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1. INTRODUCTION

In recent years, extensive efforts have been made to present new models in the area of
distribution theory and related statistical applications. These studies are mainly due to
the modeling of various data sources and find out the probabilistic structure. In con-
nection with the development of new models, it is worthwhile to note that these new
models should have the capability for analyzing a wide range of real observations. Un-
doubtedly, this is also the most basic concern in the development of new models from
the past to the future. Change point models are a kind of statistical models that have the
ability to describe complex structure of phenomena with sudden changes in behavior.
In the distribution theory, the change point distributions are used in different fields of
sciences such as economic, engineering, agriculture and so on. However, the theory of
these types of statistical distributions has become less developed over the last one to two
decades. Motivated by economic applications, van Dorp and Kotz (2002a) suggested a
two-sided distribution that has proved to be of seminal importance in economic the-
ory. The corresponding probability density function (pdf) and cumulative distribution
function (cdf) functions are given by
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and

F (x;α,β) =

(

β
�

x
β

�α
, 0< x ≤β,

1− (1−β)
�

1−x
1−β

�α
, β≤ x < 1,

(2)

respectively, where 0 ≤ β ≤ 1 and α > 0. The parameter β is the location parameter
called "turning point" and α is the shape parameter that controls the shape of distribu-
tion on the left and right of β. This model is known as two-sided power distribution
(TSP) in the literature.

An extension of the three-parameter triangular distribution utilized in risk analysis
has been introduced by van Dorp and Kotz (2002b). Their model includes the TSP dis-
tribution as a special case. van Dorp and Kotz (2003) considered a family of continuous
distributions on a bounded interval generated by convolutions of the TSP distributions.
In recent years, a number of researchers have studied some generalization of the TSP
distribution such as Nadarajah (2005), Oruç and Bairamov (2005), Vicari et al. (2008),
Herrerías-Velasco et al. (2009) and Soltani and Homei (2009).

More recent research associated with TSP distributions has done by Korkmaz and
Genç (2017), and Kharazmi and Zargar (2019), to extended the idea of two-sidedness
by implementing special cases of general Alzaatreh’s method to some other ordinary
distributions.

Alzaatreh et al. (2013) introduced a technique to drive new family of distributions
by using an arbitrary pdf as a baseline generator. To review the Alzaatreh’s method,
suppose that G(x) is a parent distribution and m(x) is a initial probability distribution
function of a random variable X . Then a general model by compounding cdf G(x) and
pdf m(x) is given by

F (x) =
∫ W (G(x))

a
m(t )d t , (3)

where X ∈ (a, b ) and −∞ ≤ a < b ≤ ∞ and W (G(x)) satisfies the following condi-
tions:

(i) W (G(x)) ∈ (a, b )

(ii) W (G(x)) is differentiable and monotonically non-decreasing

(iii) W (G(x))→ a as x→−∞ and W (G(x))→ b as x→∞.

A special case of W (.) is the generalized odd ratio function. In recent years some re-
searchers have considered odd ratio and generalized odd ratio functions for introducing
more flexible distributions.

Cruz et al. (2016) proposed a generalization of the log-logistic distribution, namely
the so-called the generalized odd log-logistic family. Also, they introduced the log-odd
log-logistic Weibull regression model based on the odd log-logistic Weibull distribution
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with censored data. Cordeiro et al. (2017) considered a class of distributions, i.e. the
so-called Burr XII with two extra positive parameters. Alizadeh et al. (2018) studied a
generator of continuous distributions with one extra parameter called the odd power
Cauchy family and they defined a log-odd power Cauchy-Weibull regression model.

As we mentioned formerly, the change point models have been less developed so
far, and until now, the change point distributions are not presented based on the general
Alzaatreh’s technique. The main motivation of the present paper is to apply the general-
ized odd ratio function of baseline distribution G to the newly distribution introduced
by Kharazmi and Zargar (2019). The authors have introduced a new family of distribu-
tion by applying the transmutation technique for the two-sided distribution. The pdf
and cdf of this model are given by

f (x) =







α
�

(1+λ)
�

x
β

�α−1
− 2λ

�

x
β

�2α−1
�

, 0< x ≤β,

α
�

(1+λ)
�

1−x
1−β

�α−1
− 2λ

�

1−x
1−β

�2α−1
�

, β≤ x < 1,
(4)

and
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respectively, where α is a shape parameter, β is a scale parameter and λ is a transmuted
parameter. They called this model transmuted two-sided (TTS) distribution.

The rest of the paper is organized as follows. In Section 2, we first propose a new fam-
ily of distributions so-called generalized odd transmuted two-sided-G distribution and
then the corresponding survival function, quantile function, asymptotics and moments
of this distribution are obtained in general setting. Based on the exponential distribution
as a parent distribution, we introduce generalized odd transmuted two-sided exponen-
tial distribution, in Section 3. In this section, we consider some properties of proposed
distribution such as density shape, hazard function, moments and a theoretical discus-
sion about survival regression. We study the performance of the maximum likelihood
estimates of the parameters of the generalized odd transmuted two-sided exponential
distribution via a simulation study, in Section 4. In Section 5, we fit the proposed distri-
bution to the two real data sets and compare the results with some competitor distribu-
tions through the different criteria for model selection. Finally, the paper is concluded
in Section 6.

2. GENERALIZED ODD TRANSMUTED TWO-SIDED-G DISTRIBUTION

Suppose that G(x;ξ ) is the cdf of a continuous random variable with pdf, parameter
vector and inverse function g (x;ξ ), ξ and G−1

(x;ξ )(.), respectively. Then based on the
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relation (4) and under the condition that the function W (G(x;ξ )) =
Gη
(x;ξ )

1−Gη
(x;ξ )

satisfies

relations (i), (ii) and (iii), one can see the following definition.

DEFINITION 1. Let ψ(x;η,ξ ) =
Gη
(x;ξ )

1−Gη
(x;ξ )

, then a random variable X is said to be gen-

eralized odd transmuted two-sided-G distribution if its pdf is given by
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The corresponding cdf is given by
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We denote the generalized odd transmuted two-sided-G family of distributions by
GOTTS-G. Two sub-models of general density function with Eq. (6) are given in Re-
marks 2 and 3.

REMARK 2. If λ= 0, we get a sub-model of density with Eq. (6) as
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and the corresponding cdf is given as
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Notice that this new model is obtained by applying generalized odd quantity for two-sided
power distribution and it is called GOTSP-G.
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REMARK 3. If λ= 0 and α=β= 1, then we get another sub-model as

f (x;η,ξ ) =ψ′(x;η,ξ ), −∞< x ≤Ω2, (10)

and its cdf is given by

F (x;η,ξ ) =ψ(x;η,ξ ), −∞≤ x <Ω2. (11)

Following this section, we get some fundamental properties of proposed model such as
survival function, quantile function and r th moment. It is seen that all of these measures
have closed expression.

2.1. Survival function

The survival function (SF) is a key concept in reliability analysis and measuring the aging
process. The SF of the general model in Eq. (6) is given as
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2.2. Quantile function

To generate samples from the GOTTS-G distribution, one can use the inverse transfor-
mation method. The quantile of order q of the GOTTS-G distribution is given by

xq = F −1(q ;α,β,λ,η,ξ ) =
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Let U be a random variable generated from a uniform distribution on(0,1), then the
data generator for GOTTS-G distribution is given as

xq = F −1(u;α,β,λ,η,ξ ) =
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2.3. Moments

Some of the most important features and characteristics of a distribution can be studied
through its moments. The r th moment of the GOTTS-G distribution is
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and the random variable Z has the density function as

Eq. (4).

2.4. Asymptotics

In order to evaluate the effect of parameters on tails of GOTTS-G family, we obtain the
asymptotics of pdf, cdf and the hazard rate function of the proposed distribution. The
asymptotics of the first part of Eqs. (6) and (7) as x → γ , where γ = inf{x| G(x) > 0},
are given by

• F (x;α,β,λ,η,ξ )∼ 1+λ
βα−1 G(x;ξ )αη,

• f (x;α,β,λ,η,ξ )∼ (1+λ)αηβα−1 g (x;ξ )G(x;ξ )αη−1,

• r (x;α,β,λ,η,ξ )∼ (1+λ)αηβα−1 g (x;ξ )G(x;ξ )αη−1,

where r (x;α,β,λ,η,ξ ) = f (x;α,β,λ,η,ξ )
1−F (x;α,β,λ,η,ξ ) is the corresponding hazard rate function of

GOTTS-G family. Due to the finite support of the second part of Eqs. (6) and (7), there
is no need to consider its asymptotic behavior.
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3. GENERALIZED ODD TRANSMUTED TWO-SIDED EXPONENTIAL DISTRIBUTION

In this section, we first introduce a special case of GOTT-G distribution, and then we
provide some main statistical and reliability properties of this specialized sub-model.

Suppose that the parent distribution G has an exponential distribution with pdf,
cdf and inverse cdf functions g (x;θ) = 1

θ e−
x
θ , G(x;θ) = 1 − e−

x
θ , x > 0,θ > 0 and

G−1(x;θ) =−θ log(1−x), respectively. By substituting g (x;θ) and G(x;θ) in equations
ψ(x;η,ξ ) and ψ′(x;η,ξ ), the pdf of GOTTS-E distribution is given as
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and its cdf is given by
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We call this distribution the generalized odd transmuted two-sided exponential dis-
tribution and is denoted by GOTTS-E.

3.1. Density shape of GOTTS-E distribution

Here, we consider a discussion about the shape of the proposed density function. Some
shapes of GOTTS-E distribution for the selected values of parameters are given in Fig-
ures 1 and 2.

In the end points of the support, the behaviour of the pdf of GOTTS-E distribution
is given as follows.

lim
x→0

f (x;α,β,λ,η,θ) =
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∞, αη < 1
1+λ
θβα−1 , αη= 1
0, αη > 1
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Figure 1 – The graphs of the densities of the GOTTS-E distribution with 0≤ λ≤ 1.
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Figure 2 – The graphs of the densities of the GOTTS-E distribution with −1≤ λ≤ 0.
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lim
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These limits are not equal. So, f ′(Ω3) does not exist and the GOTTS-E distribution
has a corner at x =Ω3. Figures 1 and 2 indicate that for α > 1 and λ > 0, the GOTTS-E
distribution is a bimodal distribution and for α ≥ 1 and λ≤ 0, the GOTTS-E distribu-
tion is a unimodal distribution.

3.2. Hazard function of the GOTTS-E distribution

The hazard rate is a key concept in analysis of the aging process of different phenomena
with probabilistic structure. Knowing the shape and behavior of the hazard rate in
reliability theory, risk analysis, and so on, is very important. The hazard rate function
of the general distribution GOTTS-G is given as

r (x) =
f (x;α,β,λ,η,ξ )

1− F (x;α,β,λ,η,ξ )
. (15)
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Figure 3 – The graphs of the hazard function of the GOTTS-E distribution with 0≤ λ≤ 1.
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Figure 4 – The graphs of the hazard function of the GOTTS-E distribution with −1≤ λ≤ 0.



On the Generalized Odd Transmuted Two-Sided Class of Distributions 451

In special case, when the parent distribution is exponential, one can calculate the haz-
ard rate function of the GOTTS-E by substituting Eqs. (13) and (14) in Eq. (15). Because
of complicated form of hazard function, we couldn’t explore this function analytically.
We only consider the end points of the support. The behaviour of hazard function in
the end points is given as follows.

lim
x→0

r (x) =







∞, αη < 1
1+λ
θβα−1 , αη= 1
0, αη > 1

lim
x→Ω4

r (x) =∞, ∀ α > 0.

Some shapes of hazard function of GOTTS-E for the selected values of parameters are
given in Figures 3 and 4. Figures 3 and 4 show that the hazard rate function of GOTTS-
E distribution can be IFR (increasing failure rate), DFR (decreasing failure rate), BUT
(bathtub shaped: first increasing and then decreasing), and UBT (upside-down bathtub
shaped: first increasing and then decreasing). These classes of hazard rate function have
been found very useful in reliability theory.

3.3. Moments of the GOTTS-E distribution

In this subsection, moments and related measures including mean, median, variance,
skewness and kurtosis are presented. We provide these partial measures for the some
selected value of parameters in Table 1. Based on the results of Table 1, it is easy to see
the following.

• The mean and median values increase for increasing α,θ or η.

• On the other hand, for λ > 0, the skewness increases if β ≤ 0.5 and decreases if
β> 0.5. For λ < 0 and every β≥ .5, the skewness decreases for increasing β.

• For λ > 0, the kurtosis increases for β ≤ 0.5. For λ < 0 and β ≥ .5, the kurtosis
increases for increasing β.

• For λ > 0 andβ≤ .5 and everyα,θ and η, the skewness of distribution is negative.
For λ > 0 and each α,β,θ and η, the kurtosis of distribution is negative.
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TABLE 1
The mean, median, variance, skewness and kurtosis of the GOTTS-E distribution for some parameter

values.

β λ α θ η Mean Median Variance Skewness Kurtosis

0.25 0.6 0.5 0.5 0.5 - - - - -
0.25 0.6 1 0.5 1 0.207 0.238 0.012 -0.533 -1.098
0.25 0.6 2 0.5 2 0.392 0.412 0.015 -0.446 -0.718
0.25 0.6 0.5 2 0.5 0.346 0.440 0.050 -0.545 -1.361
0.25 0.6 1 2 1 0.831 0.955 0.188 -0.532 -1.099
0.25 0.6 2 2 2 1.566 1.649 0.246 -0.446 -0.719

0.5 0.6 0.5 0.5 0.5 - - - - -
0.5 0.6 1 0.5 1 0.190 0.203 0.013 -0.169 -1.462
0.5 0.6 2 0.5 2 0.414 0.431 0.014 -0.466 -0.638
0.5 0.6 0.5 2 0.5 - - - - -
0.5 0.6 1 2 1 0.761 0.811 0.204 -0.169 -1.461
0.5 0.6 2 2 2 1.657 1.722 0.221 -0.467 -0.631

0.75 0.6 0.5 0.5 0.5 0.046 0.014 0.003 0.867 -1.189
0.75 0.6 1 0.5 1 0.174 0.164 0.012 0.119 -1.308
0.75 0.6 2 0.5 2 0.435 0.448 0.013 -0.568 -0.314
0.75 0.6 0.5 2 0.5 0.184 0.056 0.049 0.836 -1.053
0.75 0.6 1 2 1 0.696 0.655 0.187 0.117 -1.309
0.75 0.6 2 2 2 1.741 1.792 0.202 -0.569 -0.314

0.25 -0.6 0.5 0.5 0.5 0.068 0.068 0.002 0.086 -1.519
0.25 -0.6 1 0.5 1 0.178 0.176 0.007 0.034 -0.921
0.25 -0.6 2 0.5 2 0.359 0.351 0.008 0.169 -0.163
0.25 -0.6 0.5 2 .5 - - - - -
0.25 -0.6 1 2 1 0.714 0.702 0.118 0.034 -0.921
0.25 -0.6 2 2 2 1.437 1.403 0.133 0.169 -0.163

0.5 -0.6 0.5 0.5 0.5 0.063 0.059 0.002 0.237 -1.507
0.5 -0.6 1 0.5 1 0.196 0.203 0.007 -0.301 -0.667
0.5 -0.6 2 0.5 2 0.423 0.431 0.006 -0.709 1.126
0.5 -0.6 0.5 2 0.5 - - - - -
0.5 -0.6 1 2 1 0.784 0.811 0.109 -0.301 -0.667
0.5 -0.6 2 2 2 1.693 1.722 0.100 -0.703 1.077

0.75 -0.6 0.5 0.5 0.5 0.058 0.050 0.002 0.385 -1.391
0.75 -0.6 1 0.5 1 0.212 0.228 0.007 -0.582 -0.550
0.75 -0.6 2 0.5 2 0.476 0.497 0.006 -1.380 2.257
0.75 -0.6 0.5 2 0.5 0.233 0.201 0.037 0.334 -1.299
0.75 -0.6 1 2 1 0.849 0.914 0.114 -0.581 -0.549
0.75 -0.6 2 2 2 1.906 1.990 0.101 -1.379 2.258
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3.4. Survival regression model of GOTTS-E distribution

In this section, we develop the survival regression theory for the GOTTS-E distribu-
tion. The survival regression model a well-known model in survival analysis and applied
statistics. Recently, several regression models have been introduced in the literature by
considering the class of location models. A number of researchers have introduced new
families of distributions by using regression models such as Hashimoto et al. (2012),
Ramires et al. (2013), Cordeiro et al. (2015) and Cordeiro et al. (2017). Based on the odd
log-logistic Weibull distribution, Cruz et al. (2016) introduced the log-odd log-logistic
Weibull regression model with censored data. Cordeiro et al. (2018) introduced a family
of regression models based on a class of distributions called the Burr XII system of den-
sities with two extra positive parameters. Alizadeh et al. (2018) also proposed a log-odd
power Cauchy-Weibull regression model.

Let X be a random variable with pdf GOTTS-E in Eq. (13) for x > 0. By applying
the log transformation Y = ln(X ), the pdf of variable Y is given by

f (y) =


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,

ln (Ω3)≤ y < ln (Ω4) .

By replacing µ= ln(θ), the pdf of variable Y is given by

f (y) =
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(16)

where D1 =
�

1−e−ey−µ �η

1−(1−e−ey−µ)η and µ ∈ R is the location parameter.
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According to this transformation, one can define a new survival regression model as
follows.

Y =µ(v)+Z , (17)

where variable vector v is a auxiliary variable and Z is a error variable in the regression
model such that its distribution does not depend on v. By letting Z = Y −µ in Eq. (16),
the pdf of Z is given by

fZ (z) =
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where
Ω1 =−∞< z ≤ ln
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1−(1−e−eZ )η and Z has

a distribution that does not depend on v.
Based on the linear regression model in Eq. (17), we have yi = µi + zi , i = 1, . . . , n

and we can define µi = vi
T τ, where the parameter vector τ =

�

τ1, . . . ,τp

�T
is a vec-

tor associated with the auxiliary variable vector vi
T =

�

vi1, . . . , vi p

�

, i = 1, . . . , n. The
variable zi is a noise variable with distribution in Eq. (18) in the regression model. The
matrix form of the location parameter vector µ = (µ1, . . . ,µn)

T is given by µ = Vτ,
where V= (v1, . . . ,vn)

T is a known matrix that contains the auxiliary variables.

4. SIMULATION

We consider the performance of the MLE’s of the parameters with respect to sample
size n for the GOTTS-E distribution. The evaluation of performance is based on a
simulation study by using the Monte Carlo method. Let α̂, β̂, λ̂, θ̂ and η̂ be the MLE’s of
the parameters α,β,λ,θ and η, respectively. We calculate the mean square error (MSE)
and bias of the MLE’s of the parametersα,β,λ,θ and η based on the simulation results of
4000 independence replications. results are summarised in Table 2 for different values
of n,α,β,λ,θ and η. From Table 2 the results verify that MSE of the MLE’s of the
parameters decrease with respect to sample size n for all parameters. So, it is concluded
that the MLE’s of α,β,λ,θ and η are consistent estimators.
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TABLE 2
MSE and bias (values in parentheses) of the MLE’s of the parameters β,λ,α, θ and η.

n β= 0.3 λ= 0.25 α= 0.5 θ= 0.5 η= 0.5

30 0.021 ( 0.032) 0.711 (-0.629) 0.057 (-0.209) 0 (0) 0 (0)
50 0.012 (0.019) 0.750 (-0.651) 0.049 (-0.188) 0 (0) 0 (0)
100 0.006 (0.012) 0.716 (-0.593) 0.040 (-0.156) 0 (0) 0 (0)
200 0.003 (0.006) 0.444 (-0.369) 0.024 (-0.095) 0 (0) 0 (0)

n β= 0.3 λ= 0.25 α= 0.5 θ= 1.5 η= 1.5

30 0.023 (0.010) 0.851 (-0.706) 0.063 (-0.205) 0 (0) 0 (-0.001)
50 0.013 (0.008) 0.889 (-0.748) 0.056 (-0.195) 0 (0) 0 (0)
100 0.006 (0.004) 0.914 (-0.759) 0.051 (-0.187) 0 (0) 0 (0)
200 0.003 (0.003) 0.551 (-0.460 ) 0.029 (-0.116) 0 (0) 0 (0)

n β= 0.3 λ= 0.75 α= 2 θ= 0.5 η= 0.5

30 0.027 (0.030) 0.210 (0.039) 0.614 (-0.009) 0.115 (0.014) 0.021 (0.045)
50 0.016 (0.014) 0.170 (0.031) 0.332 (-0.001) 0.049 (0.007) 0.011 (0.026)
100 0.007 (0.003) 0.079 (0.024) 0.141 (-0.002) 0.017 (-0.006) 0.005 (0.017)
200 0.002 (-0.002) 0.024 (0.026) 0.049 (0.001) 0.007 (-0.009) 0.002 (0.011)

n β= 0.3 λ= 0.75 α= 2 θ= 1.5 η= 1.5

30 0.027 (0.030) 0.180 (0.050) 0.854 (-0.002) 0.222 (-0.044) 0.429 (0.240)
50 0.018 (0.019) 0.149 (0.037) 0.337 (-0.017) 0.141 (-0.036) 0.203 (0.148)
100 0.008 (0.003) 0.085 (0.025) 0.153 (-0.008) 0.062 (-0.024) 0.087 (0.079)
200 0.002 (-0.001) 0.023 (0.019) 0.053 (-0.016) 0.026 (-0.026) 0.040 (0.052)

n β= 0.3 λ=−0.25 α= 0.5 θ= 0.5 η= 0.5

30 0.047 (0.060) 0.232 (-0.368) 0.047 (-0.199) 0 (-0.002) 0 (0)
50 0.029 (0.046) 0.237 (-0.366) 0.035 (-0.165) 0 (0) 0 (0)
100 0.015 (0.029) 0.244 (-0.367) 0.027 (-0.136) 0 (0) 0 (0)
200 0.008 (0.015) 0.251 (-0.369) 0.024 (-0.120) 0 (0) 0 (0)

n β= 0.3 λ=−0.75 α= 2 θ= 0.5 η= 0.5

30 0.017 (-0.012) 0.169 (0.150) 16.078 (0.895) 335.934 (0.496) 0.065 (0.101)
50 0.010 (-0.008) 0.149 (0.159) 3.884 (0.538) 85.413 (0.312) 0.038 (0.061)
100 0.005 (-0.005) 0.113 (0.150) 0.592 (0.322) 0.402 (0.060) 0.016 (0.030)
200 0.003 (-0.002) 0.092 (0.135) 0.380 (0.259) 0.071 (0.030) 0.007 (0.013)

n β= 0.3 λ=−0.75 α= 2 θ= 1.5 η= 1.5

30 0.017 (-0.003) 0.165 (0.148) 20.869 (0.927) 2.546 (0.192) 0.954 (0.377)
50 0.010 (-0.007) 0.149 (0.154) 2.288 (0.480) 1.885 (0.128) 0.588 (0.255)
100 0.005 (-0.004) 0.115 (0.140) 0.813 (0.333) 1.150 (0.080) 0.265 (0.130)
200 0.003 (-0.002) 0.084 (0.117) 0.405 (0.239) 0.434 (0.037) 0.107 (0.058)
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5. APPLICATION OF THE GOTTS-E DISTRIBUTION

To investigate the advantage of the proposed distribution, we consider two real data sets.
The first data set provided by Bjerkedal (1960). This data set devoted to the failure times
of 84 aircraft windshield. The windshield on a large aircraft is a complex piece of equip-
ment, comprised basically of several layers of material, including a very strong outer
skin with a heated layer just beneath it, all laminated under high temperature and pres-
sure. Failures of these items are not structural failures. Instead, they typically involve
damage of the nonstructural outer ply or failure of the heating system. The second data
set represents the strengths of 1.5 cm glass fibers, measured at the National Physical Lab-
oratory, England. Unfortunately, the units of measurement are not given in the paper.
It is obtained from Smith and Naylor (1987) and also analyzed by Barreto-Souza et al.
(2010). These data are given below.

First data set: Failure times of 84 Aircraft Windshield

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557,
1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890,
4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

Second data set: Strengths of 1.5 cm Glass Fibers

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74 1.04 1.27 1.39 1.49
1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69
1.76 1.84 2.24 0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30
1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89.

5.1. Bootstrap inference for the parameters of the GOTTS-E distribution

In this section, we obtain point and 95% confidence interval (CI) estimation of parame-
ters of the GOTTS-E distribution by parametric and non-parametric bootstrap methods
for the two data sets. We provide results of bootstrap estimation based on 10000 boot-
strap replicates in Tables 3 and 4. It is interesting to look at the joint distribution of
the bootstrapped values in a scatter plot in order to understand the potential structural
correlation between parameters (see Figures 5, 6, 7 and 8).
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Figure 5 – Parametric bootstrapped values of parameters of GOTTS-E distribution for the first
data set.
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TABLE 3
Bootstrap point and interval estimation of the parameters α, β, λ, θ and η for the first data set.

Parametric bootstrap Non-parametric bootstrap

Parameters Point estimate CI Point estimation CI

α 2.429 (1.732, 3.244) 2.531 (1.770, 3.421)
β 0.860 ( 0.806, 0.913) 0.848 (0.778, 0.898)
λ 0.975 (0.624,1.475) 1.016 (0.630, 1.622)
θ 12.457 (8.945, 19.119) 12.799 (8.552, 20.193)
η 0.606 (0.463, 0.776) 0.596 (0.452, 0.818)

TABLE 4
Bootstrap point and interval estimation of the parameters α, β, λ, θ and η for the second data set.

Parametric bootstrap Non-parametric bootstrap

Parameters Point estimate CI Point estimation CI

α 4.109 (2.444, 6.324) 3.870 (0.538, 0.789)
β 0.639 ( 0.426, 0.797) 0.645 (0.538, 0.789)
λ -0.400 (-3.094, 0.556) -0.439 (-0.621, -0.036)
θ 5.131 (3.999, 6.096) 5.203 (4.734, 6.190)
η 0.727 (0.628, 0.957) 0.713 (0.618, 0.803)

5.2. MLE inference and comparing with other models

We fit the proposed distribution to the two real data sets by MLE method and compare
the results with the gamma, Weibull, two-sided generalized exponential (TSGE), trans-
muted two-sided generalized exponential (TTSGE) and generalized exponential (GE)
distributions with respective densities

fgamma(x) =
1
Γ (α)

λαxα−1e−λx , x > 0,

fWeibull(x) =
β

λβ
xβ−1e−(

x
λ )
β
, x > 0,

fTSGE(x) =







α 1
θ e−

x
θ ( 1−e

−x
θ

β )α−1, 0< x ≤−θ log(1−β),

α 1
θ e−

x
θ ( e

−x
θ

1−β )
α−1, −θ log(1−β)≤ x <∞,
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fTTSGE(x) =




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


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0< x ≤−θ log(1−β),

α 1
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1−β
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�
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x
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,

−θ log(1−β)≤ x <∞,

fGE(x) = αλe−λx (1− e−λx )α−1, x > 0.

Here, we first provide the numerical results for the first data set. For each model,
Table 5 includes the MLE’s of parameters, corresponding log-likelihood, Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) for the first data set.
We fit the GOTTS-E (GOTTSE) distribution to the this data set and compare it with the
mentioned distributions. The selection criterion is that the lowest AIC and BIC statistic
corresponding to the best fitted model. The GOTTS-E distribution provides the best fit
for the data set as it has lower AIC and BIC statistic than the other competitor models.
The histogram of data set, fitted pdf of GOTTS-E distribution and fitted pdfs of other
competitor distributions for the real data set are plotted in Figure 9. The plots of empir-
ical and fitted cdfs functions, P-P plots and Q-Q plots for the GOTTS-E and other fitted
distributions are displayed in Figure 9. These plots also support the results in Table 5.

TABLE 5
The MLE’s of parameters for the first data set.

Model Estimates Log-likelihood AIC BIC

GOTTS-E (α̂, β̂, λ̂, θ̂, η̂)=(2.362, 0.855, 0.893,12.807, 0.596) -122.286 254.571 266.726
TTSGE (α̂, β̂, λ̂, θ̂)=(2.330,0.953, -0.790, 1.471) -127.144 262.287 272.011
Gamma (α̂, λ̂)=(3.492, 1.365) -136.937 277.874 282.735
Weibull (β̂, λ̂)=(2.374,2.863) -130.053 264.107 268.968
TSGE (α̂, β̂, θ̂)=( 3.211, 0.922, 1.691) -130.979 267.958 275.250
GE (α̂, λ̂)=(3.562, 0.758) -139.841 283.681 288.543

Analogously, we provide the numerical results for second data set. Table 6 includes
the MLE’s of parameters, Kolmogorov-Smirnov (K-S) distance between the empirical
distribution and the fitted model, its corresponding p-value, log-likelihood and Akaike
information criterion (AIC) for candidate models for fitting. We fit the GOTTS-E dis-
tribution to the real data set and compare it with the distributions which mentioned
formerly. The GOTTS-E distribution provides the best fit for the second data set as it
has lower AIC and K-S statistic than the other competitor models. The histogram of the
current data set, fitted pdf of the GOTTS-E distribution and fitted pdfs of other com-
petitor distributions are plotted in Figure 10. Also, the plots of empirical and fitted cdfs
functions, P-P plots and Q-Q plots for the GOTTS-E and other fitted distributions are
displayed in Figure 10. These plots also support the results in Table 6.
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Figure 9 – Histogram, fitted pdfs, empirical and fitted cdfs, Q-Q plots and P-P plots of the GOTT-
E distribution and other fitted distributions for the first data set.

TABLE 6
The MLE’s of parameters for the second data set.

Model Estimates Log-likelihood AIC K-S statistic p-value

GOTTS-E (α̂, β̂, λ̂, θ̂, η̂)=( 3.660,0.642,-0.493, 5.141,0.724) -9.937 29.873 0.087 0.720
TTSG-E (α̂, β̂, λ̂, θ̂)=( 4.424, 0.737,-0.953, 1.256) -12.064 32.129 0.141 0.160
Gamma (α̂, λ̂)=(17.441, 11.575) -23.951 51.903 0.216 0.005
Weibull (β̂, λ̂)=(5.781,1.628) -15.207 34.414 0.152 0.108
TSGE (α̂, β̂, θ̂)=(8.214, 0.729, 1.287) -12.311 30.622 0.143 0.152
GE (α̂, λ̂)=(31.351, 2.612) -31.383 66.767 0.229 0.003
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Figure 10 – Histogram, fitted pdfs, empirical and fitted cdfs, Q-Q plots and P-P plots of the GOTT-
E distribution and other fitted distributions for the second data set.
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6. CONCLUSION

In this article, taking into account the odd ratio function, the fundamental concept in
survival analysis, a new two-sided family of lifetime distributions is introduced and its
main properties are derived. A special example of this family is introduced by con-
sidering the exponential model as the baseline distribution. We also showed that the
proposed distribution has various hazard rate shapes such as increasing, decreasing and
bathtub shapes. Numerical results of the maximum likelihood and bootstrap procedures
for two real data sets are presented in separate tables. From a practical point of view, we
showed that the proposed distribution is more flexible than some common statistical
distributions. In particular, we showed that the proposed model has the ability to fit
into bimodal data structures.
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SUMMARY

In this paper, a general class of two-sided lifetime distributions is introduced via odd ratio func-
tion, the well-known concept in survival analysis and reliability engineering. Some statistical and
reliability properties including survival function, quantiles, moments function, asymptotic and
maximum likelihood estimation are provided in a general setting. A special case of this new family
is taken up by considering the exponential model as the parent distribution. Some characteristics
of this specialized model and also a discussion associated with survival regression are provided.
A simulation study is presented to investigate the bias and mean square error of the maximum
likelihood estimators. Moreover, two examples of real data sets are studied; point and interval
estimations of all parameters are obtained by maximum likelihood and bootstrap (parametric and
non-parametric) procedures. Finally, the superiority of the proposed model over some common
statistical distributions is shown through the different criteria for model selection including log-
likelihood values, Akaike information criterion and Kolmogorov-Smirnov test statistic values.

Keywords: Hazard rate function; Survival function; Maximum likelihood estimation; Odd ratio
function; Regression.
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