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1. INTRODUCTION

The concept of ranked set sampling (RSS) was first introduced by McIntyre (1952), as a
process of improving the precision of the sample mean as an estimator of the population
mean. RSS as described in McIntyre is applicable whenever ranking of a set of sampling
units can be done easily by judgment method without error and additional cost. The
procedure involves randomly choosing n sets of size n each from a population and rank-
ing the units in each set visually or using some method that has negligible cost. From
the first set of n units, the unit ranked lowest is chosen for actual quantification. From
the second set of n units, the unit ranked second lowest is chosen for actual quantifi-
cation. The process is continued until the unit ranked highest is chosen from the nth
set for actual quantification. Let Xr (r ) be the observation measured on the variable of
interest, say X with cumulative distribution function (cdf) F (x) and probability density
function (pdf) f (x) from the unit chosen from the rth set. If the ranking made on each
set is perfect, then clearly Xr (r ) is the rth order statistic arising from a random sample
of size n. Moreover Xr (r ), r = 1,2, . . . , n are independent. For convenience through out
the paper we denote Xr (r ) by Xr . Then, the joint density of X1,X2, . . . ,Xn is given by

f (x1, x2, . . . , xn) =
n
∏

i=1

n!
(i − 1)!(n− i)!

[F (xi )]
i−1 [1− F (xi )]

n−i f (xi ). (1)

The RSS is seen applied in many areas such as forest, agriculture, animal sciences, medicine
etc.Wang et al. (2009) used RSS in fisheries research. Tiwari and Pandey (2013) consid-
ered an application of RSS design in environmental studies. For more details on appli-
cations of RSS see Dong et al. (2012) and Chen et al. (2004). In reliability theory, the
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stress-strength model describes the life of a component which has a random strength
X and is subjected to random stress Y . The component fails when the stress applied
to it exceeds the strength and the component will function whenever Y < X . Thus
R = P (Y < X ) can be considered as a measure of component reliability. It has found
applications in many life testing problems and engineering. For more details on appli-
cations of R in engineering see, Nadarajah and Kotz (2006). In the context of system
reliability, Muttlak et al. (2010), Akgul and Senoglu (2017), Mahdisadeh and Zamanzade
(2018), Safariyan et al. (2019) obtained the estimator of stress-strength reliability based
on RSS using parametric or non-parametric methods. Chacko and Mathew (2019) con-
sidered inference on P (X < Y ) for bivariate normal distribution based on ranked set
sample.
The problem of estimation of R = P (Y < X ) has been widely used in the statistical
literature. Inference on R was carried out by several authors for the majority of com-
mon distribution families. The maximum likelihood estimator (MLE) of P (Y < X ),
when X and Y are normally distributed, has been considered by Downtown (1973) and
Govidarajulu (1967). Tong (1977) considered the estimation of P (Y < X ) when X and
Y are independent exponential random variables. Kundu and Gupta (2005) considered
the problem of estimation of P (Y <X ), when X and Y are independent generalized ex-
ponential distribution. Awad et al. (1981) considered the MLE of R, when X and Y are
bivariate exponential distributions. Ahmad et al. (1997) and Surles and Padgett (1998)
considered the problem of estimation of P (Y < X ), where X and Y are Burr type X
random variables. Rezaei et al. (2010) considered the estimation of P (Y < X ) when X
and Y are independent generalized Pareto distributions.
In this study, we are interested in making inference about R using RSS, when X and Y
follow independent generalized Pareto (GP) distribution. A random variable X is said
to follow GP distribution if its pdf is given by (see Rezaei et al., 2010)

fX (x) = αλ (1+λx)−(α+1) ; x > 0, λ > 0 and α > 0. (2)

Here α and λ are the shape and scale parameters respectively. This distribution is also
known as Pareto distribution of the second type or Lomax distribution. Shi et al. (1999)
used generalized Pareto distribution to estimate the size of the maximum inclusion in
clean steels. Wong (2012) considered the problem of interval estimation of P (Y < X )
for generalized Pareto distribution. Through out the paper we denote GP (α,λ) for a
generalized Pareto distribution with shape parameter α and scale parameter λ. The cdf
of the GP (α,λ) distribution with pdf defined in Eq. (2) is given by

F (x) = 1− (1+λx)−α ; λ > 0 and α > 0. (3)

In this paper, we consider the problem of estimation of R = P (Y < X ) based on
RSS data when X and Y follow generalized Pareto distributions. In Section 2, the maxi-
mum likelihood estimation of R when all the parameters of X and Y are unknown and
different is considered. In Section 3, Bayes estimation of R is considered under both
symmetric and asymmetric loss functions. In Section 4, we use a real data to illustrate
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the inferential procedures described in the previous Sections. Section 5 is devoted to
some simulation studies. Finally, a conclusion is given in Section 6.

2. MAXIMUM LIKELIHOOD ESTIMATION OF R

In this Section, we consider the problem of estimation of R when all the parameters
of X and Y are different. Let X ∼ GP (α,λ1) and Y ∼ GP (β,λ2) where X and Y are
independent random variables. Then, R is given by (see Surles and Padgett, 2001)

R =

∞
∫

0

αλ1 (1+λ1x)−(α+1) 1− (1+λ2x)
−β

d x

= 1−α
�

λ2

λ1

�−β ∞
∫

0

(1+ t )−(α+1)
�

λ1

λ2
+ t

�−β
d t . (4)

Considering the integral of the form
∞
∫

0

xν−1(β+ x)−µ(x + γ )−Q d x =β−µγ ν−Q B (ν ,µ− ν +Q)2 F1

�

µ, ν ;µ+Q; 1−
γ

β

�

,

(5)
where ν > 0, µ> ν −Q and 2F1(.) is Gauss’ hypergeometric function given by

2F1(a, b ; c ;θ) =
∞
∑

j=0

(a) j (b ) j
(c) j

θ j

j !
, (6)

where (x)k = x(x+ 1)(x+ 2) · · · (x+ k− 1) for k ≥ 1 with (x)0 = 1. For more details of
this function see Mathai and Haubold (2008). Then,

R = 1−α
�

λ2

λ1

�−β�λ1

λ2

�1−β
B (1,α+β)2 F1

�

α+ 1,1;α+β+ 1;1−
λ1

λ2

�

= 1− α

α+β
λ1

λ2
2F1

�

α+ 1,1;α+β+ 1;1−
λ1

λ2

�

. (7)

Let Xi , i = 1,2, . . . , m be a ranked set sample from GP (α,λ1) and Y j , j = 1,2, . . . , n be a
ranked set sample from GP (β,λ2). If we denote δ = (α,β,λ1,λ2), then the likelihood
function is given by

L(δ) = Kαmβnλm
1 λ

n
2

m
∏

i=1

�

1− (1+λ1xi )
−α�i−1 [1+λ1xi ]

α(i−m−1)−1

n
∏

j=1

�

1− (1+λ2y j )
−β
� j−1 �

1+λ2y j

�β( j−n−1)−1
, (8)
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where

K =
m
∏

i=1

m!
(i − 1)!(m− i)!

n
∏

j=1

n!
( j − 1)!(n− j )!

. (9)

The log-likelihood function is given by

log L(δ) = log c +
m
∑

i=1

(i − 1) log
�

1− (1+λ1xi )
−α�

+m [logα+ logλ1]+
n
∑

j=1

( j − 1) log
�

1− (1+λ2y j )
−β
�

+n [logβ+ logλ2]+
m
∑

i=1

[α(i −m− 1)− 1] log(1+λ1xi )

+
n
∑

j=1

[α( j − n− 1)− 1] log(1+λ2y j ). (10)

Thus

∂ log L
∂ α

=
m
α
+

m
∑

i=1

(i −m− 1) log(1+λ1xi )

+
m
∑

i=1

(i − 1)
(1+λ1xi )

−α log(1+λ1xi )
1− (1+λ1xi )−α

, (11)

∂ log L
∂ β

=
n
β
+

n
∑

j=1

( j − n− 1) log(1+λ2y j )

+
n
∑

j=1

( j − 1)
(1+λ2y j )

−β log(1+λ2y j )

1− (1+λ2y j )−β
, (12)

∂ log L
∂ λ1

=
m
λ1
+

m
∑

i=1

(i − 1)
αxi (1+λ1xi )

−(α+1)

1− (1+λ1xi )−α

+
m
∑

i=1

[α(i −m− 1)− 1]
xi

1+λ1xi
(13)

and

∂ log L
∂ λ2

=
n
λ2
+

n
∑

j=1

( j − 1)
βy j (1+λ2y j )

−(β+1)

1− (1+λ2y j )−β

+
n
∑

j=1

[β( j − n− 1)− 1]
y j

1+λ2y j
. (14)

The MLEs of α,β,λ1 andλ2 say α̂, β̂, λ̂1 and λ̂2 can be obtained by equating each of the
Equations from (11) to (14) to 0 and by solving those equations.
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Then, by the invariance property of the ML estimators, the MLE of R becomes

R̂= 1− α̂

α̂+ β̂

λ̂1

λ̂2

2F1

 

α̂+ 1,1; α̂+ β̂+ 1;1−
λ̂1

λ̂2

!

. (15)

2.1. Bootstrap Confidence Interval

Next we consider the percentile bootstrap confidence interval for R based on MLEs.

For that first we compute the MLEs α̂(0), β̂(0), λ̂1

(0)
and λ̂2

(0)
of α,β, λ1 and λ2 using

original ranked set sample. Generate a bootstrap RSS of size m from GP
�

α̂(0), λ̂1

(0)
�

and a bootstrap RSS of size n from GP
�

β̂(0), λ̂2

(0)
�

. Obtain the MLEs α̂(1), β̂(1), λ̂1

(1)

and λ̂2

(1)
using the bootstrap samples and find the MLE R̂1. Repeat the procedure B

times to have R̂k for k = 1,2, . . . ,B . Arrange R̂k for k = 1,2, . . . ,B in ascending order
as R̂(1) ≤ R̂(2), . . . ,≤ R̂(B). Then, the 100(1− ν) percentile bootstrap CI for R is given by
�

R̂([B(ν/2)]), R̂([B(1−ν/2)])
�

.

REMARK 1. If the scale parameters of X and Y are same that is, λ1 = λ2, then R =
P (Y <X ) is given by

R=
β

α+β
(16)

3. BAYESIAN ESTIMATION OF R

In this Section, we obtain the Bayes estimator of R when the scale parameters of both X
and Y are different. Let Xi , i = 1,2, . . . , m be a ranked set sample from GP (α,λ1) and
Y j , j = 1,2, . . . , n be a ranked set sample from GP (β,λ2). Then, the likelihood function
is given by

L(δ) = Kαmβnλm
1 λ

n
2

m
∏

i=1

�

1− (1+λ1xi )
−α�i−1 [1+λ1xi ]

α(i−m−1)−1

n
∏

j=1

�

1− (1+λ2y j )
−β
� j−1 �

1+λ2y j

�β( j−n−1)−1
. (17)

For the Bayes estimation we assume that the prior distributions of α,β,λ1 and λ2 follow
independent gamma distributions with density functions given by

π1(α|a1, b1) =
b a1

1

Γ (a1)
αa1−1e−b1α; a1 > 0 and b1 > 0, (18)
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π2(β|a2, b2) =
b a2

2

Γ (a2)
βa2−1e−b2β; a2 > 0 and b2 > 0, (19)

π3(λ1|a3, b3) =
b a3

3

Γ (a3)
λa3−1

1 e−b3λ1 ; a3 > 0 and b3 > 0 (20)

and

π4(λ2|a4, b4) =
b a4

4

Γ (a4)
λa4−1

2 e−b4λ2 ; a4 > 0 and b4 > 0. (21)

Then, the joint prior density of δ = (α,β,λ1,λ2) is given by

π(δ) =
b a1

1 b a2
2 b a3

3 b a4
4

Γ (a1)Γ (a2)Γ (a3)Γ (a4)
αa1−1βa2−1λa3−1

1 λa4−1
2 e−b1αe−b2βe−b3λ1 e−b4λ2 . (22)

Then, the joint posterior density of α, β, λ1 and λ2 given the data is

π∗(δ|data) =
L(δ)π(δ)

∫

L(δ)π(δ)dδ
. (23)

Since the posterior pdf in Eq. (23) cannot be reduced analytically to a closed form we
propose MCMC method to find the Bayes estimates of R.

3.1. MCMC Method

In this Sub-Section, we consider MCMC method to find the Bayes estimate of R. The
joint posterior density given in Eq. (23) can be written as

π∗(δ|data) ∝ αa1+m−1βa2+n−1λa3+m−1
1 λa4+n−1

2 exp(−b1α)exp(−b2β)

exp(−b3λ1)exp(−b4λ2)
m
∏

i=1

�

1− (1+λ1xi )
−α�i−1 (24)

(1+λ1xi )
α(i−m−1)−1

n
∏

j=1

�

1− (1+λ2y j )
−β
� j−1
(1+λ2y j )

β( j−n−1)−1.

From Eq. (24) the conditional posterior density of α givenβ, λ1,λ2 and data is given by

π∗1(α|β,λ1,λ2, dat a)∝ αa1+m−1 exp (−(b1−T1)α)
m
∏

i=1

�

1− (1+λ1xi )
−α�i−1 , (25)

where T1 =
m
∑

i=1
(i −m− 1) log(1+ λ1xi ). The conditional posterior density of β given

α, λ1, λ2 and the data is given by

π∗2(β|α,λ1,λ2, data)∝βa2+n−1 exp (−(b2−T2)β)
n
∏

j=1

�

1− (1+λ2y j )
−β
� j−1

, (26)
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where T2 =
n
∑

j=1
( j − n− 1) log(1+ λ2y j ). The conditional posterior density of λ1 given

α, β, λ2 and the data is given by

π∗3(λ1|α,β,λ2, data) ∝ λa3+m−1
1 exp(−b3λ1)

m
∏

i=1

�

1− (1+λ1xi )
−α�i−1

(1+λ1xi )
α(i−m−1)−1. (27)

The conditional posterior density of λ2 given α, β, λ1 and the data is given by

π∗4(λ2|α,β,λ1, data) ∝ λa4+n−1
2 exp(−b4λ2)

n
∏

j=1

�

1− (1+λ2y j )
−β
� j−1

(1+λy j )
β( j−n−1)−1. (28)

We use Metropolis-Hasting (M-H) algorithm with in the Gibbs sampling procedure to
generate samples from conditional posterior distributions. By setting initial values α(0),
β(0), λ(0)1 and λ(0)2 , let α(t ),β(t ), λ(t )1 and λ(t )2 , t = 1,2, . . . ,N be the observations generated
from Equations (25),(26),(27) and (28), respectively. Then, the Bayes estimators of R
under SEL, LL and EL by taking first M iterations as burn-in period, are respectively
given by

R̂s =
1

N −M

N
∑

t=M+1

R̂(t ), (29)

R̂L =
−1
h

log

�

1
N −M

N
∑

t=M+1

e−hR̂(t )
�

(30)

and

R̂E =
�

1
N −M

N
∑

t=M+1

�

R̂(t )
�−q

�
−1
q

, (31)

where

R̂(t ) = 1− α̂(t )

α̂(t )+ β̂(t )
λ̂1

(t )

λ̂2

(t ) 2F1



α̂(t )+ 1,1; α̂(t )+ β̂(t )+ 1;1−
λ̂1

(t )

λ̂2

(t )



 . (32)

4. ILLUSTRATION USING REAL DATA

In this Section, we illustrate the inferential procedures described in the previous Sections
using real data sets given in Pandit and Joshi (2018), which were originally reported by
Badar and Priest (1982). The data represents the strength measured in GPA for single
carbon fibers and impregnated 1000-carbon fiber tows. The single fibers were tested
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under tension at gauge lengths of 20mm (data set I) and 10 mm (data set II). Pandit and
Joshi (2018) fitted the GP distribution to both data sets. Let X and Y denote the strength
for single carbon fiber under tension at gauge lengths 20mm and 10mm respectively.
Then, the problem is to estimate the probability that the strength for single carbon fiber
under tension at gauge length 10mm is less than the strength at 20mm,that is, P (Y <X ),
using RSS. For that choose 49 (m = 7) units randomly from data set I and arrange them
into 8 sets of 8 units each. Similarly choose 49 (n = 7) units randomly from data set II
and arrange them into 7 sets of 7 units each. Then, the RSS observations from X and Y
are given in Table 1.

TABLE 1
RSS observations from the strength for single carbon fiber
under tension at gauge lengths 20mm (X ) and 10mm (Y ).

i 1 2 3 4 5 6 7

X 2.055 2.301 2.253 2.684 2.566 2.586 3.433
Y 2.006 1.479 2.575 2.624 2.880 2.566 3.585

We have obtained the MLEs and Bayes estimates of P (Y < X ) in the general case
based on RSS (Table 2). For Bayes estimation we took non-informative priors for α, β,
λ1 and λ2 and are obtained when a1 = 0, b1 = 0, a2 = 0, b2 = 0, a3 = 0, b3 = 0, a4 = 0
and b4 = 0. Bayes estimates are obtained using 50000 iterations in which we take first
5000 iterations as burn-in period. Results show that the estimated values of P (Y <X ) is
more or less 0.5 for all the cases. Therefore we cannot claim that the strength for single
fiber carbon under tension at gauge length 10mm is relatively smaller than the strength
at 20mm.

TABLE 2
MLEs and Bayes estimates of P (Y <X ) from RSS observations in Table 1.

MLE 0.517

MCMC method SEL 0.487

LL h =−1 0.515

h = 1 0.528

EL q =−0.5 0.491

q = 0.5 0.542
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5. SIMULATION STUDY

In this Section, a Monte Carlo simulation is performed to study the efficiency of the
estimators developed in the previous Sections. We have considered the case when the
scale parameters are unknown and different. We have obtained the average bias and MSE
of MLEs of R, bootstrap confidence intervals for R and are given in Table 3. For the
Bayesian estimation we took the hyper parameters for the prior distributions of α,β,
λ1 and λ2 as a1 = 2, b1 = 2, a2 = 2, b2 = 2, a3 = 2 b3 = 2, a4 = 2 and b4 = 2. We have
obtained the bias and MSE of Bayes estimator of R under SEL, LL and EL functions
(Table 4). The 95% HPD credible intervals of R are also obtained by using the method
given in Chen and Shao (1999) (Table 3).

TABLE 3
The bias & MSE of MLEs for R and AIL & CP for CIs when λ1 = 0.5 and λ2 = 1.

m/n α β R MLE Bootstrap HPD

Bias MSE AIL CP AIL CP

2 0.5 0.5 0.586 0.137 0.195 0.289 82 0.274 92
2 1.5 0.5 0.343 0.245 0.294 0.452 78 0.271 91
2 0.5 1.5 0.828 0.179 0.212 0.212 75 0.274 92
2 2 1.5 0.562 0.097 0.230 0.352 82 0.273 94
4 0.5 0.5 0.586 0.097 0.180 0.339 78 0.272 89
4 1.5 0.5 0.343 0.192 0.284 0.311 75 0.269 88
4 0.5 1.5 0.828 0.173 0.177 0.260 73 0.259 91
4 2 1.5 0.562 -0.112 0.215 0.377 75 0.170 93
6 0.5 0.5 0.586 -0.084 0.178 0.307 77 0.167 90
6 1.5 0.5 0.343 -0.172 0.237 0.226 72 0.161 91
6 0.5 1.5 0.828 -0.163 0.163 0.261 82 0.168 92
6 2 1.5 0.562 0.103 0.187 0.325 79 0.156 90
8 0.5 0.5 0.586 -0.076 0.144 0.230 78 0.152 88
8 1.5 0.5 0.343 0.152 0.175 0.233 76 0.142 92
8 0.5 1.5 0.828 -0.152 0.148 0.194 78 0.157 92
8 2 1.5 0.562 0.097 0.162 0.197 73 0.142 94
10 0.5 0.5 0.586 -0.060 0.013 0.190 76 0.142 89
10 1.5 0.5 0.343 -0.111 0.146 0.162 82 0.133 91
10 0.5 1.5 0.828 0.146 0.127 0.178 80 0.136 92
10 2 1.5 0.562 -0.075 0.089 0.176 79 0.136 91
15 0.5 0.5 0.586 -0.056 0.012 0.184 79 0.140 92
15 0.5 1 0.343 -0.105 0.116 0.158 78 0.124 93
15 1 1.5 0.828 0.125 0.118 0.138 81 0.116 92
15 2 1.5 0.562 -0.067 0.081 0.158 79 0.125 91
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The bias and MSE of all estimators decrease when the number of RSS units m and n
increase. Bias and MSEs of Bayes estimators are smaller than the corresponding MLEs.
Among the estimators, Bayes estimators under LINEX loss function when h =−1 have
smaller bias and MSE. AILs of HPD intervals are smaller and the associated CPs are
higher than that of bootstrap confidence intervals.

6. CONCLUSION

In this work, we considered the problem of estimation of R= P (Y <X ) for generalized
Pareto distribution using RSS. The maximum likelihood and Bayesian estimators have
been obtained for R. For obtaining the Bayes estimates, MCMC method has been ap-
plied. Based on the simulation study we have concluded that Bayes estimators perform
better than the corresponding MLEs. Among the Bayes estimators, estimators under
LINEX loss function perform better in terms of bias and MSE. AILs of HPD intervals
are smaller and the associated CPs are higher than that of bootstrap confidence intervals.
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SUMMARY

In this paper, the problem of estimation of R = P (Y < X ) based on ranked set sampling, when
(X ,Y ) follows generalised Pareto distribution (GPD) is considered. The maximum likelihood
(ML) estimators and Bayes estimators of R are obtained. A Monte Carlo simulation is also per-
formed to study the behaviour of different estimators.
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