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1. FOREWORD

The initiative taken by the Editor of Statistica, Professor Simone Giannerini, of reprint-
ing my paper published in 1986 is most welcome and gratifying. At the same time,
it is sad that this initiative is connected with the celebration of the premature loss of
Antonella Capitanio, a dear person and a solid scientist with whom I collaborated ex-
tensively. Starting from our first meeting in 1996 onwards, Antonella’s contribution has
been fundamental for the development of the literature connected to this paper.

This reprint offers the occasion for providing some retrospective considerations on
the significance of the paper within the pertaining literature. The 1986 paper and its
1985 predecessor went essentially unnoticed in the literature of those years, apart from
Henze (1986) and a few personal communications. Some interest appeared at least ten
years later, initially in some isolated papers following the publication of Azzalini and
Dalla Valle (1996), far more noticeably after the work of Azzalini and Capitanio (1999).
At that point, researchers that wanted to access the 1986 paper did not always succeed,
because of the limited international circulation of the journal in the final decades of the
20th century. So the paper remained far less visible than its 1985 companion. Hence,
the present opportunity of reconsidering its role is most welcome, as already said.

In addition, this occasion allows me to amend some algebraic mistakes.

2. ANNOTATIONS TO THE PAPER

The first sentence of the paper indicates that it represents “a natural continuation of a
previous one of the author (1985)” and the second paragraph explains that the paper
consists of two distinct parts. The first part, corresponding to Section 2, provides some
general results on the nature and the properties of the 1985 proposal represented by the
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density functions given in equation (1) of the paper, namely

2 G(λy) f (y), (−∞< y <∞) (1)

under symmetry conditions of the density f and the distribution function G. Although
the general result (1) was presented in the 1985 paper, the focus there was almost entirely
on the special case represented by the skew-normal distribution, which arises when f
and G denote the standard normal density and distribution function, respectively. The
second part of the paper, in Section 3, examines two specific instances of (1), to which
we return later.

Examine first the main facts of Section 2. Proposition 1 states the following: if Y
is a random variable with density f and Z has density (1), then |Y | and |Z | have the
same distribution. This statement says that the modulation factor in (1), G(λy), is ir-
relevant when we consider the absolute value, V = |Z |, and clearly the same holds for
any transformation of V . Hence, Proposition 1 represents an embryonic form of what
several years later, after a few layers of generalization, has been called perturbation (or
modulation) invariance property.

Propositions 2 and 3 provide stochastic representation of Z , in the two forms

Z = SY Y, Z = SV V ,

where SY and SV are binary variables taking sign ±1 with probability depending on Y
and on V , respectively. These expressions constitute a step forward with respect to the
1985 paper, in two related ways. One was to provide a physical mechanism leading to
density (1), which had been introduced as a merely mathematical construct. The other
improvement was to provide a far more efficient method for sampling data from dis-
tribution (1), as compared to the acceptance-rejection technique presented in the 1985
paper. Again, these stochastic representations represent an embryonic form of results
which have later been presented in a considerably more general formulation; see equa-
tion (13) of Azzalini and Capitanio (2003) and equation (8) of Wang et al. (2004).

The final part of Section 2 presents a more specific property. For the skew-normal
distribution, an additional stochastic representation is possible in the additive form Z =
a |U1|+ b U2, where U1 and U2 are independent standard normal variables, and a, b are
constants such that a2 + b 2 = 1. This representation can be deduced by combining
a result of Anděl et al. (1984) with Proposition 1 obtained earlier in the paper. The
same result has been achieved in parallel independent work by Henze (1986), with two
different arguments.

Although this additive representation represents a more specific results than the ear-
lier ones in the paper, it turned out to be a result with much impact in the specialized
literature later on, even more so in its subsequent extension to the multivariate case.
One reason is its use as the key ingredient for building EM-type algorithms for maxi-
mum likelihood estimation. The other use arises in connection with Bayesian inference.

Section 3 takes a distinct direction, focusing on two constructions obtained by spe-
cific choices of f and G. In both cases, the baseline density f was the density (8), while
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the G ingredient was different in the two instances considered in Subsections 3.1 and 3.2.
Density (8) is commonly called exponential power distribution or generalized error dis-
tribution; its earliest occurrence appears to be due to Subbotin (1923). The key reason
for this choice of the baseline density is that it features a parameterωwhich regulates the
tail weight. Combining this aspect with the parameter λ in equation (1), the resulting
distributions allow regulation of both asymmetry and kurtosis, in a slightly different
way in the two cases examined.

The underlying plan was the construction of a parametric distribution capable to
accommodating outlying observations occurring in real applications, with the possibil-
ity that outliers appear with unequal propensity in the two tails of distribution; see the
paragraph preceding the one of equation (9). This logic would have provided a route
towards robust methods, different from the the mainstream formulation, under strong
development in those years.

This idea, however, was not followed upon in the paper, and not even in the imme-
diate subsequent years. The main reason was dissatisfaction with the intersecting curves
in the lower left corners of Figures 1 to 4, which point to difficulties with parameter
estimation in the corresponding area of the parameter space. The plan re-emerged and
was developed several years later, adopting a different baseline density, in the paper of
Azzalini and Genton (2008).
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FURTHER RESULTS ON A CLASS OF DISTRIBUTIONS
WHICH INCLUDES THE NORMAL ONES

Adelchi Azzalini

1. INTRODucnON

The present paper is the natural continuation of a previous one of the author
(l985), which henceforth will be referred to as the SN paper, since in there a
class of densities functions termed SN (a short-hand for skew·normal) has
been studied The chief motivation for considering the SN class of densities
was the desirability of a parametric class of distributions which allows con­
tinuous variation from normality to non-normality.

The specific aim of this paper is two-fold: (i) to give some complementary
results that help in understanding the nature of the SN distribution as well
as some related distributions; (ii) to extend the SN class from one to two shape
paraJOCters, allowing for a wide range of the indexes of skewness and kurtosis;
in the SN paper one such extension had briefly been considered. but it had
a limited range of skewness and kurtosis. Additional comments and reference
to related work will be made where appropriate.

2. ON THE REPRESENTATION OF SN AND RELATED DENSITIES

The starring point of the SN paper was the following result.
Lemma. Let [(.) be a density symmetric about 0 and G (.) an absolutely

continuous distribution function such that C' (.) is a symmetric density. Then

2 G (Ay) [(y) (-~<y<~) (I)

is a density for all A.
There are some simple but relevant properties of the density (1) which have

not been remarked in the previous paper.
Proposition 1. If Vis a tandom variable (t.v.) with density [and Z has density

(I), than IZ I and IY I have the same density.
Proof The density of V= IZ I at. is
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b (.) = 2f(') G ()..) + 2f(-.) G (- )..)

= 2f(')
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which is cqual to the density of IY I . QED
In the SN paper, the emphasis was on the special case of (I), called SN ().)

density,

4> (z;).) = 2<1> ().z) 4> (z) (2)

where fj) and ~ are the N(O, 1) density and distribution function respectively.
It has been shown in the SN paper that the square of a SN (X) f.V. is distributed
as X;; this result is in fact a special case of Proposition 1 applied to (2).

Proposition 2. Under the condition of Lemma I, let Y be a I.V. with density
fand

z=s Yy

where, conditionally on Y = Y.

S = I+ 1 with probability G ().y),
y - 1 with ptobability 1 - G ().y).

Then Z has density (I).
Proof In fact the density of Z is

f(z) G ().z) + f(- z) {1- G (- ).z)} = 2f(z) G ().z).

Proposition 3. Under the same conditions of the previous proposition, let
V = IY I and S v be defined similarly to S y' Thcn

(4)

has density (I).
Proof If z > 0, the density of Z is

2f (z) p{ Sv = + I} = 2f(z) G ().z).

If z < 0, its density is

2f(-z)P{Sv=-t}=2f(-z) {t-G(-).z)}=2f(z)G()'z). QED

Representations (3) and (4) give a physical justification of density (I), which
otherwise appeared artificial. These facts are also useful for computer random
number sampling from (1); in fact it is sufficient to generate Y from f. and W
from G, and put
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Z= { Y
-Y

if W <;AY

if W>AY
(5)

This generation method is twice more efficient than the acceptance-rejection
technique proposed in the SN paper.

A funher form of representation is possible for the special case of distribu­
tion (2) and it is implicit in a result of Andel et a1. (984), which can be re­
phrased as follows. Suppose that the stationary process {Zt} satisfies

for t = 0, ± I, ± 2, ... (6)

where /61 < I and {E,} is white noise N (0, 1 - 6'). Then the corresponding
integral equation for the stationary density of Zt is

f- (Z-6 It l ) I
g (z) = ~ ,=~- g (t) d t ---r.==;::;=-

-- -11-6' VI 6'

and its solution is given by (2) with

(7)

as it can be verified by direct substitution.
Since, by Proposition I, the term IZt_1 I in (6) is distributed as the abso­

lute value of N (0, 1), then we have the corollary that, if Ut and VI are indepen­
dent N (0, 1) variates, then

Z=6IUd +VI 6' U,

is SN (Al.

3. FURTHER EXTENSION OF THE NORMAL DISTRIBUTION

One limitation of family (2) is that the parameter A can only produce tails
thinner than the normal ones, but not thicker. while the latter case would be
more interesting in many applications. A class of densities which includes the
normal ones and allows thick tails is

where w is a positive parameter and

(-~<y<~) (8)
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C = {2w"W -' r(lIW)}-'
W
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see Box (1953), Turner (1960), Vianelli (1963). The g (y; 2) densiry is rhe
N (0, 1) density; g (y; 1) is the Laplace density; as w -+ 00 I g (y; w) converges
to the uniform density in (- 1, 1). Since low values of w make the tails of
(8) very heavy, it has been suggested to use (8) as a reference distribution in
robustness studies.

Hill & Dixon (1982) have given evidence that, in real applications, the distri­
bution of the data is often skew, while virtually all robust methods assume
symmetty of the error distribution. Moreover, the distribution of real data
is seldom so heavily tailed as the ones employed in theoretical robustness studies.

In order to introduce skewness in (8), two modifications of the form

2G (Ay) g (y; w) (9)

will be considered, with G satisfying conditions of Lemma 1. Many choices of
G are possible. The two choices considered are such that, at w = 2, the SN (A)
density is obtained. Here and in the rest of the paper, we denote by Z a r.v.
with densiry (9) and V= IZI ; then the following facts apply to all possible
choices of G.

(i) Reversing the sign of A in (9) gives the density of - Zj therefore there is
no loss of generaliry in supposing A;;. 0 in the foHowing.

(ii) By Proposition 3,

r «m + I)/w)

r (l/w)
(10)

for m even. The second of these equalities holds also for m odd.
(iii) For m odd,

E (zm )=E (Sv V"')

=E{E(Sv 1 V) V"'}
=E{(G(AV)-G(-AV) V"'}

= 2E {(G (A V) - 1/2) V"'}

=2E{G(AV) V"'} -E(V"')

3.1 Distribution type I

Consider the case that G in (9) is the integral of g (yj w), namely

(11)

(12)
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is the incomplete gamma function. Direct integration gives the m·th moment
from the origin

2Cw
Il' = --'--

m r (l/w)
~._, (m+2)w w r

w

m+I, (
=2C

w
w w B xw

) (m + 1)1 + Xw ; IIw, (m + J)/w r w

for m odd and positive X; here B (x; p, q) is the distribution function of a beta
r.v. with parameters P. q. In general, the integral in the previous expression does
not lend itself to explicit computation. In the special case that (m + l)/w = n
integer, then

w"-' r(n)
, = 2e

I'm w r (lIw)

which simplifies further to

" -,
~

j=O

r (l/w + j)

j! Xiw (l + X w)i+ 11W

1 1 I1';" = r (m + 1) 1 - (l + x)m+'

if w= L
Using the first expression of J.l;" as well as (lO), the indexes of skewness and

kurtosis, ')'1 and "'12, can be computed numerically. Figure 1 gives the plot of "'1'2

versus ')'1 for w ranging from 1 (top curve) to 2 (bottom curve) and X ranging
frm 0 to 10. It is seen that a wide range of (')'1' ')'2) values is covered. Figure 2
gives the analogous plot for w ranging from 1.9 to 2.5. In this case, we have
the peculiar phenomenon that curves referring to w> 2 intersect: this implies
that more than four moments are necessary to identify the member of the pa­
rametric class.

We want to show that (9) is log concave for the above choice of G and w > 1.
The following preliminary result is probably well known, but the author did not
find track of it in the literature.

Lemma 2. For any x > 0 and 0 < 0: > 1
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KURTOSIS VS SKEWNESS
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Proof Integrating both sides of the inequality

205

from x to 00, we obtain the result. QED
Note that, setting Cl = 112 and replacing x by x 2 /2 in the lemma, we obtain

the well known result

<I>(- x) < <P (x)
x

forx>O.

Returning to the problem of the log concavity of (9), it is easily seen that'
the second derivative of g (y; w) is negative for w> 1. Consider then

d2

d
y

2 log G (Ay) =
A

2
g(t;w) I I I -I g(t;w) Isgn (t) t W + G ( )
G (t) t

(13)

for t = AY. This derivative is clearly negative for t > 0; for t < 0, put x = - t > 0
and consider

+ ..2g~(x.....:;....cw:..:)_
1 - G (x)

with

1- G (x) =C
W

f ~ exp (- U W Iw) du
x

Using Lemma 2 with Cl = l/w and x replaced by X
W lw, one obtains that (13)

is negative and hence (9) is log concave.
For the purpose of random number generation, it is easy to see from the

expression of G that, if X has gamma distribution with index 1/w, then

I (WX)I/W
w-

- (wX)/W

with probability 1/2,

wi th probabili ty 1/2

has distribution (12). Then, using (5), one can sample from density (9).

3.2 Distribution type 1I

A second possible choice of G in (9) is

I IYlil I
G (y) =<I> sgn (y)~ (14)
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where lJ1 = wl2. This choice of G is the distribution function of
sgn (U)IHUI '''' ifUisN(O, I). The lerm~in thedenominatolof(14)
is introduced to simplify some algebraic manipulations lata on. Therefore
the density considered now is

I Iy I'" IAy I' I
b (y) = ZC" exp - Z>/I <1>1 sgn (Ay) H . (15)

It is not difficult to verify by direct computation that also this density is log
concave for 1/1 > 1/2, i.e. w > 1.

To obtain in the odd moments of (15) we use (11). Then

E(Y'" G(AV)=ZC >/1,-1 f- ,"-1 ,-"11 <I>(At)dt" .
=

=

r (l/w)

r (lIw) (
I - Z"A'''' r(s+"+II2) )
-r(s)+ 1:
2 """0 V;(Z" + 1)!1 (l +},,1).J+"+112

having set s = (m + l)!w and used the standard expansion

1 -
<I>(x)~-+~(x) 1:

2 ." ,,"'0 (2" + 1)!!

Then, for m odd,

w'-11w ZA _ (ZA')" r(s +" + IIZ)
E (zm ) ~ -----'=--=-=---- 1:

r (l/w) V1f (I + A'r'" "=. (Z" + I)!! (I + A')"

This Cannula can be evaluated explicitly when s is integer, making use of the
relation

r (" + IIZ) = (Z" - I)!! Z-" vw .
For instance, if w ~ I, one gets

E (Z) ~...!.. B (3 - B')
Z

where lj is as in (7).
Figure 3 and 4 give plots analogous [0 those of Figure 1 and 2 for the new

choice of G. The vaJues of w in Figure 3 are I, 4/3, 312, 2, 512, 8/3 and A
ranges from 0 to 10; in Figure 4 w is 1.8, 1.9,2, 2.1, 2.2, 2.4 and the same
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values of A. It IS seen that the behaviour of these curves is similar to that of
Figure 1 and 2.
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3. CORRIGENDA

There are various corrections to the original paper to be communicated. Of these, the
first one is a rather obvious typo, while those in Subsection 3.2 are of more substantial
nature.

1. In the statement of Lemma 2, change ‘0<α > 1’ to ‘0<α < 1’.

2. The two lines following equation (15) must be removed.

3. Halfway on page 206, replace the line with ‘Then, for m odd,’ and the subsequent
one with the following passage.

Then, for any positive m and non-negative λ,

E(Z m) =
2ωm/ωλ̃

p
π Γ (1/ω) (1+ λ̃2)s+1/2

∞
∑

n=0

Γ (s + n+ 1/2)
(2n+ 1)!!

¨

2λ̃2

1+ λ̃2

«n

where λ̃ = λω/2 and s = (m + 1)/ω. If λ < 0, apply the above expression to
|λ| and then change the sign of the result.

4. An implication of the previous correction is that the subsequent expression on
the same page, line 5 from bottom, must be changed to

E(Z) =
p
λ

2
p

1+λ

�

3− λ

1+λ

�

.

An implication of the above correction to E(Z m) is that, in principle, Figures 1 to 4
should be changed. However, when the corrected plots have been produced, there was
no visible difference from the existing ones. It has then be decided not to insert new
plots.
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SUMMARY

The author’s 1986 paper with the same title is reprinted here alongside some comments and cor-
rections. The original abstract, here translated in English, was as follows: “Some further results
are presented concerning a class of density functions already examined in another work of the au-
thor (1985). Specifically, an additional shape parameter is introduced which allows a wide range
of the coefficients of asymmetry and kurtosis.”
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