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1. INTRODUCTION

In the statistical literature, a vast proportion is acquired by the lifetime distributions
and their applications in real-world phenomena. This theory has paramount impor-
tance and hence many new statistical models along with their better adequacy in terms
of their goodness of fit are discussed in the literature. However, many real-world prob-
lems still exist in which the classical model don’t fit the real data adequately. In order
to achieve more flexibility in terms of hazard function to study needful properties of
the model and for better fitness, many extension have been proposed by researcher by
adding a shape parameter in the baseline distribution. In the class of these extended
models, Eugene et al. (2002) introduced a class of distributions generated from the logit
of the beta random variable. Zografos and Balakrishnan (2009) defined a family of uni-
variate distributions generated by Stacy’s generalized gamma variables. Alexander et al.
(2012) introduced generalized beta-generated (GBG) distributions. Amini et al. (2014)
introduced two new general families of continuous distributions, generated by a distri-
bution F and two positive real parameters α and β which control the skewness and tail
weight of the distribution. Tahir et al. (2016) introduced a new generator based on the
Weibull random variable called the new Weibull-G family. Recently, EL-Morshedy et al.
(2021) presented a new class of the type I half logistic odd Weibull-G by combining the
type I half logistic and odd Weibull families.

The Weibull family is inappropriate when the hazard rate function indicates to be
non-monotone particularly bathtub–shaped. As the models with bathtub-shaped fail-
ure rates have great practical value, particularly in reliability analysis, this motivates
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researchers to work on the derived models of Weibull distribution which exhibit the
tendency of U shaped failure rate functions. Among which the modified Weibull (MW)
of Lai et al. (2003) has received great attention from many researchers and reliability
practitioners. The study in Soliman et al. (2012) dealt with the Bayesian estimation us-
ing MCMC approach based on progressive censoring data from MW model. Singh and
Goel (2018) explored the inferential properties of the MW distribution with Type-II hy-
brid censoring data. Singh and Goel (2019) did MCMC estimation of the parameters of
load-share system model assuming failure time distribution of each component as the
MW distribution.

The MW distribution was derived from the cumulative hazard rate function which
is a product of Weibull cumulative hazard βxν and exponentiated function eλx . The
probability density function (PDF) of the MW distribution is given by

f (x) =βxν−1(ν +λx)eλx e−βxν eλx
; x > 0, (ν,β)> 0,λ≥ 0, (1)

whereβ and ν are the scale and shape parameters respectively while λ is an acceleration
parameter.

Though, the MW distribution is frequently used for modeling purposes in survival
analysis, we found the real life situations where this distribution didn’t provide the com-
fortable fit (Carrasco et al., 2008; Almalki and Yuan, 2013). In view of this, we introduce
the extended form of the MW distribution by incorporating an additional shape parame-
ter θ > 0. We multiply the Weibull cumulative hazard rate functionβxν by eλxθ instead
of eλx and obtain the corresponding PDF of this extended modified Weibull (EMW)
distribution as

f (x) =βxν−1(ν +λθ xθ)eλxθ e−βxν eλxθ

; x > 0. (2)

The survival and hazard rate functions are given in Equations (3) and (4), respectively,

S(x) = 1− F (x) = e−βxν eλxθ

, (3)

h(x) =βxν−1(ν +λθxθ)eλxθ . (4)

The purpose of introducing an additional shape parameter θ in EMW distribution
is to make its density and hazard rate functions more flexible and hence enrich its mod-
eling ability. The significance of this new shape parameter has been proven in the real
data analysis. Another important characteristic of the proposed distribution is that it
contains various sub-models such as Weibull, modified Weibull by Lai et al. (2003), ex-
treme value by Bain (1974) and Chen (2000), Rayleigh and exponential distributions as
the special cases. The EMW distribution is not only useful for modeling bathtub-shaped
lifetime data, but is also suitable for testing the goodness-of-fit of sub-model of the MW
distribution.

The rest of the paper is organized as follows. In Section 2, some statistical prop-
erties of EMW distribution including shapes of the density and hazard rate functions,
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sub-models, moments and distribution of order statistic are presented. Section 3 is de-
voted to the derivation of maximum likelihood estimates (MLEs) and confidence inter-
vals of the model parameters. In Section 4.1, we derive Bayes estimators of the param-
eters using Tierney and Kadane (1986) approximation method. Further in Section 4.2,
we also obtain Bayes estimators and highest posterior density (HPD) intervals of the
parameters using Markov chain Monte Carlo (MCMC) techniques such as the Gibbs
and Metropolis-Hastings (M-H) algorithm (Metropolis and Ulam, 1949; Hastings, 1970).
In Section 5, we illustrate the real-life applications of the proposed EMW distribution
to two real datasets. In Section 6, we have carried out a simulation study to highlight
the theoretical developments and to compare the performance of various estimators ob-
tained. Finally, some concluding remarks are addressed in Section 7.

2. PROPERTIES OF THE EMW DISTRIBUTION

2.1. Shape of the density function

The possible shapes of the density function of EMW distribution for some selected val-
ues of the parameters β, ν, λ and θ are depicted in Figure 1. The PDF of the EMW
distribution is quite flexible as it may have different monotonic and non-monotonic
shapes, for examples decreasing, increasing-decreasing and decreasing then increasing-
decreasing shapes.

2.2. Shape of the hazard rate function

The shape of the hazard function of the EMW distribution depends on the shape pa-
rameters ν and θ as follows:
Case 1: For θ= 1 and ν ≥ 1, Equation (4), shows that

• h(x) = 0 for ν > 1 and h(0) =β if ν = 1.

• h
′(x) > 0 for x > 0, hence h(x) is monotonically increasing in x, implying a

monotone increasing hazard rate function.

Case 2: For θ= 1 and 0< ν < 1, we have

• h(x)→∞ as x→ 0 and h(x)→∞ as x→∞.

• h(x) initially decreases and then increases, implies a bathtub shape.

Case 3: For λ=0,

• h(x) is an increasing function of x if ν > 1, it is a decreasing function when ν < 1,
and for ν = 1, h(x) =β i.e. constant.

Case 4: For ν = 0 and 0<θ < 1, one gets,

• h(x)→∞ as x→ 0 and h(x)→∞ as x→∞.
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• h(x) initially decreases and then increases, implies a bathtub shape.

Case 5: For ν = 0 and θ≥ 0, we have,

• h
′(x)> 0 for x > 0, hence h(x) is an increasing function of x, implying an increas-

ing hazard rate function.

Thus, in general, the shape of the hazard rate function of EMW distribution can be
described as increasing, decreasing, constant and bathtub-shaped depending on different
choices of the parametersβ, ν , λ and θ as shown in Figure 2(a) and 2(b). The interesting
point here is that the bathtub-shape of h(x) can be attained either by setting [0 < ν <
1, (θ,λ,β)> 0] or by setting [0<θ < 1, ν = 0, (λ,β)> 0].

Although, for two combination of parameters of EMW distribution, we can attain
a bathtub-shaped hazard rate, but a continuous distribution becomes more applicable
if it’s hazard rate function has long useful period. This period plays a important role
in various engineering and other related fields. For example, in setting warranty poli-
cies of different manufactured products, to decide when to retire a mechanical or other
equipment, in preventive maintenance etc,. Thus, here, we have also derived the useful
period for the hazard rate function of EMW distribution for some specific values of its
parameters.

In Figure 3, we have portrayed the bathtub-shaped hazard rate function of EMW
(0.097, 0.785, 0.012, 1.22) distribution to show the long useful period. From this fig-
ure, we can easily notice that initially failure rate decreases steeply, after that its curva-
ture starts changing, and becomes approximately constant; and later the curvature starts
changing again, and the failure rate function ultimately starts increasing. From these ob-
servations, we can define the useful period as an interval between the two points where
the curvature change most rapidly. Thus, following Bebbington et al. (2006), we have
observed that the curvature achieves its two local maxima of 13.1711 at t=0.0283 and
0.0002 at t =14.1597. Therefore, the conservative useful period (shown by the solid
blue lines in Figure 3) is of length 14.1296. On the contrary, the derivative of the curva-
ture achieves its left most local maxima of 730.0811 at t=0.0094, and its right most local
minima of -7.26e-06 at t = 18.8913. So, the useful period (depicted by red dotted lines
in Figure 3) is of length 18.8819, which clearly shows that the conservative useful period
is the subset of useful period. Additionally, we can say that the hazard rate function of
EMW distribution has comfortable bathtub shape as it’s conservative useful period is
non-empty.

2.3. Sub-models

For the particular values of the different parameters, the PDF in Equation (2), represents
a family of distributions as it covers the following lifetime distributions as special cases:

1. h(x) =βxν−1(ν +λx)eλx ; θ= 1, we have the modified Weibull distribution.

2. h(x) =βθxθ−1e xθ ; ν = 0,λ= 1, we get the Chen distribution.
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3. h(x) =βλeλx ; ν = 0,θ= 1, it reduces to extreme value distribution.

4. h(x) = νβxν−1;λ= 0, it turns out to be Weibull distribution.

5. h(x) = 2βx;λ= 0, ν = 2, we get Rayleigh distribution.

6. h(x) =β;λ= 0, ν = 1, we get one parameter exponential distribution.

2.4. Moments

The k th moment of the EMW distribution is

µ
′

k = E[X k] =
∫ ∞

0
xk f (x)d x = k
∫ ∞

0
xk−1S(x)d x

= k
∫ ∞

0
xk−1e−βxν eλxθ

d x . (5)

From Equation (5), the closed form expression for µ
′

k is not available and has to be
evaluated numerically. However, we can show thatµ

′

k is finite. For x ≥ 0, S(x)≤ e−βxν ,
so we have

µ
′

k < k
∫ ∞

0
xk−1e−βxν =

k
βk/ν

∫ ∞

0
x (k/ν)−1e−x d x

=
k
βk/ν

Γ (k/ν).

Thus, µ
′

k is a finite non-negative value. Denoting µ= E(X ) =µ′1 as the mean, we have
the k th central moment as

µk = E(X −µ)k =
k
∑

i=0

�

k
i

�

(−1)k−iµ
′

k µ
k−i ,

and µk <µ
′

k is also finite.

2.5. Distribution of order statistics

Let X1,X2, ...,Xn be a random sample drawn from EMW(β, ν ,λ,θ) distribution. Since
X1,X2, ...,Xn are independently and identically distributed (iid) continuous random
variables, then P (Xi = X j , i ̸= j = 1,2, .., n)=0, therefore, there exists an unique or-
dered arrangement of the sample observations according to magnitude. Let X(1:n) <
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X(2:n) < ...<X(n:n) be the order statistics then, the PDF of X(r :n), 1≤ r ≤ n, denoted by
fr :n(x) is given by

fr :n(x) =
1

B(r, n− r + 1)
(1− S(x))r−1S(x)n−r f (x), (6)

where, f (x) and S(x) are the PDF and the survival function of EMW distribution given
by Equations (2) and (3), respectively. The PDF fr :n(x) can also be written as

fr :n(x) =
1

B(r, n− r + 1)

r−1
∑

m=0

�

r − 1
m

�

(−1)m S(x)n−r+m f (x), x > 0. (7)

So the i th raw moment of Xr :n is given by

E(X i
r :n) =

1
B(r, n− r + 1)

r−1
∑

m=0

�

r − 1
m

�

(−1)m E[Z i S(Z)n−r+m], (8)

where, Z ∼ EMW distribution with PDF given in Equation (2).

3. MAXIMUM LIKELIHOOD ESTIMATION

Among the estimation methods available in the classical statistical inference, the usu-
ally preferred method is maximum likelihood estimation due to its better asymptotic
properties. Let X = (X1,X2, ...,Xn) be a random sample from EMW distribution with
PDF in Equation (2) and γ = (β, ν ,λ,θ) be a parameter vector, then the corresponding
likelihood function is given by

L= L(x |β, ν ,λ,θ) =βn
n
∏

i=1

[xν−1
i (ν +λθxθi )]e

n
∑

i=1
λxθi e
−

n
∑

i=1
βxνi eλxθi

. (9)

The log likelihood function is

l = l (x|β, ν ,λ,θ) = n logβ+(ν − 1)
n
∑

i=1

log xi+
n
∑

i=1

log(ν +λθxθi )

+
n
∑

i=1

λxθi −
n
∑

i=1

βxνi eλxθi . (10)

The MLEs of the parameters β, ν, λ and θ can be obtained by differentiating Equa-
tion (10) with respect to β, ν , λ and θ and equating the first-order partial derivatives to
zero. Thus, we have

∂ l
∂ β
=

n
β
−

n
∑

i=1

xνi eλxθi = 0, (11)
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∂ l
∂ υ
=

n
∑

i=1

log xi +
n
∑

i=1

1
(υ+λθxθi )

−β
n
∑

i=1

xυi log xi eλxθi = 0, (12)

∂ l
∂ λ
=

n
∑

i=1

θxθi
(ν +λθxθi )

+
n
∑

i=1

xθi −β
n
∑

i=1

xν+θi eλxθi = 0, (13)

∂ l
∂ θ
=

n
∑

i=1

λ(xθi +θxθi log xi )

(ν +λθxθi )
+λ

n
∑

i=1

xθi log xi −λβ
n
∑

i=1

xν+θi exp(λxθi ) log xi = 0. (14)

From Equation (11), we get β= n
� n
∑

i=1
xνi eλxθi

�−1
. Now, after putting the expression of

β in Equations (12), (13) and (14), one can solve these non-linear equations by any suit-
able iterative method to get MLEs for ν , λ and θ. Once we obtain the MLEs (ν̂ , λ̂, θ̂) of

(ν ,λ,θ), the MLE ofβ can be obtained as β̂= n
� n
∑

i=1
x ν̂i e λ̂x θ̂i

�−1
. Alternatively, the maxi-

mization of Equation (9) can also be done directly by using well-established routines like
maxLik() or mle() available in the statistical package R. Further, under certain regularity
conditions, the estimator γ̂ = (β̂, ν̂, λ̂, θ̂) will follow multivariate normal distribution
with mean vector γ and variance-covariance matrix cov(γ̂ ) = J (γ̂ )−1, where J (γ̂ ) is 4×4
observed information matrix evaluated at γ̂ . The second order partial derivatives of
log-likelihood function are given as follows

∂ 2 l
∂ β2

=− n
β2

,
∂ 2 l
∂ β∂ ν

=−
n
∑

i=1

xν log xi .e
λxθi ,

∂ 2 l
∂ β∂ λ

=−
n
∑

i=1

x (ν+θ)i eλxθi ,

∂ 2 l
∂ β∂ θ

=−λ
n
∑

i=1

x (ν+θ)i eλxθi log xi ,
∂ 2 l
∂ ν2
=−

n
∑

i=1

1
(ν +λθxθi )

2
−β

n
∑

i=1

xνi (log xi )
2eλxθi ,

∂ 2 l
∂ ν∂ λ

=−
n
∑

i=1

θxθi
(ν +λθxθi )

2
−β

n
∑

i=1

x (ν+θ)i log xi .e
λxθi ,

∂ 2 l
∂ ν∂ θ

=−
n
∑

i=1

λxθi (1+θ log xi )

(ν +λθxθi )
2
−βλ

n
∑

i=1

x (ν+θ)i ( log xi )
2eλxθi ,

∂ 2 l
∂ λ2

=−
n
∑

i=1

θ2x2θ
i

(ν +λθxθi )
2
−β

n
∑

i=1

x (ν+2θ)
i eλxθi ,

∂ 2 l
∂ λ∂ θ

=−
n
∑

i=1

νxθi (θ log xi + 1)

(ν +λθxθi )
2
−β

n
∑

i=1

x (ν+θ)i log xi eλxθi (1+λxθi ),
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∂ 2 l
∂ θ2

=
n
∑

i=1

λxθi log xi (2+θ log xi )(ν +λθxθi )−λ
2x2θ

i (1+θ log xi )
2

(ν +λθxθi )
2

+λ
n
∑

i=1

xθi (log xi )
2−λβ

n
∑

i=1

x (ν+θ)i (log xi )
2e x p(λxθi ) (1+λxθi ).

An asymptotic confidence interval (ACI) with confidence coefficient 1-α for the param-

eters γ j ; j=1, 2, 3, 4, is obtained by γ̂± zα/2.
Ç

Ĵ j j , where Ĵ j j denotes the ( j , j )th diagonal

elements of J (γ̂ )−1 and zα/2 is the upper 100×(α/2)th percentile of the standard nor-
mal distribution. The asymptotic normality is also useful for testing goodness-of-fit of
the proposed distribution and for comparing this distribution with some of special sub-
models using the well-known asymptotically equivalent test statistics such as likelihood
ratio (L-R) statistic.

4. BAYESIAN ESTIMATION

In this section, we derive Bayes estimators of the parameters of proposed EMW distribu-
tion under the squared error loss function (SELF). We assume the following independent
Gamma priors for the model parameters β,ν, λ and θ.

ω1(β)∝β
η1−1e−a1β; β> 0, (a1,η1)> 0, (15)

ω2(ν)∝ ν
η2−1e−a2ν ; ν > 0, (a2,η2)> 0, (16)

ω3(λ)∝ λ
η3−1e−a3λ; λ > 0, (a3,η3)> 0, (17)

ω4(θ)∝ θ
η4−1e−a4θ; θ > 0, (a4,η4)> 0. (18)

The joint posterior distribution of β, ν , λ and θ given the data can be obtained by
multiplying the likelihood in Equation (9) with the priors given in Equations (15)-(18),
and is expressed as:

π(β, ν ,λ,θ|x) =
h(β, ν,λ,θ|x)

∫ ∫ ∫ ∫

h(β, ν,λ,θ|x)dβd νdλdθ
, (19)

where h(β, ν,λ,θ|x) = L(x|β, ν ,λ,θ)ω1(β)ω2(ν)ω3(λ)ω4(θ).
Thus, Bayes estimator of any function of parameters, say, W (β, ν ,λ,θ) under SELF is
given by

W̄BS (β, ν ,λ,θ) =
∫ ∫ ∫ ∫

W (β, ν,λ,θ)π (β, ν ,λ,θ|x)dβd νdλdθ. (20)

From Equation (20), it is clear that Bayes estimator for the parameters β, ν, λ and θ
cannot be obtained analytically. So we obtain the approximate Bayes estimators using
the Tierney and Kadane (1986) method and posterior sample estimators using the Gibbs
sampler proposed by Geman and Geman (1984).
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4.1. Bayes estimators using Tierney and Kadane’s approximation method

Tierney and Kadane (1986) proposed approximation method to evaluate the approxi-
mated value of the ratio of multidimensional integrals given in Equation (20).

E[W (β, ν,λ,θ)|x] =
∫ ∫ ∫ ∫

W (β, ν,λ,θ)π(β, ν,λ,θ)dβd νdλdθ

=

∫ ∫ ∫ ∫

enL∗(β,υ,λ,θ)dβdυdλdθ
∫ ∫ ∫ ∫

enL(β,υ,λ,θ)dβdυdλdθ
, (21)

where L(β, ν,λ,θ) = 1
n (l (x|β, ν ,λ,θ)+ log(ω(β))+ log(ω(ν))+ log(ω(λ))+ log(ω(θ))

and L∗(β, ν,λ,θ) = L(β, ν ,λ,θ)+ 1
n logW (β, ν,λ,θ).

Using Tierney-Kadane (T-K) approximation, the posterior expectation of W (β, ν,λ,θ)
can be estimated by

Ê[W (β, ν,λ,θ)] =
�

|
∑∗|
|
∑

|

�1/2

en[L∗(β̂∗,ν̂∗,λ̂∗,θ̂∗)−L(β̂,ν̂,λ̂,θ̂)], (22)

where (β̂∗, ν̂∗, λ̂∗, θ̂∗) and (β̂, ν̂ , λ̂, θ̂)maximize L∗(β, ν,λ,θ) and L(β, ν ,λ,θ) respectively
and |
∑∗| and |
∑

| denote the determinants of the inverse Hessian of L∗(β, ν ,λ,θ) and
L(β, ν,λ,θ) evaluated at (β̂∗, ν̂∗, λ̂∗, θ̂∗) and (β̂, ν̂ , λ̂, θ̂) respectively. The posterior vari-
ance and 100× (1− α)% confidence interval for W (β, ν ,λ,θ) are V (Ŵ (β, ν ,λ,θ)) =

E[W 2(β, ν ,λ,θ|x)]− [E(W (β, ν ,λ,θ|x))]2 and Ŵ (β, ν ,λ,θ)± zα/2
q

V (Ŵ (β, ν ,λ,θ))
respectively. Using Equation (22), we can deduce approximate Bayes estimators ofβ, ν ,
λ, and θ and under SELF. To compute the Bayes estimator ofβwe take W (β, ν,λ,θ) =
β , then

• β̂T K =
�
�

�

�

∑∗(β̂∗,ν̂∗,λ̂∗,θ̂∗)
�

�

�

�

�

�

∑

(β̂,ν̂ ,λ̂,θ̂)
�

�

�

�1/2

en[L∗(β̂∗,ν̂∗,λ̂∗,θ̂∗)−L(β̂,ν̂ ,λ̂,θ̂)],

• Posterior variance V (β̂) = E(β2|x)− [E(β|x)]2,

• 100× (1−α)% posterior confidence interval (PCI)is β̂± zα/2
q

V (β̂),

where (β̂∗, ν̂∗, λ̂∗, θ̂∗) and (β̂, ν̂, λ̂, θ̂)maximize L∗(β̂∗, ν̂∗, λ̂∗, θ̂∗) and L(β̂, ν̂, λ̂, θ̂) respec-
tively and
∑∗(β̂∗, ν̂∗, λ̂∗, θ̂∗) and

∑

(β̂, ν̂ , λ̂, θ̂) are the inverse Hessian of L∗(β̂∗, ν̂∗, λ̂∗, θ̂∗)
and L(β̂, ν̂ , λ̂, θ̂) evaluated at (β̂∗, ν̂∗, λ̂∗, θ̂∗) and (β̂, ν̂ , λ̂, θ̂), respectively. Here,

L∗(β∗, ν∗,λ∗,θ∗) = L(β, ν ,λ,θ)+
1
n

logβ,
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L(β, ν,λ,θ) =
1
n

�

l (x|β, ν ,λ,θ)+ (η1− 1) logβ− a1β+(η2− 1) log ν − a2ν+
(η3− 1) logλ− a3λ+(η4− 1) logθ− a4θ

�

,

Σ∗(β̂∗, ν̂∗, λ̂∗, θ̂∗) =−













∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ β2

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ β∂ ν

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ β∂ λ

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ β∂ θ

− ∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ ν2

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ ν∂ λ

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ ν∂ θ

− − ∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ λ2

∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ λ∂ θ

− − − ∂ 2L∗(β∗,ν∗,λ∗,θ∗)
∂ θ2













−1

�

β̂∗,ν̂∗,λ̂∗,θ̂∗
�

,

and

Σ
�

β̂, ν̂ , λ̂, θ̂
�

=−















∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ β2

∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ β∂ ν

∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ β∂ λ

∂ 2L(β̂,ν̂,λ̂,θ̂)
∂ β∂ θ

− ∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ ν2

∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ ν∂ λ

∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ ν∂ θ

− − ∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ λ2

∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ λ∂ θ

− − − ∂ 2L(β̂,ν̂ ,λ̂,θ̂)
∂ 2θ2















−1

�

β̂,ν̂ ,λ̂,θ̂
�

.

Similarly, ˆνT K , ˆλT K and ˆθT K can be deduced to obtain Bayes estimator of ν, λ and θ
under SELF with their posterior variance and confidence intervals.

Here, it is to be noted that the HPD credible intervals for the model parameters
(β, ν,λ,θ) are not possible to construct by using T-K procedure. Therefore, MCMC
technique such as the Gibbs sampler is to be utilized to compute Bayes estimators as
well as HPD credible intervals for the parameters.

4.2. Bayes estimators using the Gibbs sampler

In order to obtain Bayes estimators using the Gibbs sampling procedure, we need full
conditional distribution of each of the parameter. These full conditional distributions
can be easily derived by picking those terms from the joint distribution of the parameters
and data in Equation (19), which involve the corresponding parameter, and are given as:

π1(β|x, ν ,λ,θ)∝βn+η1−1 exp

�

−β
�

a1+
n
∑

i=1

xνi exp

�

λ
n
∑

i=1

xθi

���

, (23)

π2(ν |x,β,λ,θ)∝ νη2−1 exp

�

−a2ν −β
n
∑

i=1

xνi exp

�

λ
n
∑

i=1

xθi

��

×
n
∏

i=1

�

xν−1
i

�

ν +λθxθi
��

, (24)
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π3(λ|x,β, ν ,θ)∝ λη3−1

�

exp

�

−λ
�

a3+
n
∑

i=1

xθi

��

−β
n
∑

i=1

xνi exp

�

λ
n
∑

i=1

xθi

��

×
n
∏

i=1

�

ν +λθxθi
�

, (25)

π4(θ|x,β, ν ,λ)∝ θη4−1 exp

�

−θa4+λ
n
∑

i=1

xθi −β
n
∑

i=1

xνi exp

�

λ
n
∑

i=1

xθi

��

×
n
∏

i=1

�

ν +λθxθi
�

. (26)

Now, we proceed as follows:

1. Initialize (ν0,λ0,θ0) as starting values of (ν ,λ,θ).

2. Simulate β from π1(β|x, ν ,λ,θ), a well-known Gamma distribution with shape

parameter n+η1 and scale parameter a1+
n
∑

i=1
xνi exp(λ

n
∑

i=1
xθi )).

3. Simulate ν , λ, and θ from the full conditional densities given in Equations (24),
(25) and (26) respectively, using well known M-H algorithm.

4. Repeat Steps 2-3, M times and record the sequence of γ = (β, ν ,λ,θ) after discard-
ing the burn-in-sampler of size, say, N from the sample so that the effect of the
initial values is nullified. The simulation study carried out in the next section in-
dicates that the proposed sampling algorithm is quite efficient in terms of mixing
and convergence of the generated chains under different starting values.

5. Now, Bayes estimators and posterior variances of β, ν , λ and θ under SELF can
be obtained as the means and variances of the generated value of β, ν , λ and θ.

6. Let γ(N+1),γ(N+2), ...,γ(M ) be the ordered values of γN+1,γN+2, ...,γM . Then, using
the method proposed by Chen and Shao (1999), the (1−α)×100% HPD interval
for γ is (γN+i∗ , γN+i∗+[(1−α)(M−N )]), where i∗ is chosen so that γN+i∗+[(1−α)(M−N )]−
γN+i∗= min

N≤i≤(M−N )−[(1−γ )(M−N )]
(ΘN+i+[(1−γ )(M−N )]−ΘN+i ).

5. GOODNESS OF FIT

Here, we illustrate the applications of EMW to two well-known datasets. Dataset 1 pos-
sesses the increasing hazard rate while dataset 2 exhibits the bathtub-shaped hazard func-
tion. Firstly, we demonstrate the goodness of fit of EMW distribution in comparison to
the MW distribution. For this, we compute the maximum values of the unrestricted and
restricted log-likelihoods to obtain the likelihood ratio (LR) statistic for testing whether
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the fit using the EMW distribution is statistically superior to a fit using the MW distri-
bution for a given dataset. For this we consider the null hypothesis H0 : θ = 1 (MW
distribution) against H1 : θ ̸= 1 (EMW distribution). Under H0, the deviance test statis-
tic Dn = −2(log H0 − log H1) approximately follows χ 2 distribution with k degrees of
freedom. Here, k is the difference in the number of the parameters between the two
models.

Secondly, we compare the fitting of EMW distribution with other considered models
namely, the modified Weibull distribution, the additive Weibull (ADDW), the modified
Weibull extension (MWE), the modified Weibull distribution of Sarhan and Zaindin
(SZMW), the generalized modified Weibull (GMW) and the Chen distribution. The
survival functions of these models are listed in Table 1. The Akaike information cri-
terion (AIC), the Bayesian information criterion (BIC) and the Kolmogorov-Smirnov
(K-S) statistic with the corresponding p-value are used to compare the fit of the consid-
ered distributions.

Dataset 1: This dataset is taken from Cook and Weisberg (2009). It contains 13 vari-
ables on 102 males and 100 females athletes collected at the Australian Institute of sports.
Jamalizadeh et al. (2011) used the heights for the 100 female athletes and hemoglobin con-
centration levels for the 202 athletes to illustrate the application of generalized two-piece
skew-normal distribution. Almheidat et al. (2015) considered the percentage of body fat
for the 202 athletes. Here, we consider the weights of all male and female athletes. The
value of deviance statistic Dn for the variable weights is observed to be 25.46 with p-value
4.52×10−7(< 0.01). Hence, it clearly indicates that the null hypothesis H0 : θ= 1 (MW
distribution) is rejected at 1% level of significance.

Table 2 displays the MLEs with corresponding standard errors (SEs) of the model’s
parameters along with log-likelihood value, AIC, BIC, K–S statistic and corresponding
p-value. Since the values of AIC, BIC and K–S statistic of the EMW model are smallest
among those of the six fitted models, therefore our new model can be chosen as the best
model. The density and survival plots of the considered models fitted to this dataset
is displayed in Figure 4(a) and 4(b). From these plots, it can be seen that the estimated
density and the survival functions of EMW model are closely following the patterns of
the histogram and the empirical survival function of this dataset respectively. The ob-
servation has also been confirmed by plotting the estimated hazard rate function of the
model as shown in Figure 4(c).

Dataset 2: This dataset consists of the time to failure of 50 devices by Aarset (1987).
It is a widely used dataset in survival analysis due to its bathtub-shaped failure rate prop-
erty. The value of the deviance statistic Dn for this dataset comes out to be 15.31 with
p-value 9.13× 10−05(< 0.01). Hence, we reject the null hypothesis H0 : θ = 1 (MW
distribution) even at 1% level of significance.

The MLEs with corresponding SEs of the models’ parameters along with the log-
likelihood value, AIC, BIC and K-S statistic with corresponding p-value are given in
Table 3. Again, EMW model turns out to be the best-fitted model among the considered
distributions as it has the lowest AIC and BIC values. However, ADDW distribution
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has a slightly lower value of K–S statistic. When the interpretation is given in terms
of the log likelihood, we found the maximum value of the log likelihood for the EMW
distribution which reflects that the EMW model fits well the data among the others.

Additionally, the corresponding survival function for the six fitted distributions and
the empirical survival function are plotted in Figure 5(a). It can be seen that the EMW
distribution is a very competitive model. Further, the plots of the estimated densities
and the histogram of this data given in Figure 5(b) reveals that the EMW distribution
produces a better fit than the other five models. Finally, the plot of the estimated haz-
ard rate function superimposed on the non-parametric counterpart given in Figure 5(c)
confirm that EMW distribution is an adequate model for describing the pattern of the
bathtub-shaped hazard rate of this dataset. Since, the present dataset is of bathtub-shaped
hazard rate type, so for EMW distribution, we have also obtained the conservative useful
period as (0.0882, 50.2587) and useful period as (0.0457, 65.2065).

6. SIMULATION STUDY

This section is dedicated to examining the performance of the proposed estimators by
using the Monte Carlo simulation techniques. By assuming the model parameters β=
0.5, ν = 0.5, λ = 1.5 and θ = 2, we simulated the sample of sizes 30, 50 and 100 from
the proposed four-parameter EMW distribution. R software is used to perform all the
required numerical computations. The MLEs along with their standard errors (SEs) and
confidence intervals (CIs) of the parameters are obtained.

In Bayesian estimation, Bayes estimators of the model parameters are appraised by
using SELF. Here we first obtain Bayes estimate (BE) assuming Gamma priors for all the
parameters and then equate hyper parameters to zero (a1 = η1 = a2 = η2 = a3 = η3 =
a4 = η4 = 0) to obtain BEs under non-informative priors. Tierney-Kadane’s approxima-
tion method has also been used to compute BEs. Since it is not possible to compute HPD
intervals in case of T-K method thus we propose the M-H algorithm within the Gibbs
sampler to compute BEs along with posterior standard errors (PSEs) and HPD intervals
as discussed in Section 4.2. Using the Gibbs sampler we generate 100000 realizations of
the Markov chains of β, ν , λ and θ from the respective full conditional posterior distri-
bution. During simulation it was observed that there exist some autocorrelation among
the draws of the parameters, therefore equally spaced (every 10th) generated observations
are stored. These gaps were taken to reduce the autocorrelation as much as possible. All
the statistics related to stationarity of the target distribution is obtained by employing
the functions geweke.diag, heidel.diag and raftery.diag of the coda package in
the R software. The resulting MCMC runs, posterior distributions and autocorrelation
plots of the model parameters are shown in the Figure 6. All the parameter estimates
along with their estimated errors and confidence/HPD intervals are listed in Table 4
and 5. From the computed results, the following trends are observed:

• In comparison to MLEs, BEs perform better in respect of the estimation error.
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• BEs with Gamma priors are better in comparison to BEs with non- informative
in terms of precision.

• The HPD intervals are comparatively shorter in length than asymptotic confi-
dence intervals.

• The standard errors of T-K estimates are less than those of BEs with the Gibbs
sampler.

• The standard errors of MLEs, as well as the posterior errors in Bayes estimation,
tend to decrease in each case as we increase the sample size.

7. CONCLUDING REMARKS

In this study, an extended version of modified Weibull distribution with one additional
shape parameter is introduced in order to provide more flexibility to its density and
the hazard rate functions. This extension is not only convenient for modeling bathtub-
shaped failure rate but it is also suitable to accommodate the decreasing, increasing and
constant behavior of the hazard rate function. The proposed model consists of six sub-
models that are extensively used in the reliability and the survival analysis such as the
modified Weibull, the Chen, extreme value, the Weibull, the Rayleigh, and the expo-
nential distributions. The statistical properties of this model which includes the hazard
rate function, moments, and distribution of the order statistics have been explored. The
maximum likelihood and Bayesian method of estimation are used to compute estimates
of the model parameters. In Bayesian estimation, we assume informative as well as non-
informative priors for the parameters and MCMC techniques have been implemented to
obtain posterior sample-based estimators and HPD intervals of the parameters. Tierney
and Kadane’s approximation procedure has also been used to obtain Bayes estimators of
the parameters. A simulation study is carried out to assess the performances of the var-
ious estimates. Two real datasets analysis is given to illustrate the significance of the
model.
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APPENDIX

A. FIGURES

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

x

D
e

n
s
it
y
 F

u
n

c
ti
o

n

β=2,ν=0.5,λ=0.4,θ=3

β=2,ν=2,λ=0.4,θ=3

β=2,ν=1,λ=0.4,θ=2

β=1,ν=0.5,λ=0.4,θ=2

β=1.5,ν=0.5,λ=1,θ=2

β=0.5,ν=0.5,λ=1,θ=2

β=1.5,ν=0.5,λ=1.5,θ=2

Figure 1 – The plots of density function of the EMW distribution for different choices of the
parameters.
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Figure 2 – The plots of hazard rate function of EMW distribution.
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Figure 3 – The useful periods of EMW distribution hazard rate function with β = 0.097, ν =
0.785,λ= 0.012,θ= 1.22.
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Figure 4 – Model fitting plots for dataset-1.
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Figure 5 – Model fitting plots for dataset-2.
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Figure 6 – MCMC diagnostic plots of the parameters.
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B. TABLES

TABLE 1
Survival functions of considered models.

Model Parameters S(x) Reference

MW (β, ν ,λ)> 0 e−βxν eλx
Lai et al. (2003)

ADDW (α,θ,β, ν)> 0 e−αxθ−βxν Xie and Lai (1996)
SZMW (α,β, ν)> 0 e−αx−βxν Sarhan and Zaindin (2009)

MWE (α,β,λ)> 0 eλα(1−e (x/α)
β
) Xie et al. (2002)

GMW (α,β,λ, ν)> 0 1− (1− e−αxν eλx )β Carrasco et al. (2008)

Chen (θ,β)> 0 eβ(1−e xθ ) Chen (2000)
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TABLE 2
Fitting summary for the athlete’s data (dataset-1).

Model MLE logL AIC BIC K-S p-value
(SE)

EMW β̂= 2.18× 10−12(9.45× 10−13) -825.45 1658.91 1672.14 0.079 0.161
ν̂ = 5.648(0.289)
λ̂= 2.026(0.856)

θ̂= 0.001(2.63× 10−06)

MW β̂= 3.01× 10−05(1.42× 10−04) -838.18 1682.36 1692.29 0.098 0.039
ν̂ = 1.465(1.389)
λ̂= 0.048(0.017)

ADDW α̂= 3.45× 10−04(4.33× 10−05) -979.82 1967.65 1980.88 0.302 2.2× 10−16

θ̂= 1.754(0.033)
β̂= 5.25× 10−06(6.91× 10−06)

ν̂ = 1.661(0.036)

SZMW α̂= 1.58× 10−03(4.63× 10−03) -903.59 1813.19 1836.12 0.358 2.2× 10−16

β̂= 4.71× 10−06(4.19× 10−07)
ν̂ = 2.848(0.013)

MWE α= 0.356(0.264) -832.85 1671.70 1681.63 0.093 0.061
β̂= 0.459(0.052)

λ̂= 1.53× 10−05(3.04× 10−06)

GMW α̂= 6.27× 10−04(3.40× 10−04) -835.26 1678.52 1691.75 0.112 0.012
β̂= 1.334(0.286)
λ̂= 0.053(0.009)
ν̂ = 0.737(0.252)

Chen β= 0.500(0.013) -841.59 1687.19 1693.80 0.145 0.001
θ̂= 1.29× 10−04(7.14× 10−05)
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TABLE 3
Fitting summary for the Aarset data (dataset-2).

Model MLE logL AIC BIC K-S p-value
(SE)

EMW β̂= 0.093(0.035) -219.50 447.01 454.66 0.131 0.351
ν̂ = 0.400(0.089)

λ̂= 1.30× 10−05(2.46× 10−06)
θ̂= 2.617(2.45× 10−04)

MW β̂= 0.060(0.026) -227.16 460.32 466.06 0.134 0.329
ν̂ = 0.367(0.115)
λ̂= 0.023(0.005)

ADDW α̂= 8.45× 10−09(1.50× 10−09) -221.35 450.71 458.36 0.127 0.392
θ̂= 4.279(0.049)
β̂= 0.091(0.038)
ν̂ = 0.466(0.098)

SZMW α̂= 0.013(0.003) -229.41 464.82 470.56 0.151 0.202
β̂= 0.013(0.003)
ν̂ = 4.405(0.143)

MWE α= 13.736(5.088) -231.65 469.29 475.03 0.159 0.158
β̂= 0.588(0.078)
λ̂= 0.009(0.003)

GMW α̂= 5.177× 10−05(1.44× 10−05) -223.12 454.24 461.89 0.139 0.283
β̂= 0.254(0.048)
λ̂= 0.063(0.026)
ν̂ = 1.033(0.230)

Chen β= 0.021(0.009) -233.17 470.33 474.16 0.167 0.123
θ̂= 0.344(0.021)
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TABLE 4
Various estimates along with their estimated errors.

Sample Size (n) 30 50 100

β= 0.5, ν = 0.5,λ= 1.5,θ= 2

MLE(SE) β̂= 0.354(0.199) β̂= 0.486(0.176) β̂= 0.717(0.172)
ν̂ = 0.417(0.182) ν̂ = 0.425(0.121) ν̂ = 0.613(0.108)
λ̂= 1.785(0.574) λ̂= 1.479(0.375) λ̂= 1.176(0.250)
θ̂= 1.917(0.691) θ̂= 2.655(0.766) θ̂= 2.814(0.655)

BE(PSE) with β̂= 0.509(0.060) β̂= 0.463(0.051) β̂= 0.494(0.047)
Gamma Prior ν̂ = 0.518(0.058) ν̂ = 0.517(0.058) ν̂ = 0.505(0.055)

λ̂= 1.532(0.111) λ̂= 0.747(0.072) λ̂= 0.742(0.062)
θ̂= 1.979(0.122) θ̂= 1.987(0.156) θ̂= 2.069(0.145)

BE(PSE) with β̂= 0.597(0.076) β̂= 0.608(0.059) β̂= 0.602(0.057)
Non-informative ν̂ = 0.512(0.066) ν̂ = 0.528(0.064) ν̂ = 0.512(0.058)
Prior λ̂= 0.749(0.159) λ̂= 1.497(0.101) λ̂= 1.497(0.093)

θ̂= 2.296(0.683) θ̂= 2.161(0.373) θ̂= 2.262(0.292)

BE using T-K β̂= 0.421(0.021) β̂= 0.375(0.018) β̂= 0.332(0.011)
method (PSE) ν̂ = 0.391(0.013) ν̂ = 0.430(0.012) ν̂ = 0.402(0.010)
with Gamma λ̂= 1.316(0.057) λ̂= 1.266(0.041) λ̂= 1.188(0.038)
Prior θ̂= 1.967(0.078) θ̂= 1.908(0.059) θ̂= 1.912(0.057)
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TABLE 5
Various confidence intervals with their corresponding widths.

Sample Size (n) 30 50 100

β= 0.5, ν = 0.5,λ= 1.5,θ= 2

(ACI) [Width] β̂ ∈ (0, 0.745)[0.745] β̂ ∈ (0.139, 0.832)[0.692] β̂ ∈ (0.378, 1.055)[0.677]
ν̂ ∈ (0.059, 0.775)[0.716] ν̂ ∈ (0.186, 0.664)[0.477] ν̂ ∈ (0.399, 0.826)[0.426]
λ̂ ∈ (0.660, 2.910)[2.250] λ̂ ∈ (0.742, 2.215)[1.473] λ̂ ∈ (0.684, 1.668)[0.983]
θ̂ ∈ (0.562, 3.271)[2.709] θ̂ ∈ (1.153, 4.157)[3.003] θ̂ ∈ (1.529, 4.098)[2.568]

HPD interval β̂ ∈ (0.390, 0.629)[0.238] β̂ ∈ (0.369, 0.568)[0.199] β̂ ∈ (0.400, 0.586)[0.186]
with Gamma ν̂ ∈ (0.411, 0.647)[0.235] ν̂ ∈ (0.400, 0.632)[0.232] ν̂ ∈ (0.399, 0.611)[0.212]
Prior [Width] λ̂ ∈ (1.318, 1.756)[0.438] λ̂ ∈ (0.631, 0.903)[0.271] λ̂ ∈ (0.637, 0.877)[0.239]

θ̂ ∈ (1.687, 2.187)[0.500] θ̂ ∈ (1.703, 2.289)[0.585] θ̂ ∈ (1.800, 2.395)[0.594]

HPD interval β̂ ∈ (0.446, 0.747)[0.300] β̂ ∈ (0.475, 0.711)[0.236] β̂ ∈ (0.505, 0.760)[0.254]
with Non ν̂ ∈ (0.389, 0.644)[0.254] ν̂ ∈ (0.402, 0.653)[0.251] ν̂ ∈ (0.411, 0.631)[0.219]
informative λ̂ ∈ (0.619, 0.851)[0.231] λ̂ ∈ (1.296, 1.691)[0.395] λ̂ ∈ (1.317, 1.681)[0.364]
Prior [Width] θ̂ ∈ (1.082, 3.647)[2.565] θ̂ ∈ (1.409, 2.868)[1.459] θ̂ ∈ (1.713, 2.818)[1.105]

PCI using T-K β̂ ∈ (0.379, 0.464)[0.085] β̂ ∈ (0.339, 0.411)[0.072] β̂ ∈ (0.310, 0.354)[0.043]
method with ν̂ ∈ (0.364, 0.418)[0.053] ν̂ ∈ (0.406, 0.454)[0.047] ν̂ ∈ (0.392, 0.423)[0.040]
Gamma Prior λ̂ ∈ (1.203, 1.428)[0.224] λ̂ ∈ (1.185, 1.348)[0.163] λ̂ ∈ (1.113, 1.263)[0.149]
[Width] θ̂ ∈ (1.814, 2.121)[0.306] θ̂ ∈ (1.791, 2.025)[0.234] θ̂ ∈ (1.800, 2.024)[0.223]
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SUMMARY

In this study, we introduce an extended version of the modified Weibull distribution with an
additional shape parameter, in order to provide more flexibility to its density and the hazard rate
function. The distribution is capable of modeling the bathtub-shaped, decreasing, increasing and
the constant hazard rate function. The proposed model contains sub-models that are widely used
in lifetime data analysis such as the modified Weibull, Chen, extreme value, Weibull, Rayleigh,
and exponential distributions. We study its statistical properties which include the hazard rate
function, moments and distribution of the order statistics. The parameters involved in the model
are estimated by using maximum likelihood and the Bayesian method of estimation. In Bayesian
estimation, we assume independent Gamma priors for the parameters and MCMC technique such
as the Metropolis-Hastings algorithm within Gibbs sampler has been implemented to obtain the
sample-based estimators and the highest posterior density intervals of the parameters. Tierney
and Kadane (1986) approximation is also used to obtain Bayes estimators of the parameters. In
order to highlight the relative importance of various estimates obtained, a simulation study is
carried out. The usefulness of the proposed model is illustrated using two real datasets.

Keywords: Extended modified Weibull distribution; Maximum likelihood estimates; Bayesian
estimates; Gibbs sampler; Tierney and Kadane’s approximation; Highest posterior density inter-
vals.
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