+ n ln(λ)+
n
∑

i=1

ln
¦

g (xi ;ϕ)
©

−λ
n
∑

i=1

IGc (xi ;ϕ)
(a, b )+ n lnΓ (ac−1+ b )

−n lnΓ (ac−1)− n lnΓ (b )− n ln{1− exp(−λ)}+(a− 1)
n
∑

i=1

ln
¦

G(xi ;ϕ)
©

+(b − 1)
n
∑

i=1

ln
¦

1−Gc (xi ;ϕ)
©

. (53)

The components of the score vector are obtained by taking the partial derivatives of the
log-likelihood function with respect to the parameters.
U (Θ) = ∂ `

∂ Θ = (
∂ `
∂ λ , ∂ `∂ a , ∂ `∂ b , ∂ `∂ c , ∂ `∂ ϕ )

ᵀ are given by

Uλ =
n
λ
−

n exp(−λ)
[1− exp(−λ)]

−
n
∑

i=1

IGc (xi ,ϕ)
(a, b ),

Ua =
n
c

�

ψ(ac−1+ b )−ψ(ac−1)
�

−λ
n
∑

i=1

I a
Gc (xi ,ϕ)

(a, b )+
n
∑

i=1

ln
¦

G(xi ,ϕ)
©

,

Ub = n
�

ψ(ac−1+ b )−ψ(b )
�

−λ
n
∑

i=1

I b
Gc (xi ,ϕ)

(a, b )+
n
∑

i=1

ln
¦

1−Gc (xi ,ϕ)
©

,

Uc =
n
c
+

na
c2

�

ψ(ac−1)−ψ(ac−1+ b )
�

−λ
n
∑

i=1

I c
Gc (xi ,ϕ)

(a, b )

−c(b − 1)
n
∑

i=1

Gc−1(xi )
1−Gc (xi ,ϕ)

g (xi ,ϕ) (54)
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and, for r = 1,2, ..., p,

Uϕ
r
=

n
∑

i=1

g ′ϕr

�

xi ;ϕ
�

g
�

xi ;ϕ
� +(a− 1)

n
∑

i=1

G′ϕr

�

xi ;ϕ
�

G
�

xi ;ϕ
� − (b − 1)

n
∑

i=1

Gc
ϕr

′
�

xi ;ϕ
�

1−Gc
�

xi ;ϕ
�

−λ
n
∑

i=1

I
ϕr

Gc (xi ;ϕ)
(a, b ), (55)

where ψ(.) is the digamma function defined as ψ(x) = d
dx (lnΓ (x)), and we have

I a
Gc (xi ;ϕ)

(a, b ) =
∂ IGc (xi ;ϕ)(a,b )

∂ a
, (56)

I b
Gc (xi ;ϕ)

(a, b ) =
∂ IGc (xi ;ϕ)

(a, b )

∂ b
, (57)

I c
Gc (xi ;ϕ)

(a, b ) =
∂ IGc (xi ;ϕ)

(a, b )

∂ c
, (58)

I
ϕr

Gc (xi ;ϕ)
(a, b ) =

∂ IGc (xi ;ϕ)
(a, b )

∂ ϕ
r

. (59)

The maximum likelihood estimate (MLE) of Θ is bΘ = (bλ, ba,bb ,bc , bϕᵀ)ᵀ, setting the
nonlinear system of equations Uλ = Ua = Ub = Uc = Uϕr

= 0 and solving them si-
multaneously. These equations can be solved numerically using iterative methods such
as Newton-Raphson type algorithms. For interval estimation of the model parameters,
we derive the observed information matrix J (Θ). Under standard regularity conditions,
when n → ∞, the distribution of bΘ can be approximated by a multivariate normal
Np (0, J (bΘ)−1) distribution to construct approximate confidence intervals for the param-

eters. Here, J (bΘ) is the total observed information matrix evaluated at bΘ.

4.2. Method of ordinary and weighted least-squares estimation

Let X(1),X(2), . . . ,X(n) be the order statistics of a random sample of size n from the McGP
distribution with parameters λ,a, b , c and ϕ. The least square estimators of the λ,a, b , c
and ϕ can be obtained by minimizing

n
∑

i=1

�1− exp[−λH (x(i);a, b , c ,ϕ)]

[1− exp(−λ)]
− i

n+ 1

�2

(60)
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with respect to the unknown parameters λ,a, b , c , and ϕ.

The weighted least squares estimator of the unknown parameters is obtained by min-
imizing

n
∑

i=1

(n+ 1)2(n+ 2)
n− i + 1

�1− exp[−λH (x(i);a, b , c ,ϕ)]

[1− exp(−λ)]
− i

n+ 1

�2

(61)

with respect to the unknown parameters λ,a, b , c , and ϕ.

4.3. Method of maximum product spacings estimation

The Maximum Product of Spacings (MPS) estimation method was introduced by Cheng
and Amin (1979), Cheng and Amin (1983), as an alternative to the maximum likelihood
estimation (MLE) method for the estimation of parameters of continuous univariate
distributions. It is based on maximization of the geometric mean of spacing of the data.
The geometric mean of the differences is given by

G(a, b , c ,λ,ϕ) =
�

n+1
∏

i=1

Di

�
1

n+1

, (62)

where Di is defined as

Di = F (xi :n |a, b , c ,λ,ϕ)− F (xi−1:n |a, b , c ,λ,ϕ) =
∫ xi

xi−1

f (x;a, b , c ,ϕ)dx, (63)

for i = 1,2, . . . , n+1, such that F (x(0);a, b , c ,λ,ϕ) = 0 and F (x(n+1);a, b , c ,λ,ϕ) = 1. The
maximum product spacing estimators of a, b , c , λ, and ϕ are obtained by maximizing

H (a, b , c ,λ,ϕ) = log
�

G(a, b , c ,λ,ϕ)
�

=
1

n+ 1

n+1
∑

i=1

log
�

Di (a, b , c ,λ,ϕ)
�

. (64)
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The estimates of a, b , c ,λ,ϕ are obtained by solving the following non-linear equations:

∂ H
∂ a

=
1

n+ 1

n+1
∑

i=1

1
Di (a, b , c ,λ,ϕ)

×

×
�

∂ F (xi :n |a, b , c ,λ,ϕ)

∂ a
−
∂ F (xi−1:n |a, b , c ,λ,ϕ)

∂ a

�

= 0 (65)

∂ H
∂ b

=
1

n+ 1

n+1
∑

i=1

1
Di (a, b , c ,λ,ϕ)

×

×
�

∂ F (xi :n |a, b , c ,λ,ϕ)

∂ b
−
∂ F (xi−1:n |a, b , c ,λ,ϕ)

∂ b

�

= 0 (66)

∂ H
∂ c

=
1

n+ 1

n+1
∑

i=1

1
Di (a, b , c ,λ,ϕ)

×

×
�

∂ F (xi :n |a, b , c ,λ,ϕ)

∂ c
−
∂ F (xi−1:n |a, b , c ,λ,ϕ)

∂ c

�

= 0 (67)

∂ H
∂ λ

=
1

n+ 1

n+1
∑

i=1

1
Di (a, b , c ,λ,ϕ)

×

×
�

∂ F (xi :n |a, b , c ,λ,ϕ)

∂ λ
−
∂ F (xi−1:n |a, b , c ,λ,ϕ)

∂ λ

�

= 0 (68)

∂ H
∂ ϕ

=
1

n+ 1

n+1
∑

i=1

1
Di (a, b , c ,λ,ϕ)

×

×





∂ F (xi :n |a, b , c ,λ,ϕ)

∂ ϕ
−
∂ F (xi−1:n |a, b , c ,λ,ϕ)

∂ ϕ



= 0 (69)

4.4. Method of percentile estimation

We know that the cdf is given by

F (x;a, b , c ,λ,ϕ) =
1− exp[−λH (x;a, b , c ,ϕ)]

[1− exp(−λ)]
=

1− exp
h

−λIGc (x;ϕ)(a, b )
i

[1− exp (−λ)]
, (70)
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which yields

x =G−1
hn

qbeta(−λ−1 ln
�

1− F (x;a, b , c ,λ,ϕ)+

+F (x;a, b , c ,λ,ϕ)exp(−λ)
�

,a, b ),ϕ
o1/ci

. (71)

Let X(i) be the i -th order statistic, and let pi =
i

n+1 . The estimates for a, b , c ,λ, and ϕ
are found by minimizing the following expression with respect to a, b , c ,λ, and ϕ

n
∑

i=1

n

x(i)−G−1
h

�

qbeta(−λ−1 ln[1− F (x;a, b , c ,λ,ϕ)+

+F (x;a, b , c ,λ,ϕ)exp(−λ)],a, b ),ϕ
	1/c

io2
. (72)

5. APPLICATIONS

In this Section we consider some applications of the McGP family to model real data
sets and illustrate their flexibility. We will include three different types of examples to
illustrate the usefulness and effectiveness of this family. The measures of goodness of
fit including the Akaike Information Criterion (AIC), Consistent Akaike Information
Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information
Criterion (HQIC), Anderson-Darling (A∗) Cramér-von Mises (W∗), and KS statistic are
computed to compare the fitted models. One can employ the Likelihood Ratio Test
(LRT) to contrast the adaptability of McGP distribution over the other distributions.
The required computations are carried out in the R programming language using the
AdequacyModel script of the R-package by Marinho et al. (2016).

EXAMPLE 3. The purpose of this Example is to illustrate that an additional parameter
will produce significantly better results than its sub-model. It is of continued interest to
generalize a probability distribution by adding different parameters. In this Example we
consider the failure times of 50 components (per 1000h) to see how the McWP distribution
is used to model failure times. This is an Example that shows how the additional parameter
can help to improve the fitting of the data under study. This data set has been used by several
authors including Murthy et al. (2004), Khan et al. (2019), among others, to illustrate the
goodness of other competing models.

We shall compare the fits of the proposed McWP distribution with those of other
competitive models, namely: Beta Weibull Poisson (BWP) by Aryal et al. (2019), Ex-
ponentiated Generalized Weibull Poisson (EGWP) by Aryal and Yousof (2017). The
estimated values of the parameters for the McWP, BWP and EGWP distributions for
this data are given in Table 2.
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TABLE 2
MLEs and their standard errors (in parenthesis) for component failure data.

Model Estimates

bα bβ bλ ba bb bc

McWP 1.463 1.161 0.452 0.683 0.078 7.413
(0.002) (0.003) (1.290) (0.168) (0.024) (2.974)

BWP 0.096 5.454 2.768 0.106 0.206 –
(0.017) (0.041) (1.671) (0.016) (0.206) –

EGWP 0.131 5.167 0.031 0.110 2.031 –
(0.029) (0.073) (0.052) (0.018) (1.113) –

The statistics of the fitted models are presented in Table 3. We note from Table 3
that the McWP gives the lowest values of the AIC, BIC, A∗, and W∗ as compared to the
other generalizations of the Weibull distribution. Therefore, the McWP distribution
provides the best fit among the competing models for the failure time data.

TABLE 3
The AIC, CAIC, HQIC, BIC, W∗, A∗, K-S statistics, and p-value for failure time data.

Model Goodness of fit criteria

−` AIC CAIC BIC HQIC W∗ A∗ K-S p-value

McWP 97.89 207.78 209.74 219.26 212.15 0.07 0.49 0.08 0.89
BWP 100.01 210.03 211.39 219.59 213.67 0.11 0.76 0.12 0.39
EGWP 100.58 211.16 212.52 220.72 214.80 0.12 0.80 0.13 0.35

One can compute the maximized unrestricted and restricted log-likelihood func-
tions to construct the likelihood ratio (LR) test statistic for testing the models. For
example, to test whether McWP is a significantly better fit than BWP, we perform the
following test.

H0 : BWP distribution is appropriate
Ha : McWP distribution is appropriate

The LR test statistic for testing H0 versus Ha is

ω = 2(`(ϕ̂, x)− `(ϕ̂0, x)), (73)

where ϕ̂ and ϕ̂0 are the MLEs under Ha and H0, respectively. The statistic ω is asymp-
totically distributed as χ 2

k , where k is the length of the parameter vector of interest.
Note that for the subject data ω = 4.24 with p-value = 0.0395. Therefore, at 0.05 level
of significance, the McWP is superior to the BWP for the subject data.
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Plots comparing the McWP distribution with the BWP distribution and the EGWP
distribution for this data are displayed in Figure 7. It is evident that the McWP fits better
than the other competitive distributions.
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Figure 7 – Fitted PDF (left panel) and CDF (right panel) of McWP, BWP, and EGWP distribution
for repair time data.

EXAMPLE 4. The purpose of this Example is to illustrate that McWP can be used to
model count data. The Poisson distribution is often used to model rare events. Major earth-
quakes (seismic intensity of 7.0 and over in rector scale) are considered to be rare. Assuming
that earthquakes are independent, we can forecast the number of earthquakes per year us-
ing the Poisson distribution. In Table 4 the numbers of major earthquakes from the United
States Geological Survey (https://www.usgs.gov) between 1900 and 2018 are reported.

TABLE 4
Number of major earthquakes from the United States Geological Survey between 1900 and 2018.

13 14 8 10 16 26 32 27 18 32 36 24 22 23 22 18 25
21 21 14 8 11 14 23 18 17 19 20 22 19 13 26 13 14
22 24 21 22 26 21 23 24 27 41 31 27 35 26 28 36 39
21 17 22 17 19 15 34 10 15 22 18 15 20 15 22 19 16
30 27 29 23 20 16 21 21 25 16 18 15 18 14 10 15 8
15 6 11 8 7 18 16 13 12 13 20 15 16 12 18 15 16
13 15 16 11 11 18 12 17 24 20 16 19 12 19 16 7 17

https://www.usgs.gov
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The estimated maximum likelihood estimate (MLE) and standard error (in paren-
thesis) of the parameter of the Poisson distribution using the earthquake data is 19.06
(0.40) with AIC value of 860.54. Similarly, the MLEs and their standard errors (in paren-
thesis) of the McDonald’s Weibull Poisson Distribution are given by α̂ = 0.05(0.03),
β̂ = 2.19(0.67), λ̂ = 2.20(1.98), â = 2.11(1.39), b̂ = 0.94(0.78) and ĉ = 0.66(5.64) with
an AIC value of 800.10. Further, the Kolmogorov-Smirnov test statistic (D) is 0.05 with
p-value equal to 0.87. It is evident that the earthquake data can be modeled very well
using the McWP distribution.

In Figures 8 and 9, we present a comparison of empirical and theoretical PDF and
CDF of the Poisson distribution and the McWP distribution, respectively. We observe
that the continuous approximation to the McWP of this discrete phenomenon depicts
a better fit and low mean squared error. One can perform the likelihood ratio test as in
Example 3 to prove that the McWP fits the earthquake data better than other competing
models including the Poisson distribution.
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Figure 8 – Fitted Poisson distribution for earthquake data.

EXAMPLE 5. The purpose of this Example is to illustrate that having a higher number
of parameters in a given distribution does not assure a better fit for given data. In this
example we consider a data set that fits the McWP distribution very well. However, almost
similar goodness of fit could be achieved using a sub-model of the McWP, namely the BWP.
Even though the addition of a parameter makes the McWP more flexible, it may not produce
significantly different results than the BWP. Hence, having a higher number of parameters
in a given distribution does not assure a better fit for given data. The data represents the
waiting times (in minutes) before service of 100 bank customers. Readers are referred to
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Figure 9 – The McWP distribution for earthquake data.

Ghitany et al. (2008) for details about this study. This data set has been studied by many
authors including Ghitany et al. (2008), Al-Mutairi et al. (2013), among others.

The estimated values of the parameters for the McWP and BWP distributions using
this data are given in the Table 5.

TABLE 5
MLEs and their standard errors (in parenthesis) for waiting time data.

Model Estimates
bα bβ bλ ba bb bc

McWP 0.263 1.147 0.379 2.046 0.375 1.326
(0.738) (2.076) (7.008) (4.390) (2.074) (8.384)

BWP 0.361 1.272 1.806 0.186 0.489 –
(0.672) (2.118) (4.489) (0.969) (9.274) –

To compare the models we compute the values of test statistics. The statistics of the
fitted McWP and BWP are presented in the Table 6.
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TABLE 6
The AIC, CAIC, HQIC, BIC, W∗, A∗, K-S statistics and p-value for failure time data.

Model Goodness of fit criteria

−` AIC CAIC BIC HQIC W∗ A∗ K-S p-value

McWP 317.04 646.08 646.98 661.71 652.40 0.02 0.12 0.04 0.99
BWP 317.04 644.07 644.71 657.10 649.34 0.02 0.13 0.04 0.99

6. CONCLUSIONS

In this paper we have studied a new class of distributions that is being referred to as the
McDonald generalized Poisson (McGP) family. The McGP family is defined by using
the genesis of the zero truncated Poisson distribution and the McDonald distribution.
Many mathematical and statistical properties and special cases of the McGP have been
explored. The parameter estimation procedure using different methods has been dis-
cussed. We have analyzed the McGP family with a number of examples to illustrate that
it is quite flexible to model real-life data. However, it has been observed that fitting of
a probability distribution to a specific data is a local phenomenon. That is, a particu-
lar generalization might not end up with a better fit just because it possesses a larger
number of parameters. In summary, probability distributions with a larger number of
parameters are worth exploring to analyze a given data set. Nevertheless, specific data
might be fitted by the base distribution as good as by the generalized distribution.
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