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1. INTRODUCTION

The non-Gaussian time series models are increasingly important in real life situations
as time series data cannot be always modeled by Gaussian distributions. Nowadays, the
applications of non-Gaussian models can be seen in various fields such as economics,
physics, climate sciences, and many others. In most of the real-life time series situations,
the data are having skewed behavior, which substantiates the relevance of non-Gaussian
modeling. Non-Gaussian time series models were introduced and discussed by many au-
thors in the light of the non-normality of the many datasets in financial, actuarial, eco-
nomic and other fields. See for example, Gaver and Lewis (1980), Lawrance and Lewis
(1981), Sim (1986), Sim (1994), Ristic and Popovic (2002), Balakrishna and Nampoothiri
(2003), etc. Further works related to non-Gaussian time series are extreme value autore-
gressive model by Balakrishna and Shiji (2014), autoregressive process with Birnbaum-
Saunder’s distribution as marginal by Rahul et al. (2018) and approximated beta distri-
bution as marginal by Popovic (2010). In this paper, we use the non-Gaussian heavy
tailed double Lindley distribution, recently introduced by the authors as the marginal
of an additive autoregressive process. A brief outline of this distribution is presented in
the next paragraph.

Lindley distribution defined on [0,∞) was introduced by Lindley (1958). An ex-
tensive study of its properties and application was done by Ghitany et al. (2008). Later
many authors discussed different types of generalizations of the Lindley distribution.
A generalization with a three-parameter Lindley distribution was given by Zakerzadeh
and Dolati (2009). Further extensions of this distribution can be seen in Mahmoudi and
Zakerzadeh (2010), Nadarajah et al. (2011), Ghitany et al. (2013), Elbatal et al. (2013),
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Bhati et al. (2015), Asgharzadeh et al. (2016), Maya and Irshad (2017), Asgharzadeh et al.
(2018), and Ekhosuehi and Opone (2018). A discrete version of the Lindley distribu-
tion was discussed by Deniz and Ojeda (2011). Using the concept of mixing, Shibu and
Irshad (2016) studied an extended version of the new generalized Lindley distribution,
through which more flexibility can be obtained for the modelling of lifetime data. More
recently, Irshad et al. (2020) considered binomial mixture Lindley distribution. Another
work seen recently is a Marshall-Olkin extension of this distribution by Algarnia (2021).
As an extension of the Lindley distribution, a new distribution on the real line was in-
troduced by Nitha and Krishnarani (2017), called double Lindley distribution. It is a
useful probability distribution for modelling heavy-tailed symmetric data sets that com-
monly arise in financial and actuarial data. Later, Satheeshkumar and Rosmi (2019) also
studied this generalization of the Lindley distribution in which reliability properties of
the same have been investigated. The double Lindley distribution with parameter θ,
hereafter denoted as DLD (θ), is derived as a mixture of a Laplace random variable with
mean zero, variance 2θ2, and a two-sided gamma random variable with shape parameter
2 and scale parameter θ.

That is, the probability density function (pdf) of DLD(θ) is,

f (x) =β f1(x)+ (1−β) f2(x), (1)

where β = θ
1+θ , f1(x) =

θ
2 e−θ|x|, the pdf of a Laplace random variable with mean zero

and variance 2θ2 and f2(x) =
θ2

2 |x|e
−θ|x|, the pdf of a two sided gamma random variable

with shape parameter 2 and scale parameter θ.
Clearly using (1) the pdf of a DLD random variable X with scale parameter θ, now takes
the form

f (x) =
θ2

2(θ+ 1)
(1+ |x|)e−θ|x| ,−∞< x <∞,θ > 0 (2)

and its characteristic function is given by

φX (t ) =
θ2

(1+θ)(θ2+ t 2)

�

θ+
θ2− t 2

θ2+ t 2

�

. (3)

Mean and variance of DLD(θ) are,

E(X ) = 0 and Var(X)= 2(θ+3)
θ2(1+θ) .

From the application point of view, Mazucheli and Achcar (2011) discussed Lindley
distribution, as a competing risk lifetime model. The autoregressive model with Lindley
distribution as marginal was introduced by Bakouch and Popovic (2016). But, further
studies haven’t been seen in the literature about the application of this distribution and
its generalizations in the context of time series data analysis. So in this paper, we study
the application of the double Lindley distribution in the analysis and forecasting of time
series data.
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The rest of the paper is organised as follows. In Section 2, we construct a first or-
der autoregressive process with double Lindley distribution as marginal and study the
probability distribution of the innovation process. In Section 3, we discuss the proper-
ties of the double Lindley autoregressive process. The parameters are estimated using
the Gaussian method in Section 4. Estimation procedures are illustrated using simulated
data in Section 5. In Section 6, the application of the model is discussed using the share
price data of Bharath Petroleum Corporation Ltd., and the conclusion is given in the
last Section.

2. FIRST ORDER AUTOREGRESSIVE MODEL WITH DOUBLE LINDLEY AS MARGINAL
(DLDAR(1))

Consider a first order autoregressive process of the form,

Xn = aXn−1+ εn , (4)

where |a| < 1 and {Xn , n ≥ 1} is a stationary process with double Lindley distribution
as marginals and {εn} is a sequence of independent and identically distributed (i.i.d) ran-
dom variables, εn is independent of Xi , (i < n). The practical applications and further
studies of this process depend upon the distribution of the innovation sequence {εn}.
One of the common procedures to identify the innovation sequence is using the charac-
teristic function.
Let φεn

(t ) be the characteristic function of {εn , n ≥ 1} and φXn
(t ) be that of the {Xn}.

Then, since {Xn} is a stationary sequence, we get φεn
(t ) as follows,

φεn
(t ) =

φXn
(t )

φXn
(at )

. (5)

Since Xn is following the double Lindley distribution, its characteristic function is given
by

φXn
(t ) =

θ2

(1+θ)(θ2+ t 2)
[θ+

θ2− t 2

θ2+ t 2
]. (6)

Substituting this in equation (5), we obtain,

φεn
(t ) =

θ2

(1+θ)(θ2+t 2)

�

θ+ θ
2−t 2

θ2+t 2

�

θ2

(1+θ)(θ2+a2 t 2)

�

θ+ θ
2−a2 t 2

θ2+a2 t 2

� . (7)

From the above characteristic function of the innovation sequence, the distribution of
the same is to be identified. But, because of its intricate structure, the usual inversion
formula is not suitable in this case. So we have used the partial fraction decomposition
method and considered two cases of the values of θ, θ= 1 and θ ̸= 1.
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The case of θ = 1 which yields a moderately simple structure for the innovation is
particularly considered. When θ= 1 the above characteristic function takes the form

φεn
(t ) =

(1+ a2 t 2)[1+ 1−t 2

1+t 2 ]

(1+ t 2)[1+ 1−a2 t 2

1+a2 t 2 ]
(8)

=
(1+ a2 t 2)2

(1+ t 2)2
. (9)

Using the partial fraction decomposition method it can be written as,

(1+ a2 t 2)2

(1+ t 2)2
=
�

A
(1+ t 2)2

+
B

1+ t 2
+C
�

, (10)

where A= (1− a2)2, B = 2a2(1− a2) and C = a4.

Hence,

φεn
(t ) = a2+(1− a2)

�

(1− a2)
(1+ t 2)2

+
2a2

1+ t 2
− a2
�

. (11)

Then the random variable εn can be written as

εn =







0, with probability a4;
L1n , with probability 2a2(1− a2);
L2n + L3n , with probability (1− a2)2,

(12)

where Li n , i = 1, 2, 3 are independent standard Laplace distributed random variables.

Using this, we can represent the random variable Xn as,

Xn =







aXn−1, with probability a4;
aXn−1+ L1n , with probability 2a2(1− a2);
aXn−1+ L2n + L3n , with probability (1− a2)2.

(13)

The sample path of the process (4) having DLD(θ) as marginal with θ = 1 and for
different values of a are plotted in Figure 1.

Next, we consider the case where θ ̸= 1. Here, we recall the characteristic function
(7) of εn , and express it in the form,

φεn
(t ) = a2+(1− a2)

�

A
θ4

(θ2+ t 2)2
+B

θ2

θ2+ t 2
−C

θ2(1+θ)
θ2(θ+ 1)+ (θ− 1)a2 t 2

�

. (14)
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Figure 1 – Sample path of DLDAR(1) process for different values of a and θ= 1.

Similarly, as in the above discussed case, we can derive the values of A, B and C as,

A=
2(1− 2a2θ− a4+θ+ a4θ)
(a2θ−θ− a2− 1)2

, (15)

B =
(a4θ2− 4a4θ+ 3a4− 2a2θ2+ 4a2θ+ 6a2+θ2− 1)

(a2θ−θ− a2− 1)2
, (16)

C =
4a2

(a2θ−θ− a2− 1)2
. (17)

Therefore, we can represent the variable Xn as a generalized mixture of standard Laplace
distributed random variables, which is given by,

Xn = aXn−1+
§

0, with probability a2;
L′, with probability (1− a2); (18)

where L′ is the generalised mixture of Laplace random variables with characteristic func-
tion of the form,

φL′(t ) = [AφL′1n+L′2n
(t )+BφL′3n

(t )−CφL′4n
(t )]. (19)
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Figure 2 – Sample path of DLDAR(1) process for different values of a and θ

Here L′i n , i = 1, 2, 3, 4 are independent Laplace distributed random variables with the
characteristic functions,

φL′1n+L′2n
(t ) =

θ4

(θ2+ t 2)2
, φL′3n

(t ) =
θ2

θ2+ t 2
, and φL′4n

(t ) =
θ2(1+θ)

θ2(θ+ 1)+ (θ− 1)a2 t 2
.

Note that, when θ=1 (18) has the form (13).
Now we define the DLDAR(1) model as follows.

DEFINITION 1. A Markovian sequence {Xn},

Xn = aXn−1+ εn , (20)

where |a|< 1 is said to be a first order double Lindley autoregressive process, if the sequence
{Xn} has a DLD(θ) distribution as marginal and {εn} has a mixture distribution with char-
acteristic function (14).

In the next section, we study the analytical properties of the DLDAR(1) process.
The sample path behaviour of the process for different values of a and θ are depicted in
Figure 2.
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3. ANALYTICAL PROPERTIES OF THE DLDAR(1) PROCESS

The conditional statistical measures of DLDAR(1) process are derived by following the
same steps as in Bakouch and Popovic (2016). From the equation (4) and because of the
weak stationarity of the sequence, we can directly write that,

E(εn) = (1− a)E(Xn) = 0.

The one step ahead conditional mean can be written as,

E(Xn |Xn−1 = xn−1) = axn−1+ E(εn). (21)

Therefore, the expression for (k+1) step ahead conditional mean is given by,

E(Xn+k |Xn−1 = xn−1) = ak+1xn−1. (22)

When k→∞,

E(Xn+k |Xn−1 = xn−1)→ 0, (23)

which is the unconditional mean of the process.
Unconditional variance of the model can be identified by letting k→∞ in the expres-
sion,

Var(Xn+k |Xn−1 = xn−1) = (1− a2(k+1))
2(θ+ 3)
θ2(1+θ)

. (24)

When k→∞ we get,

Var(Xn+k |Xn−1 = xn−1)→
2(θ+ 3)
θ2(1+θ)

, (25)

which is equal to the unconditional variance of the process.
The general expression for the conditional characteristic function of the process is given
by,

φXn+k |Xn−1
(t ) = e i t ak+1 xn−1φε

�

1− ak+1

1− a
t
�

. (26)

Therefore in the case of DLDAR(1) process, the above expression becomes

e i t ak+1 xn−1

�

θ2(1− a2)+ a2(1− a(k+1))2 t 2

(1− a2)θ2+(1− a(k+1))2 t 2

�2

× (27)

�

θ2(1+θ)(1− a)2+(θ− 1)(1− a(k+1))2 t 2

θ2(1− a)2(1+θ)+ (θ− 1)a2(1− a(k+1))2 t 2

�

.
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The joint characteristic function of (Xn−1,Xn) is given by,

φXn−1,Xn
(t1, t2) =φXn−1

(t1+ at2)[φεn
(t2)] (28)

=
θ2

(1+θ)(θ2+(t1+ at2)2)

�

θ+
θ2− (t1+ at2)

2

θ2+(t1+ at2)2

�

×
�

�

θ2+ a2(t2)
2

θ2+(t2)2

�2 � θ2(1+θ)+ (θ− 1)(t2)
2

θ2(1+θ)+ (θ− 1)a2(t2)2

�

�

. (29)

Hence it follows that φXn−1,Xn
(0,0) = 1.

Also we get the autocovariance function of lag k,

γ (k) = ak 2(θ+ 3)
θ2(1+θ)

, (30)

and the autocorrelation function,

ρ(k) =
γ (k)
γ (0)

= ak . (31)

In the next section we discuss the estimation of the unknown parameters of the process.

4. ESTIMATION OF THE PARAMETERS

Since the mean function E(Xt ) = 0, the conditional least square method of estimation
cannot be employed in the DLDAR(1) model. The maximum likelihood method also
does not yield an explicit solution as the log-likelihood function has a cumbersome form.
So we use another method, called the Gaussian estimation method used by Bakouch
and Popovic (2016), since our model DLDAR(1) is a generalized version of the Lindley
autoregressive model discussed by them.

4.1. Gaussian estimation method

Whittle (1961) introduced this method where the author used normal likelihood as the
basis function for the estimation and then for the analysis of correlated binomial data,
it was used by Crowder (1985). Although this method is an approximation, it suits our
model producing good and accurate estimates of the parameters. To apply this method
of estimation, we need conditional expectation and variance. The conditional maximum
likelihood function is given by

L(a,θ) = f (x1)
n
∏

t=2

f (xt |xt−1). (32)
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Here f (xt |xt−1) and f (x1) respectively are the conditional and marginal probability
functions of {xt }. We assume normal distribution for both f (x1) and f (xt |xt−1). Then
the log-likelihood function can be written as

l o g (L(a,θ)) = nl o g (
1
p

2π
)− 1

2

n
∑

t=2

�

l o gσ2
xt−1
+
(xt −mxt−1

)2

σ2
xt−1

�

, (33)

where mxt−1
= E(Xt |Xt−1) = axt−1 and σ2

xt−1
=V a r (Xt |Xt−1) = (1− a2) 2(θ+3)

θ2(1+θ) . So, the
Gaussian log-likelihood function corresponding to DLDAR(1) process becomes,

l o g (L(a,θ)) =nl o g
�

1
p

2π

�

− 1
2

n
∑

t=2

�

l o g
�

(1− a2)
2(θ+ 3)
θ2(1+θ)

�

(34)

+
�

θ2(1+θ)
2(1− a2)(θ+ 3)

�

(xt − axt−1)
2
�

.

Clearly, here the likelihood has only a global optimum. The common method for ob-
taining the estimates involves, finding the partial derivatives of (34), with respect to a
and θ, equating to zero and solving the resulting two equations. But direct solutions for
the parameters a and θ are not possible. Therefore we have used a numerical method
for calculating the estimates of the parameters. We use the R function nlminb() for this
purpose by applying the Nelder-Mead method. For checking the performance of the
model estimation, we use simulation techniques and mean squared error is used for the
comparison of the accuracy of the procedure.

The asymptotic distribution and properties of the Gaussian estimators are stated
next. This may be proved using the multidimensional Taylor series expansion around
the point (â, θ̂) and assuming the regularity conditions for the partial derivatives with
respect to the true values of the parameters. So we write the asymptotic distribution and
properties of these estimates without proof for conciseness. The asymptotic distribution

of
p

(n)
�

(â, θ̂)− (a,θ)
�

is bivariate normal with mean vector (0,0)′ and covariance ma-

trix (I (a,θ))−1 where,

I (a,θ) =−E

�

∂ 2

∂ a2 L(a,θ) ∂ 2

∂ a∂ θL(a,θ)
∂ 2

∂ θ∂ a L(a,θ) ∂ 2

∂ θ2 L(a,θ)

�

and the maximum likelihood estimator (â, θ̂) is consistent.

5. SIMULATION STUDY

The efficacy of the estimation method is verified in this section using simulation tech-
niques. We simulated 100 samples of sizes 100, 500, 1000, 5000 and 10000 for different
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values of the parameters a and θ. The particular values considered for this purpose are
(1) a=0.3 and θ=1.5 (2) a=0.5 and θ=2.5 (3) a=0.7 and θ=3.5. The plots of the sample
path, autocorrelation function (ACF), and partial autocorrelation function (PACF) in
one situation where a=0.3 and θ=1.5 is given in Figure 3. The estimates of the param-
eters and the corresponding mean square error (MSE) values are found. The results are
presented in Table 1. It is evident that the Gaussian estimators are approaching the true
parameter values when the sample size increases.

TABLE 1
Estimated values of a, θ and corresponding mean square error (MSE).

a = 0.3, θ= 1.5

Sample size ba bθ MSE(ba) MSE(bθ )

100 0.28 1.58 0.09 0.15
500 0.30 1.53 0.04 0.07
1000 0.30 1.53 0.03 0.05
5000 0.30 1.52 0.01 0.02
10000 0.30 1.52 0.01 0.02

a = 0.5, θ= 2.5

100 0.48 2.64 0.08 0.28
500 0.49 2.60 0.04 0.13
1000 0.50 2.57 0.03 0.09
5000 0.50 2.56 0.01 0.04
10000 0.50 2.51 0.01 0.03

a = 0.7, θ= 3.5

100 0.68 3.94 0.07 0.68
500 0.70 3.71 0.03 0.28
1000 0.69 3.69 0.02 0.20
5000 0.70 3.65 0.00 0.10
10000 0.70 3.64 0.01 0.06

In the next Section, we illustrate the application of the DLDAR(1) process with a
real data set.

6. DATA ANALYSIS

The significance and usability of the proposed model are established by applying it in a
practical situation. We have considered the percentage difference of Bharath petroleum
Corporation Ltd. (BPCL) share price index data (https:// www. moneycontrol.com)
for the period from 23-10-2017 to 19-10-2018. The Kolmogorov-Smirnov test and the
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Figure 3 – Simulated time series, ACF, PACF plots corresponding to a = 0.3, θ= 1.5.
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Figure 4 – Fitted Double Lindley distribution for the BPCL data.

corresponding p-value (0.10) validate that DLD(θ) distribution is suitable for fitting the
differenced data. Hence we modeled the differenced data using DLDAR(1) (see Figure
4). From the plots of time series, ACF and PACF presented in Figure 5, it is visible
that the ACF decays exponentially and PACF is significant at lag 1. Hence we use AR(1)
model for this differenced data. The Gaussian estimation method is performed and the
values of the parameters are obtained as â = 0.77 and θ̂ = 0.18. Akaike information
criteria (AIC), Bayesian information criteria (BIC), root mean square error (RMSE) and
mean absolute percentage error (MAPE) values are used for the comparison with other
models. Comparison of DLDAR(1) with Gaussian AR(1) model is done and the values
used for comparison are presented in Table 2. Although the values in Table 2 convey
that DLDAR(1) model is equally competitive with the Gaussian AR(1) model, all these
selection criteria values are slightly lesser in the DLDAR(1) model than the Gaussian
model. Hence we choose DLDAR(1) as a better model. Residual analysis has been con-
ducted and prediction of future values has also been done. The ACF and PACF of the
residuals are within the limits (see Figure 6) and hence they are random. The predicted
values are given in Figure 7.
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Figure 5 – ACF, PACF plots of the percentage difference of BPCL share price index data.

TABLE 2
AIC, BIC, RMSE and MAPE values of both DLDAR(1) and Gaussian AR(1) models.

Model a θ µ σ AIC BIC RMSE MAPE

DLDAR(1) 0.77 0.18 - - 1173.32 1178.01 3.16 2.49

Gaussian AR 0.18 - -0.24 2.6 1173.89 1178.99 3.29 4.10
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Figure 6 – Plots of residuals series and its ACF and PACF.
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Figure 7 – Plot of the predicted values of BPCL data.

7. CONCLUSION

This paper has mainly focused on the analysis of time series data having non-Gaussian
behavior. In particular, first order autoregressive process with double Lindley marginals
is constructed, and a short account of its important properties is given. The key part of
any modeling procedure is to establish the accuracy of the model and then the prediction
of the future values using the model. These are done with respect to real data, which
emphasizes the importance of double Lindley distribution in time series analysis.
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SUMMARY

An autoregressive process of order one with double Lindley distribution as marginal is introduced.
A mixture distribution is obtained for the innovation process. Analytical properties of the pro-
cess are discussed. The parameters of the process are estimated and simulation studies are done.
Practical application of the process is discussed with the help of a real data set.

Keywords: Double Lindley distribution; Autoregressive process; Non-normal time series models;
Stationarity.
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