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1. INTRODUCTION

Statistical analysis of functional variables has considerably grown over the last two
decades. Indeed, an immense innovation on measuring devices has emerged and permit-
ting to monitor several objects in a continuous way, such as stock market index, pollu-
tion, climatology, satellite images, etc. Thus, a new branch of statistics, called functional
statistics, has developed to treat observations as functional random elements. The study
of statistical models for functional data has been a subject of several recent works and de-
velopments. The first results on the conditional models were obtained by Ferraty et al.
(2006), where these authors established the almost complete convergence rate of the ker-
nel estimators for the conditional distribution function, the conditional density and its
derivatives, the conditional mode and the conditional quantiles. As a conditional non-
parametric model, regression was one of the first predictive analysis tools. Conditional
mode estimation is useful in prediction setting, it provides an alternative approach to
classical regression estimation. For more recent advances in the topic (see Ezzahrioui
and Ould Saïd (2010)). In functional statistics, this model was introduced by Cardot
et al. (2004). The nonparametric study of this model has been considered by Ferraty
and Vieu (2006).

Mode regression is a common way to describe the dependence structure between
a response variable Y and some covariate X . Unlike the regression function (which is
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defined as the conditional mean) that relies only on the central tendency of the data, the
conditional mode function allows the analysts to estimate the functional dependence be-
tween variables for all portions of the conditional distribution of the response variable.
On the other hand, compared with the standard approach based on functional condi-
tional mean prediction that is sensitive to outliers, functional condition mode prediction
could be seen as a reasonable alternative to conditional mean because of its robustness.
Moreover, quantiles are well known for their robustness to heavy-tailed error distribu-
tions and outliers which allow to consider them as a useful alternative to the regression
function (see Chaouch and Khardani (2015)). Conditional quantiles and conditional
mode are used in finance and/or insurance to model the risks of extreme values. Condi-
tional quantiles and conditional mode are used in finance and/or insurance to model the
risks of extreme values. Furthermore, conditional quantiles can be used to detect out-
liers in the data as well as establishing probabilistic forecasts. For the above mentioned
theoretical and application reasons, the statistical community has placed great interest
in estimating conditional quantiles, specifically the conditional median function, is an
interesting alternative predictor to the conditional mean thanks to its robustness to the
presence of outliers (see Chaudhuri et al. (1997)). Estimation of the conditional mode
of a scalar response given a functional covariate has attracted the attention of many re-
searchers. Ferraty et al. (2005) introduced a nonparametric estimator of the conditional
mode when data are dependent. They stated its rate of almost complete consistency.
Ezzahrioui and Ould Saïd (2010) established the asymptotic normality of the kernel
conditional mode estimator under an α-mixing assumption. In the censored case, Ould
Saïd and Cai (2005) stated the uniform strong consistency with rates of the kernel esti-
mator of the conditional mode function, in this context, we refer to Lemdani et al. (2009)
for the estimation of conditional quantiles. Other authors have been interested in the
estimation of conditional models when the observations are censored or truncated (see
for instance, Liang and de Uña Álvarez (2010), Khardani et al. (2010, 2011, 2012), Ould
Saïd and Djabrane (2011) or Tatachak and Ould Saïd (2011), etc.

The ergodic theory has appeared in statistical mechanics, notably in Maxwell’s and
Gibbs’s theories. It is necessary to make a sort of logical transition between the average
behavior of the set of dynamic systems and the temporal average of the behaviors of a
single dynamic system. It is derived from an ingenious hypothesis used for a long time
without justifying it, and in various forms. In the context of the ergodic functional case
with censored observations the literature is very restricted. We refer to Chaouch and
Khardani (2015), studied the asymptotic properties of the kernel-type estimator of the
conditional quantiles when the response variable is right-censored and the data are sam-
pled from an underlying stationary ergodic process. The single-index model represents
one of the well-known semi-parametric models, who is very popular in the economics
community as which allow to reduce the dimensionality of the covariate space while of-
fering a flexibility in describing the relationship between the response and the covariate,
through an unknown link function. The statistical study of these models, in the context
of vectorial explanatory random variables, was initiated by Härdle and Marron (1985).
Hristache et al. (2001) provide both new theoretical and bibliographic elements. Sev-
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eral authors have worked on simple functional index models, we can cite Ferraty et al.
(2003), Ait Saïdi et al. (2008), Attaoui (2014) and Bouchentouf et al. (2014).

However, in many practical works such as pharmaceutical tracing test and reliability
test and so on, some pairs of observations may be incomplete, in this case we call them
missing data. Many examples of missing data and its statistical inferences for regres-
sion model can be found in statistical literature when explanatory variables are of finite
dimensionality (Cheng (1994), Little and Rubin (2002), Nittner (2003), Tsiatis (2006),
Liang et al. (2007), Efromovich (2011a,b)) and references therein for details. When the
explanatory variable is infinite dimensional or it is of functional nature, only very few
literature was reported to investigate the statistical properties of functional nonparamet-
ric regression model for missing data. Recently, Ferraty et al. (2013) first proposed to
estimate the mean of a scalar response based on an i.i.d. functional sample in which
explanatory variables are observed for every subject, while part of the responses are
missing at random (MAR) for some of them. It generalized the results in Cheng (1994)
to the case where the explanatory variables are of functional nature.

The main contribution of this work is to generalize the result of Ling et al. (2015,
2016) in the case where a functional parameter θ is present in the model. Our results
can be used to construct prediction intervals, for instance in electricity when one wants
to construct a maximum interval of demand (or needs) of electricity in the presence of
missing data.

In practice, this study has great importance, because, it permits us to construct a pre-
diction method based on the conditional mode estimator. Moreover, in the case where
the functional single-index is unknown, our estimate can be used to estimate this param-
eter via the pseudo-maximum likelihood estimation method. To the best of our knowl-
edge, the estimation of the nonparametric conditional density, in the functional single
index structure combining missing data and stationary ergodic processes with functional
nature has not been studied in the statistical literature. So, in the present work, we in-
vestigate conditional density estimation when the data are both MAR and ergodic. At
first, an estimator of the regression operator in the functional single index, and of a
scalar response and the functional covariate which are assumed to be sampled from a
stationary and ergodic process is constructed with single-index structure. Our aim is
to develop a functional methodology for dealing with MAR samples in non-parametric
problems (namely in conditional mode estimation). Then, the asymptotic properties of
the estimator are obtained under some mild conditions.

Here, we consider a model in which the response variable is missing. Besides the
infinite dimensional character of the data, we avoid here the widely used strong mixing
condition and its variants to measure the dependency and the very involved probabilistic
calculations that it implies. Therefore, we consider, in our setting, the ergodic property
to allow the maximum possible generality with regard to the dependence setting. Fur-
ther motivations to consider ergodic data are discussed in Laib and Laib and Louani
(2010) where details defining the ergodic property of processes are also given. As far
as we know, the estimation of conditional quantile combining censored data, ergodic
theory, and functional data with single-index structure has not been studied in the sta-
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tistical literature. This work extends, to the functional single index model case, the work
of Ling et al. (2015, 2016).

This work is organized as follows: in Section 2 we present the model and the hy-
potheses intervening in the main result, the pointwise almost complete convergence
and the uniform almost complete convergence of our estimators are given in Section 3.
As application, the conditional mode in functional single index model as well as a con-
fidence interval of the resulted estimator is presented in Section 4. Finally, the proofs of
the results are postponed to the last Section.

2. THE MODEL AND THE ESTIMATES

Consider a random pair (X ,Y ) where Y takes values in R and X takes its values in a
separable Hilbert spaceH with the norm ∥ · ∥ generated by an inner product < ·, · >.
Let (Xi ,Yi )i=1,...,n be a sequence of stationary and ergodic functional samples. Assume
that the conditional expectation of Y given X is done through a fixed functional index
θ inH , such that

E[Y |X ] =E[Y |<θ,X >].

This model was introduced by Ferraty and Vieu (2003) and we can refer to Attaoui
et al. (2011) for details. Moreover, we consider dθ(·, ·) a semi-metric associated with the
single index θ ∈H defined by dθ(x1, x2) := |< x1− x2,θ > |, for x1 and x2 inH .

We define the estimator of the conditional density f (θ, ·, x) in complete data of Y
given <X ,θ >=< x,θ > for x ∈H by,

efn(θ, y, x) =

h−1
H

n
∑

i=1

K
�

h−1
K (|< x −Xi ,θ > |)

�

H
�

h−1
H (y −Yi )

�

n
∑

i=1

K
�

h−1
K (|< x −Xi ,θ > |)

�

,

where K and H are Kernel functions, and hK = hn,K (resp. hH = hn,H ) is a sequence
of smoothing parameters decreasing to zero as n goes to infinity.

Meanwhile, in incomplete case with missing at random for the response variable, we
observe (Xi ,Yi ,δi )1≤i≤n where Xi is observed completely, and δi = 1 if Yi is observed
and δi = 0 otherwise. We define the Bernoulli random variable δ by

P (δ = 1|<X ,θ >=< x,θ >,Y = y) = P (δ = 1|<X ,θ >=< x,θ >) = p(θ, x),

where p(θ, x) is a functional operator which is conditionally only on X . Therefore, the
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estimator of f (θ, y, x) in the single index model with response MAR is given by

bfn(θ, y, x) =

h−1
H

n
∑

i=1

δi K
�

h−1
K (|< x −Xi ,θ > |)

�

H
�

h−1
H (y −Yi )

�

n
∑

i=1

δi K
�

h−1
K (|< x −Xi ,θ > |)

�

=
bfN (θ, y, x)
bFD (θ, x)

where
bfN (θ, y, x) =

1
n hH E(K1(θ, x))

n
∑

i=1

δi Ki (θ, x)Hi (θ, y, x)

and
bFD (θ, x) =

1
nE(K1(θ, x))

n
∑

i=1

δi Ki (θ, x),

with Hi (θ, y, x) =H
�

h−1
H (y −Yi )

�

, and Ki (θ, x) =K
�

h−1
K (|< x −Xi ,θ > |)

�

.
Finally, the estimator of conditional mode Mθ(x) is defined as,

ÒMθ(x) = arg sup
y∈SR

efn(θ, y, x)

where Mθ(x) = arg sup
y∈SR

f (θ, y, x), SR is a fixed compact subset of R.

Let Fi be the σ -fields generated by ((< X1,θ >,Y1), . . . , (< Xi ,θ >,Yi )) and Gi be
the σ -fields generated by ((< X1,θ >,Y1), . . . , (< Xi ,θ >,Yi ),< Xi+1,θ >) respectively,
and write Bθ(x, h) = {χ ∈ H : | < x − χ ,θ > | ≤ h} the ball of center x and radius
h and dθ (x,Xi ) = | < x −Xi ,θ > | denote a random variable such that its cumulative
distribution function is given by Fθ,x (u) = P (dθ (x,Xi )≤ u) = P (Xi ∈ Bθ(x, u)), and

the conditional cumulative distribution function of dθ (x,Xi ) is defined by FFi−1

θ,x (u) =
P
�

dθ (x,Xi )≤ u | Fi−1

�

= P
�

Xi ∈ Bθ (x, u) | Fi−1

�

.

(A1) K is a nonnegative bounded kernel function over its support [0,1] with K(1) >
0, and the derivative K

′
exists on [0,1] with K

′(t ) < 0 for all t ∈ [0,1] and
∫ 1

0 (K
j )′(t )d t <∞, for j = 1,2

(A2) For x ∈ H , there exist a sequence of nonnegative bounded random functions
( fi ,1)i≥1, a sequence of random functions (gi ,θ,x )i≥1, a deterministic nonnegative
bounded function f1 and a nonnegative real function φθ(·) tending to zero, as its
argument tends to zero, such that

(i) Fθ,x (h) =φθ(h) f1(θ, x)+ o(φθ(h)) as h→ 0.

(ii) For any i ∈N, FFi−1

θ,x (h) =φθ(h) fi ,1(θ, x)+ gi ,θ,x (h) with

gi ,θ,x = oa.s (φ(t )) as h→ 0, gi ,θ,x (h)/φθ(h) a.s. bounded and

n−1∑n
i=1 g j

i ,θ,x (h) = oa.s (φ
j
θ
(h)) as n→∞ for j = 1,2.
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(iii) n−1∑n
i=1 f j

i ,1(θ, x)→ f j
1 (θ, x) almost surely as n→∞ for j = 1,2.

(iv) There exists a nondecreasing bounded function τ0 such that, uniformly in
t ∈ [0,1],φθ(h t )/φθ(h) = τ0 + o(1), as h ↓ 0 and

∫ 1
0 (K

j )′τ0(t )d t <
∞ f o r j ≥ 1.

(v) n−1∑n
i=1 bi (θ, x)→D(θ, x)<∞ as n→∞.

(A3) The conditional density f (θ, y, x) satisfies the Hölder condition, i.e.,

∀(x1, x2) ∈Nx ×Nx , ∀(y1, y2) ∈S 2
R , for b1 > 0, b2 > 0

| f (θ, y1, x1)− f (θ, y2, x2)| ≤Cθ,x

�

∥x1− x2∥
b1 + |y1− y2|

b2
�

.

(A4) (i) The Kernel H is a positive bounded function with:
∗
∫

R |t |
b2 H (t )d t <∞ and

∫

R t H (t )d t = 0.
∗ For all (t1, t2) ∈R2, |H (t1)−H (t2)| ≤C |t1− t2|.

(ii) H (1)(t ) and H (2)(t ) are bounded with
∫

(H (1)(t ))2d t <∞

(A5) For j = 0,1,2, and any k ≥ 1,

E
�

(h−1
H H ( j )(h−1

H (t −Yi )))
k |Gi−1

�

=E
�

(h−1
H H ( j )(h−1

H (t −Yi )))
k |<θ,Xi >

�

(A6) p(θ, x) is continuous in a neighborhood of x.

(A7) (i) ∃ε0, such that f (θ, ·, x) is strictly increasing on (Mθ(x)−ε0, Mθ(x)) and strictly
decreasing on (Mθ(x), Mθ(x)+ ε0), with respect to x.

(ii) f (θ, y, x) is twice continuously differentiable around Mθ(x) with
f (1)(θ, Mθ(x), x) = 0, and f (2)(θ, Mθ(x), x) ̸= 0, where f (q)(θ, y, x),
(q = 1,2) is the qth derivative of f (θ, y, x) with respect to y ∈SR.

3. MAIN RESULTS

In this part of the paper, the convergence of the conditional density function and asymp-
totic normality are established. To this end, we consider the same decomposition used
in Chaouch and Khardani (2015).

PROPOSITION 1. Under assumptions (A1)-(A6) and if ∃ξ > 0, nξ h2
H →n→∞∞, and if

log n
n h2

H φθ(hK )
→ 0, as n→∞. (1)

then we have,

sup
y∈SR
| bfn(θ, y, x)− f (θ, y, x)|= Oa.s .(h

b1
K + h b2

H )+Oa.s .

 √

√

√

log n
n h2

H φθ(hK )

!

.
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PROPOSITION 2. Under assumptions of Proposition 1, in addition if
Æ

nhHφθ(hK )(h
b1
K + h b2

H )→ 0, as n→∞. (2)

then we have,
Æ

nhHφθ(hK )( bfn(θ, y, x)− f (θ, y, x)) D−→N (0,σ2(θ, y, x)), as n→∞,

where ”
D−→ ” means the convergence in distribution, and

σ2(θ, y, x) =
M2

M 2
1

f (θ, y, x)
p(θ, x) f1(θ, x)

∫

R
H 2(u)d u

with M j =K j (1)−
∫ 1

0 (K
j )′(u)τ0(u)d u, f o r j = 1,2.

The proof of propositions Proposition 1 and Proposition 2 is based on the following
decomposition. Let

bfn(θ, y, x)− f (θ, y, x) =
Qn(θ, y, x)+Rn(θ, y, x)

bFD (θ, x)
+Bn(θ, y, x)

where

Qn(θ, y, x) =
�

bfN (θ, y, x)− f̄N (θ, y, x)
�

− f (θ, y, x)
�

bFD (θ, x)− F̄D (θ, x)
�

, (3)

and

Rn(θ, y, x) = −Bn(θ, y, x)
�

bFD (θ, x)− F̄D (θ, x)
�

,Bn(θ, y, x)

=
f̄N (θ, y, x)

F̄D (θ, x)
− f (θ, y, x),

with,

f̄N (θ, y, x) =
1

n hH E(K1(θ, x))

n
∑

i=1

E
�

δi Ki (θ, x)Hi (y)|,Fi−1

�

F̄D (θ, x) =
1

nE(K1(θ, x))

n
∑

i=1

E
�

δi Ki (θ, x)|Fi−1

�

.

The asymptotic rates of conditional mode estimation in the single index model with
MAR response is given in the following theorem.

THEOREM 3. Under conditions of Proposition 1, and if (A7) holds true, then we have

|ÒMθ(x)−Mθ(x)|= Oa.s .(h
b1
K + h b2

H )
1/2+Oa.s .

�

log n
n h2

Hφ(hK )

�1/4

.
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PROOF. Under (A7) and by using a Taylor expansion of order two of function
f (θ, Mθ(x), x) in the neighborhood of Mθ(x) with f (1)(θ, Mθ(x), x) = 0, it follows that

bf (θ, ÒMθ(x), x)− f (θ, Mθ(x), x) =
1
2

f (2)(θ, M ∗θ(x), x)(ÒMθ(x)−Mθ(x))
2 (4)

where M ∗
θ
(x) is between Mθ(x) and ÒMθ(x). Noting that by Theorem 6.6 in Ferraty and

Vieu (2006), we have

| bf (θ, ÒMθ(x), x)− f (θ, Mθ(x), x)| ≤ 2 sup
θ∈ΘH

sup
y∈SR
| bf (θ, y, x)− f (θ, y, x)|.

Same as above, combining Eq. (4) with Ferraty and Vieu (2006), we obtain

|ÒMθ(x)−Mθ(x)|
2 f (2)(θ, M ∗θ(x), x) = O

�

sup
θ∈ΘH

sup
y∈SR
| bf (θ, y, x)− f (θ, y, x)|

�

.

By (A7)(ii), we get

|ÒMθ(x)−Mθ(x)|
2 = Oa.s .

�

sup
θ∈ΘH

sup
y∈SR
| bf (θ, y, x)− f (θ, y, x)|

�

.

2

4. CONSTRUCTING CONFIDENCE BANDS

Noting that, both the asymptotic variance σ2(θ, y, x) and ρ2(θ, Mθ(x), x) contain some
unknown quantities Mθ(x), p(θ, x), f (θ, y, x), f (2)(θ, y, x) and M j for j = 1,2, and un-
known functions φθ(hK ) and f1(θ, x) that we have to estimate.
Therefore, same as above, f (θ, y, x) and f (2)(θ, y, x) can be estimated respectively by
bfn(θ, y, x) and bf (2)n (θ, y, x). Moreover by assumptions (A2)-(i) and (A2)-(iv), we can esti-
mate τ0(θ, x) by

τn(u) =
Fθ,x,n(u h)
Fθ,x,n(h)

where

Fθ,x,n(h) =
1
n

n
∑

i=1

1(<x−Xi ,θ>≤u)

can be used to estimate φθ(hK ). Finally, the estimator of p(θ, x) is denoted by

Pn(θ, x) =

n
∑

i=1

δi K
�

<θ, x −Xi >

hK

�

n
∑

i=1

K
�

<θ, x −Xi >

hK

� .
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Then, as above, the following corollaries are obtained by using estimate term of un-
known term, which allows to obtain a confidence band.

THEOREM 4. Under conditions of Proposition 2 and if (A7) holds true, and if in addi-
tion nh3

Hφθ(hK )→ 0, then we have
Æ

nh3
Hφθ(hK )(ÒMθ(x)−Mθ(x))

D−→N (0,ρ2(θ, Mθ(x), x)), as n→∞,

where

ρ2(θ, Mθ(x), x) =
M2

M 2
1

f (θ, Mθ(x), x)
p(θ, x) f1(θ, x)( f (2)(θ, Mθ(x), x))2

∫

(H (1)(u))2d u.

PROOF. By the first order Taylor expansion for bf (1)(θ, y, x) at point Mθ(x) and the
fact that bf (1)(θ, ÒMθ(x), x) = 0, it follows that

Æ

nh3
Hφ(hK )|ÒMθ(x)−Mθ(x)|=

−
Æ

nh3
Hφ(hK ) bf

(1)(θ, Mθ(x), x)
bf (2)(θ, M ∗

θ
(x), x)

where M ∗
θ
(x) is between ÒMθ(x) and Mθ(x). Similar to the proof of Proposition 2, it

follows that

−
Æ

nh3
Hφ(hK ) bf

(1)(θ, Mθ(x), x) D−→N (0,ρ2
0(θ, Mθ(x), x))

where

ρ2
0(θ, Mθ(x), x) =

M2

M 2
1

f (θ, Mθ(x), x)
p(θ, x) f1(θ, x)

∫

R
(H (1)(u))2d u.

Thus, as above, similar to Ferraty and Vieu (2006), we can obtain bf (2)(θ, y, x) P−→ f (2)(θ, y, x)
as n→∞, which implies that ÒMθ(x)→Mθ(x).

Therefore, we get

bf (2)(θ, M ∗θ(x), x)−→ f (2)(θ, Mθ(x), x) ̸= 0 as n→∞.

2

COROLLARY 5. Under the condition of Proposition 2, we have
√

√

√

n hH Fθ,x,n(hK )
bσ2(θ, y, x)

( bfn(θ, y, x)− f (θ, y, x)) D−→N (0,1), as n→∞. (5)

where,

bσ2(θ, y, x) =
M2n

M 2
1n

bfn(θ, y, x)
Pn(θ, x)

∫

R
H 2(u)d u.
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PROOF. First, observe that

Ω(θ, y, x) =
M1,n

M1

p

M2
p

M2,n
√

√

√

√

n hH Fθ,x,n(hK )Pn(θ, x) f (θ, y, x)

p(θ, x) bfn(θ, y, x) f1(θ, x)nhHφθ(hK )

×

√

√

√
nhHφ(hK )
σ2(θ, y, x)

( bfn(θ, y, x)− f (θ, y, x)).

where Ω(θ, y, x) =

√

√

√

n hH Fθ,x,n(hK )
bσ2(θ, y, x)

( bfn(θ, y, x)− f (θ, y, x))

By Proposition 2, we have as n→∞
√

√

√
n hH φ(hK )
σ2(θ, y, x)

( bfn(θ, y, x)− f (θ, y, x)) D−→N (0,1).

In order to prove Eq. (5), we need to show that

M1,n

M1

p

M2
p

M2,n

√

√

√

√

n hH Fθ,x,n(hK )Pn(θ, x) f (θ, y, x)

p(θ, x) bfn(θ, y, x) f1(θ, x)nhHφθ(hK )
( bfn(θ, y, x)− f (θ, y, x)) P−→ 1,

using results given by Laib and Louani (2010), we have

M1,n→M1, M2,n→M2,
Fθ,x,n

φθ(hK ) f1(θ, x)
→ 1, as n→∞.

On the other hand, by Proposition 2 in Laib and Louani (2010), it follows that

Pn(θ, x) →
n→∞
E(δ|<θ,X >=<θ, x >) = P (δ = 1|<θ,X >=<θ, x >) = p(θ, x).

In addition, by Proposition 1, we have bfn(θ, y, x) → f (θ, y, x), as n →∞. Then,
the proof is completed. 2

COROLLARY 6. Under the condition of Theorem 4, we have
√

√

√
n h3

H Fθ,x,n(hK )
bρ2(θ, Mθ(x), x)

(ÒMθ(x)−Mθ(x))
D−→N (0,1), as n→∞,

where

bρ2(θ, Mθ(x), x) =
M2n

M 2
1n

bfn(θ, ÒMθ(x), x)

Pn(θ, x)( f (2)n (θ, ÒMθ(x), x))2

∫

R
(H (1)(u))2d u.
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REMARK 7. By corollaries Corollary 5 and Corollary 6, the asymptotic (1− α) confi-
dence interval of the conditional density f (θ, y, x) and conditional mode Mθ(x) are pre-
sented by

bfn(θ, y, x)±µα/2

√

√

√

bσ2(θ, y, x)
n hH Fθ,x,n(hK )

,

and

ÒMθ(x)±µα/2

√

√

√

bρ2(θ, Mθ(x), x)
n h3

H Fθ,x,n(hK )
,

where bσ2(θ, y, x) , bρ2(θ, Mθ(x), x) are defined in corollaries, Corollary 5 and Corollary 6
respectively and µα/2 is the upper α/2 quantile of the normal distributionN (0,1).
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APPENDIX

A. PROOFS

First, we introduce some Lemmas and their proofs which are necessary to prove the
main results.

LEMMA 8. Assume that assumptions (A1) and (A2)(i)(ii)(iv) hold true. For any real num-
bers 1≤ j ≤ 2+δ with δ > 0 , as n→∞, we have

(i) 1
φθ(hK )
E[K j

i (θ, x)|Fi−1] =M j fi ,1(θ, x)+Oa.s

�

gi ,θ,x (hK )
φθ(hK )

�

.

(ii) 1
φθ(hK )
E[K j

1 (θ, x)] =M j f1(θ, x)+ o(1).

(iii) 1
φk
θ
(hK )
(E(K j

1 (θ, x)))k =M k
1 f k

1 (θ, x)+ o(1).

where M j is defined in Proposition 2.

PROOF. See the proof of Lemma 1 in Laib and Louani (2010). 2

LEMMA 9. Under assumptions (A1)-(A2) and (A6), we have

bFD (θ, x)− F̄D (θ, x) = Oa.s .

 √

√

√
log n

nφθ(hK )

!

(6)
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and
lim

n→∞
bFD (θ, x) = lim

n→∞
F̄D (θ, x) = p(θ, x) a.s . (7)

PROOF. First, we have

bῩ (θ, x) = bFD (θ, x)− F̄D (θ, x) =
1

nE(K1(θ, x))

n
∑

i=1

Wn,i (θ, x),

where Wn,i (θ, x) = δi Ki (θ, x)−E[δi Ki (θ, x)|Fi−1], is a triangular array of martingale
differences sequence with respect to the σ -fieldsFi−1. By Jensen inequality and (A6), it
follows that

E[W 2
n,i (θ, x)|Fi−1] ≤ 2E[δi K

2
i (θ, x)|Fi−1]

= 2E(E[δi K
2
i (θ, x)|Gi−1]|Fi−1)

= 2(p(θ, x)+ o(1))E[K2
i (θ, x)|Fi−1].

Hence, by (A2) and Lemma 8, for n large enough, it follows that

E[W 2
n,i (θ, x)|Fi−1] ≤ 2(p(θ, x)+ o(1))[M2φθ(hK ) fi ,1(θ, x)+Oa.s (gi ,θ,x (hK ))]

≤ 2(p(θ, x)+ o(1))φθ(hK )[M2bi (θ, x)+ 1] = d 2
i .

Thus, by Lemma 8 and Lemma 1 in Laib and Louani (2010) and (A2)-(v), we have

P
�

|bῩ (θ, x)|> ϵ
�

= P
�

|
n
∑

i=1

Wn,i (θ, x)|> ϵnE(K1(θ, x))
�

≤ 2exp
�

−
(ϵnE(K1(θ, x)))2

2(Dn +CϵnE(K1(θ, x)))

�

= 2exp
�

−nϵ2 (E(K1(θ, x)))2

2(Dn/n+CϵE(K1(θ, x)))

�

= 2exp



−nϵ2 (E(K1(θ, x)))2

2Dn/n





1

1+ CϵE(K1(θ,x))
Dn/n







 ,

then, choosing

ϵ= ϵn =
�

4(p(θ, x)+ o(1))[M2D(θ, x)+ 1] log n
M 2

1 f 2
1 (θ, x)nφθ(hK )

�1/2

ϵ0,

with ϵ0 > 0, for n large enough, we get

P(|bFD (θ, x)− F̄D (θ, x)|> ϵ)≤ 2exp
�

−Cϵ2
0 log n

�

≤ 2

nCϵ2
0

.
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Finally, by taking ϵ0 large enough, if follows that by Eq. (1), and by Borel-Cantelli
Lemma,

bFD (θ, x)− F̄D (θ, x) = Oa.s .

 √

√

√
log n

nφθ(hK )

!

= oa.s .(1).

To establish Eq. (7), we have the decomposition as follows bFD (θ, x) =Kn(θ, x)+F̄D (θ, x),
where Kn(θ, x) = bFD (θ, x)− F̄D (θ, x).
Thus, by Eq. (6), we have Kn(θ, x) P−→ 0 as n→∞, so we will prove that

F̄D (θ, x) P−→ p(θ, x), as n→∞. (8)

Thus, by the properties of conditional expectation and the mechanism of MAR, com-
bining the assumptions (A2)(ii)(iii) and the continuous property of p(θ, x)with Lemma
8, we have

F̄D (θ, x) =
1

nE(K1(θ, x))

n
∑

i=n

E[E[(δi Ki (θ, x))|Fi−1]|Gi−1]

=
1

nE(K1(θ, x))

n
∑

i=n

E[p(θ, x)+ o(1)Ki (θ, x)|Fi−1]

= (p(θ, x)+ o(1))
1

nE(K1(θ, x))

n
∑

i=n

E[Ki (θ, x)|Fi−1]

=
(p(θ, x)+ o(1))

nE(K1(θ, x))

n
∑

i=n

�

φθ(hK )M1 fi1(θ, x)+Oa.s (gi ,θ,x )
�

= (p(θ, x)+ o(1))
φθ(hK )
E(K1(θ, x))

�

1
n

n
∑

i=n

M1 fi1(θ, x)
�

+(p(θ, x)+ o(1))
φθ(hK )
E(K1(θ, x))

�

1
n

n
∑

i=n

Oa.s

� gi ,θ,x (hK )
φθ(hK )

�

�

= (p(θ, x)+ o(1))
1

M1 f1(θ, x)+ o(1)
(M1( f1(θ, x)+ o(1))+Oa.s (1))

→ p(θ, x) a.s ., as n→∞.

2

LEMMA 10. Under assumptions (A1)-(A5), we have

sup
y∈SR
|Bn(θ, y, x)|= Oa.s .(h

b1
K + h b2

H ), (9)

and

sup
y∈SR
|Rn(θ, y, x)|= Oa.s .

�

(h b1
K + h b2

H )
�

log n
nφθ(hK )

�1/2�

.
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PROOF. First we have

Bn(θ, y, x) =
f̄n(θ, y, x)− F̄D (θ, x) f (θ, y, x)

F̄D (θ, x)
=

B̄n(θ, y, x)

F̄D (θ, x)
.

Thus, by Eq. (8), we need to show that

B̄n(θ, y, x) = Oa.s .(h
b1
K + h b2

H ). (10)

Next, making use of the condition (A5), we have

B̄n(θ, y, x)

=
(nhH )

−1

E(K1(θ, x))

n
∑

i=1

E
�

(Hi (y)− hH f (θ, y, x))δi Ki (θ, x)|Fi−1

�

=
(nhH )

−1

E(K1(θ, x))

n
∑

i=1

E
�

E
�

(Hi (y)− hH f (θ, y, x))δi Ki (θ, x)|Gi−1

�

|Fi−1

�

=
(nhH )

−1

E(K1(θ, x))

n
∑

i=1

E
�

E ((Hi (y)− hH f (θ, y, x))δi Ki (θ, x)|<θ,Xi >) |Fi−1

�

.

Because of conditions (A3) and (A4), we get:

E(Hi (θ, y, x)− hH f (θ, y, x)|<θ,Xi >)≤Cθ,x hH

∫

R
H (v)(h b1

K + |v |
b2 h b2

H )d v. (11)

Hence, we obtain

B̄n(θ, y, x) ≤ 1
nhHE(K1(θ, x))

n
∑

i=1

E
�

δi Ki (θ, x){hH

∫

R
H (v)(h b1

K + |v |
b2 h b2

H )d v}|Fi−1

�

≤ Cθ,x{h
b2
H

∫

R
|v |b2 H (v)d v + h b1

K }× F̄D (θ, x)

= O (h b1
K + h b2

H ).

Hence, Eq. (9) follows from Eq. (8) and Eq. (10).
Finally, from Eq. (6) and Eq. (9), we easily obtain the second part of Lemma 10. 2

LEMMA 11. If the assumptions (A1)-(A2) and (A4)-(A5) are satisfied, then we have

sup
y∈SR
| bfN (θ, y, x)− f̄N (θ, y, x)|= Oa.s

 √

√

√

log n
n h2

H φθ(hK )

!

.
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PROOF. By the compactness property of SR ⊂ R, we can write that SR ⊂
τn
⋃

k=1

Sk ,

whereSk = (tk− ln , tk+ ln)with ln and τn can be selected such as ln =O
�

τ−1
n

�

. Taking
ty = arg min

t∈{t1,...,tτn
}
|y − t |, we have the following decomposition:

sup
y∈SR
| bfN (θ, y, x)− f̄N (θ, y, x)| ≤ sup

y∈SR
| bfN (θ, y, x)− bfN (θ, ty , x)|

+ sup
y∈SR
| bfN (θ, ty , x)− f̄N (θ, ty , x)|

+ sup
y∈SR
| f̄N (θ, ty , x)− f̄N (θ, y, x)|

= T1+T2+T3.

As the first and the third terms can be treated in the same manner, we deal only first
term. By (A4)(ii) which implies in particular that H is Hölder continuous with order
one, we can write

T1 ≤
1

n hH E(K1(θ, x))
sup
y∈SR

n
∑

i=1

δi Ki (θ, x)
�

Hi (y)−Hi (ty )
�

,

≤ C
n hH E(K1(θ, x))

sup
y∈SR

|y − ty |
hH

n
∑

i=1

δi Ki (θ, x),

≤
ln

n h2
H E(K1(θ, x))

n
∑

i=1

δi Ki (θ, x).

Employing Eq. (7) and lim
n→∞

nξ h2
H =∞, it follows that

T1 −→ 0 a.s ., as n→∞.

Similar to the argument as above, for T3, we have as n −→∞

T3 ≤
ln

n h2
H E(K1(θ, x))

n
∑

i=1

E
�

δi Ki (θ, x)|Fi−1

�

−→ 0.

Finally, let us treat term T2. Observing that

bf (θ, tk , x)− f̄ (θ, tk , x) =
1

nE(K1(θ, x))

n
∑

i=1

Ln,i (θ, tk , x).

where Ln,i (θ, tk , x) = δi h−1
H Ki (θ, x)Hi (tk ) − E

�

δi h−1
H Ki (θ, x)Hi (tk )|Fi−1

�

forms a
triangular array of stationary martingale differences with respect to the σ -field Fi−1.
Using the same arguments to the proof of Lemma 5 in Laib and Louani (2011) and that
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of Lemma 6.3 in Chaouch and Khardani (2015), allowing us to write, under (A1)-(A2),
(A5) and Lemma 2, that

|E(Lp
i ,n(θ, tk , x)|Fi−1)| = (2max(1,a2

1))
p h−p

H

h

c2
2φθ(hK ) fi ,1(θ, x)

+oa.s (gi ,θ,x (hK ))+ oa.s (gi ,θ,x (hK )φθ(hK ))
i

= p!C p−2h−p
H [Mφθ(hK ) fi ,1(θ, x)+ oa.s (gi ,θ,x (hK ))]

≤ p!C p−2h−p
H φθ(hK )[M bi (θ, x)+ 1].

where C = 2max(1,a2
1) and M = (C2C )2. The Kernel K and the functionτ0 are bounded

by positive constants a1 and C2 respectively.

Taking Dn =
n
∑

i=1

d 2
i , whith d 2

i = φθ(hK )h
−p
H [M bi (θ, x) + 1]. By assumption (A2)(ii)

and (A2)(v) we have n−1Dn =φθ(hK )h
−p
H [M D(θ, x)+ o(1)] as n→∞.

Then, by using Lemma 1 in Laib and Louani (2011), where Dn = O (n h−p
H φ(hK )) a.s,

Sn =
n
∑

i=1

Ln,i (θ, tk , x), and for ϵ0 > 0 and C1 a positive constant, we get

P

 

sup
t∈S
| bfN (θ, tk , x)− f̄N (θ, tk , x)|> ϵ0

√

√

√

log n
n h2

H φθ(hK )

!

≤ P

 

max
k∈1...τn

| bfN (θ, tk , x)− f̄N (θ, tk , x)|> ϵ0

√

√

√

log n
n h2

H φθ(hK )

!

≤ τn max
k∈1...τn

P

 

|
n
∑

i=1

Ln,i ,θ(θ, tk , x)|> nϵoE(K1(θ, x))

√

√

√

log n
n h2

H φθ(hK )

!

≤ 2τn exp






−

(nϵ0E(K1(θ, x)))2 log n
nh2

Hφθ(hK )

2Dn + 2C nϵ0E(K1(θ, x))
r

log n
nh2

Hφθ(hK )







≤ 2τn exp{−C1ϵ
2
0 log n} ≤ 2

nC1ϵ
2
0−2ς

.

Finally, by taking ϵ0 large enough and by using Borel-Cantelli Lemma, the result can be
easily deduced. 2

LEMMA 12. Under the assumptions (A1)-(A6) and the condition Eq. (1), we have
Æ

nhHφθ(hk )Qn(θ, y, x) D−→N (0,σ2
0 (θ, y, x)),
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where

σ2
0 =

M2

M 2
1

p(θ, x)
f1(θ, x)

f (θ, y, x)
∫

R
H 2(u)d u.

PROOF. Let’s denote

ζni =
�

φθ(hK )
nhH

�1/2

δi (Hi (y)− hH f (θ, y, x))
Ki (θ, x)
E(K1(θ, x))

,

and define
ξni = ζni −E[ζni |Fi−1].

It is easy to see that

(nhHφθ(hk ))
1/2Qn(θ, y, x) =

n
∑

i=1

ξni .

Thus, the ξni , 1 ≤ i ≤ n forms a triangular array of stationary martingale differences
with respect to the σ -field Fi−1. By apply the central limit theorem for discrete-time
arrays of real-valued martingales (Hall and Heyde (1980)), the asymptotic normality of
Qn(θ, y, x) can be obtained if we establish the following statements:

(a)
n
∑

i=1

E[ξ 2
ni |Fi−1]

P−→ σ2
0 (θ, y, x).

(b) nE
�

ξ 2
ni 1[|ξni |>ϵ]

�

= o(1) f o r ∀ϵ > 0.

Proof of part (a) observe that
�

�

�

�

�

n
∑

i=1

E
�

ζ 2
ni |Fi−1

�

−
n
∑

i=1

E
�

ξ 2
ni |Fi−1

�

�

�

�

�

�

≤
n
∑

i=1

�

E[ζni |Fi−1]
�2 .

Then, similar to the proof of Eq. (10) and using Lemma 8, we have

|E[ζni |Fi−1]| =
(φθ(hK )/nhH )

1/2

E(K1(θ, x))
�

�E
�

δi Ki (θ, x)(Hi (y)− hH f (θ, y, x))|Fi−1

��

�

=
1

E(K1(θ, x))

�

φθ(hK )
nhH

�1/2
�

�

�E
h

δi Ki (θ, x)

E [(Hi (y)− hH f (θ, y, x))|<θ,Xi >] |Fi−1

i
�

�

�

≤ C (h b1
K + h b2

H )
�

φθ(hK )hH

n

�1/2

(p(θ, x)+ o(1))
� fi ,1(θ, x)

f1(θ, x)
+Oa.s .

� gi ,θ,x (hK )
φ(hK )

��

.
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Thus, by (A2)(ii)-(iii), we get

n
∑

i=1

�

E[ζni |Fi−1]
�2 = Oa.s .

�

hHφθ(hK )(h
b1
K + h b2

H )
2
�

.

Hence, the statement of (a) follows if we show that

n
∑

i=1

E
�

ζ 2
ni |Fi−1

� P−→ σ2
0 (θ, y, x), as n→∞.

By assumption (A5) we have

n
∑

i=1

E
�

ζ 2
ni |Fi−1

�

=
φθ(hK )

nhH (E(K1(θ, x)))2

n
∑

i=1

E
n

δi K
2
i (θ, x)

�

Hi (y)

−hH f (θ, y, x)
�2
|Fi−1

o

=
φθ(hK )

nhH (E(K1(θ, x)))2

n
∑

i=1

E
n

δi K
2
i (θ, x)

E
�

(Hi (y)− hH f (θ, y, x))2 |<θ,Xi >
�

|Fi−1

o

.

Thus, by the properties of conditional expectation and (A5) for j = 0 and k = 2, we
obtain that

n
∑

i=1

E
�

ζ 2
ni |Fi−1

�

=V1,n(θ, y, x)+V2,n(θ, y, x),

where

V1,n(θ, y, x) =
φθ(hK )

n hH (E(K1(θ, x)))2

n
∑

i=1

E
h

δi K
2
i (θ, x)

�

E(H 2
i (y)|<θ,Xi >)

−(E(Hi (y)|<θ,Xi >))
2
�

|Fi−1

i

,

and

V2,n(θ, y, x) =
φθ(hK )

n hH (E(K1(θ, x)))2
n
∑

i=1

E
h

δi K
2
i (θ, x)E[(Hi (y)− hH f (θ, y, x))|<θ,Xi >]

2|Fi−1

i

.

By inequality Eq. (11), and assumption (A3) and Lemma 8, it follows that, as n→∞

V2,n(θ, y, x) = Oa.s ((h
b1
K + h b2

H )
2)hH (p(θ, x)+ o(1))

�

M2

M 2
1

1
f1(θ, x)

+Oa.s (1)
�

→ 0.
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For V1,n , notice that by changing variables, and by assumptions (A3)-(A4), we have

E(H 2
i (y)|<θ,Xi >) =

∫

R
H 2

�

y − v
hH

�

f (θ, v, x)d v

≤ hH

∫

R
H 2(u)

�

f (θ, y − u hH , x)− f (θ, y, x)
�

d u

+hH f (θ, y, x)
∫

R
H 2(u)d u

≤ h1+b2
H

∫

R
|u|b2 H 2(u)d u + hH f (θ, y, x)

∫

R
H 2(u)d u

= hH

�

o(1)+ f (θ, y, x)
�
∫

R
H 2(u)d u

��

,

which implies that,

1
hH
E(H 2

i (y)|<θ,Xi >)→ f (θ, y, x)
∫

R
H 2(u)d u, as n→∞. (12)

Similarly, as n→∞, we have

E(Hi (t )|<θ,Xi >) =
1

hH

∫

H
�

t − v
hH

�

f (θ, v, x)d v

=
∫

H (u) f (θ, t − u hH , x)d u→ f (θ, t , x)
∫

H (u)d u. (13)

Then, by Eq. (12)-Eq. (13) and Lemma 8, we arrive at

V1,n(θ, y, x) =
φθ(hK )

n (E(K1(θ, x)))2
(p(θ, x)+ o(1)) f (θ, y, x)

∫

R
H 2(u)d u

n
∑

i=1

E[K2
i (θ, x)|Fi−1]

→
M2

M 2
1

p(θ, x) f (θ, y, x)
f1(θ, x)

∫

R
H 2(u)d u, as n→∞.

Proof of part (b). The definition of ξni , implies that nE
�

ξ 2
ni 1[|ξni>ϵ|]

�

≤ 4nE
�

ζ 2
ni 1[|ζni>ϵ/2|]

�

, where 1A is an indicator function of a set A. Let a > 1 and b > 1 such that 1/a+1/b = 1.
By Hölder and Markov inequalities, one can write, for all ϵ > 0,

E
�

ζ 2
ni 1[|ζni>ϵ/2|]

�

≤
E|ζni |2a

(ϵ/2)2a/b
.
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Taking C0 a positive constant and 2a = 2+δ (with δ as in (A6)), we obtain

4nE
�

ζ 2
ni 1[|ζni>ϵ/2|]

�

≤ C0Γ (θ, x)E
�

[|Hi (y)− hH f (θ, y, x)|δi Ki (θ, x)]2+δ
�

≤ C0Γ (θ, x)E
�

(Ki (θ, x))2+δ p(θ,Xi )

E
�

|Hi (y)− hH f (θ, y, x)|2+δ |<θ,Xi >
�

�

,

where Γ (θ, x) =
�

φθ(hK )
nhH

�(2+δ)/2 n
(E(K1(θ, x)))2+δ

.

By changing variables, we get

E
�

|Hi (y)− hH f (θ, y, x)|2+δ |<θ,Xi >
�

=
∫

R

�

H
�

y − v
hH

�

− hH f (θ, y, x)
�2+δ

f (θ, v, x)d v

≤C
∫

R
H 2+δ

�

y − v
hH

�

f (θ, v, x)d v + h2+δ
H f 2+δ (θ, y, x)

=C hH

∫

R
H 2+δ (u) f (θ, y − u hH , x)d u + h2+δ

H f 2+δ (θ, y, x)

= hH

∫

R
H 2+δ (u) f (θ, y − u hH , x)d u + h2+δ

H f 2+δ (θ, y, x),

4nE
�

ζ 2
ni 1[|ζni>ϵ/2|]

�

≤ C0

�

φθ(hK )
n

�(2+δ)/2 n(p(θ, x)+ o(1))

hδ/2H (E(K1(θ, x)))2+δ

E
�

K2+δ
i (θ, x)

h

∫

R
H 2+δ (u) f (θ, y − u hH , x)d u

+h1+δ
H f 2+δ (θ, y, x)

i�

≤ C0

�

φθ(hK )
n

�(2+δ)/2 nE(K2+δ
i (θ, x))(p(θ, x)+ o(1))

hδ/2H (E(K1(θ, x)))2+δ
.

Thus, by Lemma 8, it follows that

4nE
�

ζ 2
ni 1[|ζni>ϵ/2|]

�

≤ C0
(p(θ, x)+ o(1))
(nhHφ(hK ))δ/2

M2+δ f1(θ, x)+ o(1)

M 2+δ
1 f 2+δ

1 (θ, x)+ o(1)

= O ((nhHφ(hK ))
−δ/2).

2
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PROOF (PROPOSITION 1). By the decomposition Eq. (3), Proposition 1 follows di-
rectly from lemmas, Lemma 9-Lemma 11. 2

PROOF (PROPOSITION 2). By Eq. (2) it follows that
p

n hH φθ(hK )Rn(θ, y, x) →
n→∞

0 and
p

n hH φθ(hK )Bn(θ, y, x) →
n→∞

0.

In addition by the decomposition Eq. (3) and the second part of Lemma 9 and Lemma
12. Then, the proof of Proposition 2 is completed. 2
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SUMMARY

The main objective of this work is to estimate, semi-parametrically, the mode of a conditional
density when the response is a real valued random variable subject to censored phenomenon and
the predictor takes values in a semi-metric space. We assume that the explanatory and the re-
sponse variables are linked through a single-index structure. First, we introduce a type of kernel
estimator of the conditional density function when the data are supposed to be selected from an
underlying stationary and ergodic process with missing at random (MAR). Under some general
conditions, both the uniform almost-complete consistencies with convergence rates of the model
are established. Further, the asymptotic normality of the considered model is given. As an ap-
plication, the asymptotic (1−α) confidence interval of the conditional density function and the
conditional mode are also presented for 0<α < 1.

Keywords: Ergodic processes; Functional data analysis; Functional single-index process; Missing
at random; Small ball probability.
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