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1. INTRODUCTION

Although skew symmetric distributions have quite a long history, they have attracted
serious attention only relatively recently, perhaps not much earlier than the turn of the
millennium. Partly due to their tractability and applications in areas such as robust
statistics, financial econometrics, and others, where departure from normality is called
for, we have been witnessing increasing research activities in the area for nearly twenty
years, so much so that there are now a small number of dedicated monographs, e.g.,
Genton (2004) and Azzalini and Capitanio (2014).

It is well known that a distribution comes alive only when it is related to a ran-
dom dynamical process, also called a stochastic process or a time series model. Exam-
ples abound: normal distribution with Brownian motion, Poisson distribution with
renewal process, negative binomial distribution with queuing process, and others. For
the skew-normal distribution, the connection was first discovered by Andél ez al. (1984)
and further studied by Azzalini (1986) and Chan and Tong (1986). Specifically, Chan
and Tong (1986) studied the integral equation that underlies the connection systemat-
ically by reference to some symmetry groups. The purpose of this paper is to exploit
the method developed by Chan and Tong (1986) and show how the stochastic process
approach can lead to other skew symmetric distributions, including a correct version
of a skew-Cauchy distribution that is different from the one studied in Genton (2004)
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and Azzalini and Capitanio (2014), and some discrete skew symmetric distributions as

well as some singular distributions. We briefly study the least squares method for the

estimation of the skewness parameter for dependent data.

2. ABSOLUTE AUTOREGRESSIVE MODEL

The following model is a special case of the class of threshold autoregressive models
Ye=alyq|+e, 1)

where {¢,} is a sequence of independent and identically distributed (i.i.d.) random vari-
ables and ¢, independent of {y,_; : j > 1}. See And¢l et al. (1984) and Example 4.7 in
Tong (1990). Let us call it an absolute autoregressive model of order 1.

First, we give a sufficient condition on the existence of a stationary solution to model
(1). It is weaker than the one given on page 140 in Tong (1990).

THEOREM 1. Suppose that {¢,} is i.i.d. with Emax{1,In|e,|} < co. If|a| < 1, then
model (1) bas a unigue strictly stationary solution.

PROOF. Let ¢(x) = a|x|. Using the construction technique in Ling et al. (2007),
define, for any fix t and any 7 > 1,

Cor =t (o @@ +e, ) t+e, ) ) +e, ) €
where €, , starts from y,_, = 0. Then, for n > m,

|§n,t _gm,tl < |a||é’n71,t71 _é’mfl,t71| S
) .
<la” > el le, -
7=

Since Emax{1,Inle,|} < oo, by the Kolmogorov three series theorem, we have that
>20lal e, ;| < o0 as.. Thus, {&,. : » > 1} is a Cauchy sequence. Therefore, it
converges a.s.. Write

& = nlirrolo fn,t, a.s.. 3)
Note that &, , = ¢(&,_;,_;)+¢,. By the continuity of ¢(-), letting 7 — 0o, we have

=) te, =alé,_|+e,.

By (2) and (3), {&,} is strictly stationary. Thus, there exits a strictly stationary solution
to model (1). The uniqueness is clear due to |a| < 1. The proof is complete. O
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When ¢, is symmetric and has a density f(x) and |a| < 1, y, has a unique stationary
probability density, which we denote by A, and it holds that 5 is given by the following
integral equation

by)= th<x>f<y—a|x|>dx. @

When f is a normal density or a Cauchy density, Andél e al. (1984) and Andél and Bar-
ton (1986) used the ‘guess-and-check’ approach to solve this integral equation. Specifi-
cally, they guessed a function for b and checked if the integral on the right hand side of
equation (4) integrates to the same guessed function. As we shall see, this approach is
not foolproof. In this paper, we adopt the systematic method developed by Chan and
Tong (1986).

3. SKEW-SYMMETRIC DISTRIBUTIONS

Under the aforementioned conditions, we have

hy)= f b()f () —alx])dx
o 0 5)
:L /o(x)f(y—ax)dx+f_ h(x)f (y +ax)dx.

By the symmetry of £, we also have
h(—y) = JOOO h(x)f (9 + ax)dx + fooo h(x)f (y —ax)dx.
Thus,
b)Y+ )= [ D)+ ) (=),

Let h(y)=[h(y)+ h(—y)]/2. Then,

which is the integral equation for the stationary density of {x,} satisfying the (linear)
autoregressive model of order 1, or in short, AR(1) model:

x,=ax,_+e, o<l )
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By (5), we have

by)= f Th() + h(x)]f (y— ax)dx =2 f b0/ (v —ax)dx.

Thus, to find the density of y,, it suffices to find that of model (6), which is linear.
Particularly, when ¢, ~ N(0,1), then it follows that

—a —a?)y?
h(y)= yexp{—Q}é(aﬁ, yeR, |a|<1. @)

If ¢, ~ N(0,1—¢?) with |a| < 1, then it follows that

h(y)=2¢(y)2(dy), &=

a
i eR, yeR, 8)
where ¢(y) and ®(y) are the probability density and distribution of N(0, 1), respectively.

Now, h(y) in (8) is the probability density function (pdf) of the so-called skew-
normal distribution with parameter & € R, which is the normal density skewed (via
multiplication) by the normal distribution with parameter &. This skewing method has
been exploited and generalized in recent years to cover distributions beyond the normal
and beyond univariate distributions. See, e.g., Azzalini and Capitanio (2014), which also
gives a short history of this skewing method to construct skew-normal distributions.

For the AR approach, we first recall that all the finite stationary joint pdfs generated
by a stationary nonlinear AR model of general order driven by a white noise process
with symmetric distribution are symmetric if and only if the autoregressive function is
skew-symmetric at points where the pdf is positive. See, e.g., Tong (1990). It is clear that
the absolute AR approach obtains the skew-normal distribution by turning the nonlin-
ear integral equation involving |x| into a linear integral equation without the modulus
sign; the latter corresponds to a linear AR model. It is therefore of interest to investigate
what this approach gives us in respect of the Cauchy distribution.

When ¢, ~ Cauchy distribution, with density

1 1
- R
fo=1i—, xew
by (6), we have
- 1 1—|e|
h(y) = —m———, R, 1.
Thus,
2 yr+1
h(y)= {x ln< >
O e e e U7

+x(y* + x* —1)arctan(y) + # (y2 +?— 1) + g (yz — x4+ 1)} ,
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where x = a/(1—|a|) and |a| < 1. Although the pdf and the cumulative distribution
function of a Cauchy random variable both appear in the above skew-Cauchy distribu-
tion, they no longer do so in the simple product form as in the normal case. Effectively,
here is an alternative skew-Cauchy distribution to the one studied in the existing litera-
ture, e.g., Azzalini and Capitanio (2014). Note also that our skew-Cauchy distribution
differs from the one due to Andél and Barton (1986), which can take negative values;
this illustrates the fact that the ‘guess-and-check” approach is not always foolproof.

Figure 1 plots the density h(y) for different values of @ when ¢, ~ N(0,1) and when
¢, has a Cauchy distribution, respectively. From the figure, we can see that 5 is skewed
to the right (left) when « is positive (negative), even though ¢, is symmetric.

(@) &~N(@O,1) (b) & ~ Cauchy distribution

0.20

0.15

0.10

0.05

0.00 +

Figure 1 - The density h(y) for different values of @ when the noise term ¢, is N(0,1) and the
Cauchy distribution, respectively.

For the absolute AR approach, a natural question concerns the extension to distri-
butions beyond the normal and the Cauchy. The fact that we have a skew symmetric
distribution in closed-form for these two cases has to do with the self-decomposability of
the normal distribution and the Cauchy distribution. In general, simple closed-forms
are rare. For example, if the noise term ¢, has a ¢-distribution with odd degrees of
freedom, then x, in model (6) will have a mixture of ¢-distributions, leading to a more
complicated closed-form for the skew counterpart.

4. NUMERICAL TECHNIQUE

For symmetrically (or asymmetrically) distributed ¢, other than the normal and the
Cauchy, it is generally difficult to obtain an explicit expression of 4. Let H(-) denote
the distribution function of y,. From model (1), we have the following integral equation

H(y) = fRK<y,x>H<dx>, o)
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where K(y,x) =P(e, <y —alx|).

Chan and Tong (1986) studied theoretical properties of (9) related to the stationary
pdfs of nonlinear autoregressive processes. It is generally difficult to obtain closed form
formulae for H(x). Several quite complicated approximate numerical methods are pro-
vided in §4.2 of Tong (1990) for some stationary stochastic processes.

Here, we use the numerical technique in Li and Q1u (2020) to solve (9). More specifi-
cally, suppose that —co =y, <y, <y, <...<y,, <,,,; = o< isapartition of R. Then,
by the definition of the Riemann-Stieltjes integral, we have the following approximation

+1

H(yy)~ D Ky IH ) —H(y; )]

3

~.
Il

U

[KOio7)) = K03} |HOR) + KOs V)
1

-
Il

where S [y,—-3;]for j = 1,...,m + 1. Here, we take yi =0 +;)/2. Let K =
and a=(q;)

mx1> Where

(Xij)mxm
Xij :K()’ia)’;)_K(%,ﬁH) and  a; = K(y;,75,41)-
Denote H=(H(y,), ..., H(y,,)). Then
H=KH+a,
which yields
H=(I-K)!
Now, if ¢, has a density f(-), then the density A(-) of y, is numerically
mt1

by)= f =) % 320 =l )HO)~HO,- )

From the above discussion, we can see that the error of our approximation method
is from the approximation of the related Riemann-Stieltjes integral. This error can get
arbitrarily smaller by a much finer partition of R.

Figure 2 shows the performance of the numerical technique. Here, 7 = 80 is used
to partition R, ¢, ~ N(0,1) and @ = 0.5 and 0.9, respectively. The theoretical density is
from (7). From the figure, we can see that the numerical approximation is quite accurate.
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Figure 2 - The density h(y) by the numerical technique and theoretical expression for different
values of @ when the error ¢, is N(0, 1), respectively.
5. THE RADEMACHER CASE

Theorem 1 also allows a discrete distribution for ¢,. Here, we give an example and derive
the distribution of y, for a special case.

THEOREM 2. Supposethat {¢,}isi.id. withP(e, = £1)=1/2 (called the Rademacher
random variable). If @ = 1/2, then y, in (1) has the following distribution function

O’ l.fy<_1a
G+ f-12y<0,

Ho)={ i/, ifo<y<i,
y/2, iflﬁy<2,
1, ify >2.

When a =—1/2, the distribution function of y, is 1 — H(—y).

Figure 3 plots the distribution H(y) and its density A(y).
Consider the linear AR(1) process:

x, =0.5x,_;+¢,,
where {¢,} isi.i.d. with P(e, ==+1) = 1/2. Using the characteristic function technique,

we have that x, is a uniform distribution on [—2,2], i.e., x, ~ U[—2,2].
From Figures 3-4, we can see that the density of v, is very different from that of x, .
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The distribution H(y) The density h(y)
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Figure 3 - The distribution function H(y) with its density h(y).
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Figure 4 - The distribution function of U[—2,2] with its density.
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THEOREM 3. Suppose that {¢,} is i.i.d. withP(e, =+1)=1/2. If a €(0,1/2), then
the distribution function of y, in (1) satisfies

ry—a
Oa l][TSO’

H(y)={ %=, 5 el,;, n=012., j=1,..,2", (10)
L, L
where
1 2(1— 2 2
a=2a— 5 b: ( a+a), /O: l )
1—a 1—a 1—a+a?
and

where |- | is the floor function and £, = (1—2a)a"" p, with the convention I, ; = [ p,1—p]
and ly=1-—2p.
When a € (—1/2,0), the distribution function of y, is 1 —H_(—y).

Figure 5 plots the distribution H,(y) in (10) with « = 1/3 and 1/5, from which
H () looks like the Cantor function.

Hy/a(y) Hy/s(y)

e P
0.8 - 0.8 -
0.6 - 0.6 -
0.4 - 0.4 -
02+ 024
0.0 o 0.0 —r

T T T T T T T T T T T T

-1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0 15

Figure 5 - The distribution H,(y) with @ =1/3 and 1/5.
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Thus, we call H,(y) in (10) the quasi-Cantor distribution function. Clearly, H,(y) is a
singular distribution when 0 < o < 1/2. Together with Theorem 2, we can see that H,
changes from a discrete distribution to a singular one to an absolutely continuous one
as a varies from 0 to (0,1/2) to 1/2. A simulated bifurcation plot is provided in Figure
6, in which the vertical axis represents all possible values of y,. Here, the sample size
10,000 is used and ¢, is the Rademacher random variable.

A simulated bifurcation plot

2.0 1
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. e 8 8 3 RS T O S | = = I I
104 o o e
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Figure 6 - The vertical axis represents all possible values of y, in simulations for different . The
sample size is 10,000. ¢, is the Rademacher random variable.

On the other hand, we can in principle find the distribution of y, when 1/2 < |a| <
1. However, it is much more complicated and contains two sub-cases, i.e., 1/2 < |a| <
2/3 and 2/3 <|a| < 1. For the sub-case 1/2 < a < 2/3, a simple calculation yields that

0, ify <—1,

% if—1<y <2,
H,(y)={ 3, if 2l <y <1,

Ha(y—2)+%, f1<y<1/(1—a),

1, ify>1/(1—a).

Unfortunately, we here fail to find the closed form of H,(y) when —1 <y < (2a —
1)/(1—a). We leave this for future work.

Theorems 2 and 3 give the explicit expressions of H,(y) for 0 < @ < 1/2 when ¢, is
the Rademacher random variable. Of course, theoretically, ¢, can be also allowed to be
any discrete uniform random variable supported by more than two points. However, it
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is decidedly difficult to derive an explicit expression of H,(y), even for the simple case
witha=1/2and P(e, =+1)=P(¢, =0)=1/3.

6. THE LEAST SQUARES ESTIMATION

In this section, we consider the estimation of &, for the model

Ve = a0|yt71| +ey

where {¢,} is 1.1.d. with zero mean and finite variance. Note that @, controls the skew-
ness of the distribution of y,.

Assume that asample {y,,7,,...,7, } of size 7 is available. Note that they are generally
dependent data. The initial value is y,. Then, the least squares estimation of a is

a :Z:l:lytlyt—ll
S Ay T

THEOREM 4. Suppose that {¢,} is i.i.d. with Ee, =0 and 0? =Ee? € (0,00).
(1). If|agl < Land{y,} is ergodic, then
Vn(@,—a,)=> N(0,1—a3),
where =’ stands for weak convergence.

(). Ifag=1, then

B(1)]P?—1
oo BB
2fo [B(s)]?ds
where B(s) is the standard Brownian motion on [0,00), and if ay = —1, then
1—[B(1)]
oot IBE
2fo [B(s)]2ds
(iit). If|ao| > 1 and Ey? < oo, then
(Zg (an - aO) {*
a;—1 Ex’

where {* and &* are independent random variables, and

=1 %
L= (1T4) % +(T T4 )bs
k=1 j=k 0 =1
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We can see that Theorem 4 mimics results for the classical AR(1) model; see, e.g.,
Anderson (1959), Dickey and Fuller (1979), etc. When |o,| > 1, the limiting distribution
of 2, is complicated and closely related to the error and the process itself.

Figure 7 gives the histograms of (a) y/7(@, —a,) with oy = 0.5, (b) #(2,, —1), and ()
n(a, +1). Here, the sample size is 500, 2000 replications are used. The error is standard
normal.

@ (b) ©

05 025 025
N(0, 1-0) B(1)-1 1-B(1F

o ’r—f—‘ 18(s)ds r,_‘:s)ms

}»_‘ 005 y ﬂ‘ 0.05 ’>_‘
By 0.004—— ] “ Lﬁ 0.00 r*J ’»Tﬁ\ﬁ —

Figure 7 - The histograms of (a) v/n(2, — a,), (b) n(a, — 1), and (c) n(a, + 1).
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APPENDIX
A. TECHNICAL PROOFS
A.1. Proof of Theorem 2
Clearly, by the expression of y, in (1),
2H(y) =P(ly, 1| <20y + D)) + Blly, | <20y = 1)) (11)

(1). When y < —1, then H(y) =0. This is trivial.
(i1). When y > 2, by (i) and (11), we have

2H(y)=H(2(y + 1))+ H(2(y —1)).
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Particularly, on letting y = 2, it follows that

2H(2) = HQ2+ 1)+ HE2— 1) = He)+ H(2)
i.e., H(2) = H(6). Since H is monotonic, we have H(y) = H(2) for y € [2,6]. Similarly,
let y = 6. Then, 2H(6) = H(14)+ H(10), i.e., 0 =[H(14)—H(6)]+[H(10)—H(6)] >0
by the monotonicity of H. Thus H(14) = H(6), which implies that H(y) = H(6) =

H(2) for y € [2,14]. Repeating this procedure, we can get H(y) = H(2) for y > 2.
Thus, H(2)= lim H(y)=1,and in turn H(y)=1fory > 2.
y—00

(i11). When 0 <y < 1, by (11) and (i) again, we have
2H(y)=H(2(y +1)).

Note that 2(y 4+ 1) > 2; by (i1), then 2H(y) =1, 1.e., H(y) =1/2for 0<y < 1.
(iv). When 1<y < 2, by (11) and (1)-(i1), it follows that

2H(y) =1+ HQ2y = 1)) =Py, <20y =1)). (12)
Particularly, if 1.5 <y < 2, by (i), then
2H(y) =1+ H(2(y—1)),
which is equivalent to, after the transformation y — 1+ %, y €[1.5,2),

H(y):2H<1+%>—1, 1<y<2. (13)

Now, we study (13). After n-step iterations, it follows that

1 1
H(y):Z"H(l-i—E-i-...—i- +l>—[2”*1+2"*2+...+2+1]

2n—1 o
n 1 y n
—2 H<2— o+ 2—,,)—[2 —1],

that is, by H(2) =1 in (i1),

HO)—1= H<2_%T%)_H(2) - H<2_(2"1f —E) )

Thus,
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where the left-hand side does not vary with 7 for each fixed y €[1,2), which means the

existence of the left-derivative of H(y) at y = 2 since (2;—1 — ZJ—) | 0 from the right as
n — oo. Write the limit in the right-hand side by ¢ := H’(2—). Thus, H(y) has the

linear form
H(y)=1+4+2c—cy for ye€[1,2). (14)

Note that ligl H(y)= ligl(l +2c—cy)=1=H(2); then H(y) is continuous at y = 2.
y y

By (12), we have
2H(1) = 1+ H(0)—F(y,_, <O).
Note that, by (i) and the continuity of H(y) at y =2,
Py, <0)= %P(l%_d <2)= %]P’(—z <9,.4<2)
= 2P0, <2)= 3P0, S2)=172,
Therefore, by H(0) = 1/2 in (iii), we have
2H(1)=1+H(0)—P(y,_, <0)=1+ % —% —1, ie, H(l)= %

Using the closed-form of H in (14), it follows that H(1) = 14+2c—c=1+c¢=1/2, ie.,
¢ =—1/2,and then H(y)=y/2for 1 <y <2 in (14).

(v). When —1 <y < 0, we first consider the case that —0.5 < y < 0. By (11) and (iv),

2H(y)=HQ2(y+1)==-20+1)=y+1

N =

Thus, H(y)=(y+1)/2 for —0.5 <y <O0.
For —1 <y < —0.5, by (11) and (iii) again, we have

2H(y) =5 —Ply, <=2y+1),

Note that, for —1 <y < —0.5, it follows that —2 < —4(y+1) < 0and 0 < 2—4(y+1) < 2.
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By the continuity of H(y) obtained above when y > —0.5, we have

Py, <=2+ 1) = (1 405Dy <—20+1)
+ ST+ 03]y, | <=20+1)

=SByl <40+ 1)=2)+ S By <240+ 1)

=SByl <2— 4y +1)

= P +1)=2 <y <24 +1)

= STHE—40+ 1)~ H(0 +1)-2)]
Therefore, for —1 < y < —0.5, we have

4H(y)=1+HMA4(y+1)—2)—H(2—4(y + 1)).
Particularly, when —0.75 < y < —0.5, i.e., —1 < 4(y+1)—2 < 0and 0 < 2—4(y+1) < 1,
by (iii), we have
$H() = 3+ H( +1)-2).

Letz=4(y+1)—2,1.e.,y =(z+2)/4—1, then

H(z):4H<£—1>——, —1<z<0.
42

Similar to (iv), we can get H(y) =(y +1)/2 for—1 <y <0.
In sum, from (1)-(v), we can get the distribution H(y). The proof is complete.

A.2. A Lemma

To prove Theorem 3, we first give a lemma.

LEMMA 5. Suppose that {¢,} is t.i.d. withP(e, =+1)=1/2. If 0 < a < 1, then the
distribution H,(y) of y, in (1) satisfies

O> lfj/<—1,

Loify>1/(1—a).

H,(y)=
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PROOF. By the expression of y, in (1), it follows that

+1 —1
28, () = B(|yi| < 2= )+ Byl <2 ). (15)

Clearly, when y < —1, we have H,(y) =0.
When y > 1/(1— a), by a simple calculation, we then have

2,00 =H,(20 )+ 1, (22,

Note that (y +1)/a > (y —1)/a >y if y > 1/(1 —a). By the monotonicity of H,, we

have
o=|m(22)—r,0)|+ [ () -H0)] 20
Thus,
Ha(y)=Ha<y:1>, for y> 1:1-

After n-iteration, it follows that

H,()=H,( +Zi,€> for y>

2n PV
a i 1—a

Therefore,

.
H,0)=lim H,( 2 +> =) =H (c0)=1, for y2

n—00
- k=1

The proof is complete.

A.3. Proof of Theorem 3

The proof will be completed by the following four steps.
First: By (15) and Lemma 5 with ™' > (1—a)~! for 0 < @ < 1/2, it follows that

2H,(0)=P(ly, 4| < 1/a) = H,(1/a) =1,
i.e., H,(0)=1/2. Note that H, is continuous at y =0, since
1
Py, =0)=P(e, +aly,,|=0)= Py, o[ =1/a)

= J[POL=1/) + 70, =—1/2)] =0
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by Lemma 5 and the fact that ' > (1—a) ™! and —a~! < —2 when 0 < a < 1/2. Thus,

2H,(1) =P(ly,_y| £2/a)+P(ly,_,| <0)
:]P’(—Z/a Syt—l < 2/&')—}—]?(}/[_1 = O)
=H,2/a)=1

by Lemma 5. Then H (1) = 1/2. By the monotonicity of H,, we have

H,(y)=1/2, for0<y<1. (16)
Further, noting that
20 —1 . . 1 1 1
a <y<0 implies 1< §y+ <-,
l—«a —a a a

we have, by (15) and Lemma 5 again,

+1 +1 +1 +1
2Ha(y)=IP’<|yz_1|Sy—a )=1P’<—ya Sytsya )zH(y ):1.

Thus, combining this with (16), we have

1
H,(y)=-, for <y<L (17)
2 1—a
Similarly, noting that
1—2 . . -1 1-2
1<y<1l+a- a implies Osy < agl,
1—a a 1—a

we have, by (15), (16) and the stationarity of y,,

—1 —1
2H,(y) =1+ H,(2==)—P(y, <-1—)
a a

1 —1
i op(y<-220)
2 a

Note that, by the expression of y, in (1) and Lemma 5,

=2 <rl = (-2 -

since
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Thus, by (17),

—1 3 1
2H,(0)=>—H,(-1=)=2—=1, ie, H0)=>,
a 2 2
since
2a—1§_y—1SO.
1—a a

On combining this with (17), it follows that

20—1 1—2a
<y<l+a- .
1—a 1—a

no=h

Second: By the monotonicity of H,(-) and (15), it follows that

1—-2 20—1
2Ha(y)§2Ha(a):IP’<yl§ N a)—[P’(yt< 1a >, y<a.
—a —«

Note that, by the expression of y, in (1) and Lemma 5 again,

20—1 1
219’(% =1_2 ):P<|y1—1| = m)zo-

Thus, by (16) and (18), for y < a,

ZH“(y)SZHa(ﬂ)ZIP’(yt < 1—2a)_]P)<yt < 2a—1>

1 1
It 1—a 2 2

Therefore, by combining this with (18), (19) and Lemma 5, H,(y) satisfies

0, if %<0,
H,(y)=< 1/2, ifp<"<1—p,
1, if 22 > 1.

Third: If ap < (y —a)/b < (1—a)p, then,

— 2 1 9,2
1—2a+2a <y+ <1 2a

0< < < )
l—a a l—a
3 9,2 _ 9.3
20° +3a—2a ZSy 1S3a 2a 2<0.
a(l—a) a a(l—a)

By (15), it follows that

2H,(y) =P<yt 1T 1)—P<yt <2t 1>~

IA

=0.

(18)

(19)
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By the stationarity of y, and

we have

y+1 1/, y+1
28, == ) =Bl =S (1-77))

2= 2= 220)) (=222

_ y+1 y+1
= <)y 222
y+1 y+1
=H —_H(—
(E)-m(--)
1
:——O,
2
Le.,
1
H,(0)=5; for ap<(y—a)/b<(1-a)p
Similarly,
Ha(y):%, for 1—(1—a)p<(y—a)/b<1—ap.

Fourth: We construct a sequence of closed intervals, for each fixed » > 1 and j =
1,..,2",

s [( =+ (1), +Z{&J€k,

k=0

where |-] is the floor function, ¢, = (1— Za)a”_lp. We adopt the convention [, =
[ps1—pland {;=1—2p.
Similar to the Third step, by a tedious calculation, we can prove that
2j—1
2n+1

Ha(.y): 5 lf y;del ; 7120, ].:1,...,27!.

7,72
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oo 2"

Note that the length of the set | J [ J 7, ; is (1=2p)+ 352, 2"(1—2a)a”" " p = 1. Thus,
n=0j=1

H () in (10) can determine the distribution of y,. The proof is complete.

A.4. Proof of Theorem 4
(). Note that

n=!/?2 =1 &|yl

n Tyl '

When |ao| < 1, {y,} is strictly stationary and Ey? = 02 /(1—a?). With the ergodicity of
{7,}, we have

Vn(@, —ay)=

1< ) o?
L3 [ LA
ni= @

By the martingale central limit theorem in Brown (1971), it follows that
1 n
S = N
Thus, v/n(@, —ay) = N(0,1—a3).
(i1). First, consider the case oy = 1. By Theorem 3.1 in Liu ez al. (2011), we have

y[m]
N

where D[0, 1] is the Skorokhod space. Note that

o|B(s)] onD[0,1],

<yz2_y:2—1)_5%
elyal=——F—

bl

2
then
z(an_l):(yﬁ—yi)—z oy
=111
By the continuous mapping theorem,
B(1)]>—1
2o,y UL
2 fo [B(s)]?ds

The proof with oy =—1 is similar and thus omitted.
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(ii). The proof is similar to that of Theorem 2.2 in Liu et al. (2011). If |ay| > 1, then

—_Z:(Hd) <l_[d>|yo|—> as..
Thus,

&2 as.

By the same argument as in Theorem 2.2 of Liu ez al. (2011), we have

n(a —n t—1
a5 (@, —ag) " 21 % & p

o,
a;—1 & —

with the convention [ T_ !'=1. Note that

n

Nnj2| a.s. 1 p
W_) and ;" Za e, — Z ay e, t —0.

0 t=|n/2]+1

By the independence between 377 ‘e, and y),, /), we can see that

al~
|7/2]4+1 %

—n z — y\_n/ZJ % %
<a0 Z a(t) 1Et’ [n/2J>:><év > E )
o4

t=[n/2]+1 0

Therefore,

a’ (@, —a *
O(2n O):>év
ag—1 Ex

The proof is complete.
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SUMMARY

By exploiting the connection between a popular construction of a well-known skew-normal dis-
tribution and an absolute autoregressive process, we show how the stochastic process approach
can lead to other skew symmetric distributions, including a skew-Cauchy distribution and some
singular distributions. In so doing, we also correct an erroneous skew-Cauchy-distribution in the
literature. We discuss the estimation, for dependent data, of the key parameter relating to the
skewness.

Keywords: Absolute autoregressive process; Estimation of skewness parameter; Singular distri-
butions; Skew-normal distribution; Skew-Cauchy distribution.
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