Overview of NonParametric Combination-based permutation tests for Multivariate multi-sample problems
DOI:
https://doi.org/10.6092/issn.1973-2201/5303Keywords:
Multivariate multi-sample problems, One-way MANOVA design, NPC methodology, SASAbstract
In this work we present a review on nonparametric combination-based permutation tests along with SAS macros allowing to deal with two-sample and one-way MANOVA design problems, within NonParametric Combination methodology framework. Applications to real case studies are also presented.References
R. ARBORETTI, F. PESARIN, M. ROMERO, L. SALMASO (1999). Sas macro for multivariate and multistrata permutation tests. In Proceedings of SUGItalia 99. pp. 439–51.
R. ARBORETTI, F. PESARIN, M. ROMERO, L. SALMASO (2000). Il progetto setig e la valutazione comparativa delle strategie terapeutiche adottate: metodologia statistica e applicazione. The Italian Journal of Clinical Pharmacy, 14, pp. 26–36.
A. BIRNBAUM (1954). Combining independent tests of significance. Journal of the American Statistical Association, 49, pp. 559–574.
A. BIRNBAUM (1962). On the foundations of statistical inference. Journal of the American Statistical Association, 57, pp. 269–326.
C. BROMBIN, L. SALMASO (2013). Permutation Tests for Shape Analysis. SpringerBriefs in Statistics.
E. EDGINGTON, P. ONGHENA (2007). Randomization Tests, 4th edn. Chapman and Hall/CRC, London.
A. EDWARDS (1972). Likelihood. Cambridge University Press, Cambridge.
B. FLURY (1997). A First Course in Multivariate Statistics. Springer NY.
J. L. FOLKS (1984). Combination of independent tests. In P. R. Krishnaiah, P. K. Sen (eds.), Handbook of Statistics, North-Holland, Amsterdam, vol. 4, pp. 113–121.
P. GOOD (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses, 3rd edn. Springer, New York.
C. GOUTIS, G. CASELLA, M. WELLS (1996). Assessing evidence in multiple hypotheses. Journal of the American Statistical Association, 91, pp. 1268–1277.
M. HOLLANDER, D. WOLFE, E. CHICKEN (2013). Nonparametric Statistical Methods, 3rd edn. Wiley Series in Probability and Statistics. Wiley, Hoboken, New Jersey (USA).
I. LIPTAK (1958). On the combination of independent tests. Magyar Tudomanyos Akademia Matematikai Kutato Intezenek Kozlomenyei, 3, pp. 127–141.
J. MARAIS, G. VERSINI, C. J. VAN WYK, A. RAPP (1992). Effect of region on free and bound monoterpene and c13-norisoprenoid concentration in weisser riesling wines. South African Journal of Enology and Viniculture, 13, pp. 71–77.
J. OOSTERHOFF (1969). Combination of one-sided statistical tests. Mathematical Centre tracts. Mathematisch Centrum.
F. PESARIN (1992). A resampling procedure for nonparametric combination of several dependent tests. Journal of the Italian Statistical Society, 1, pp. 87–101.
F. PESARIN (2001). Multivariate Permutation tests: with application in Biostatistics. John Wiley & Sons: Chichester-New York.
F. PESARIN (2002). Extending permutation conditional inference to unconditional one. Statistical Methods and Applications, 11, pp. 161–173.
F. PESARIN, L. SALMASO (2010a). Finite-sample consistency of combinationbased permutation tests with application to repeated measures designs. Journal of Nonparametric Statistics, 22, pp. 669–684.
F. PESARIN, L. SALMASO (2010b). Permutation Tests for Complex Data: Theory, Applications and Software. Wiley.
F. PESARIN, L. SALMASO (2012). A review and some new results on permutation testing for multivariate problems. Statistics and Computing, 22, pp. 639–646.
P. ROSENBAUM, D. RUBIN (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, pp. 41–55.
P. H. WESTFALL, S. S. YOUNG (1993). Resampling-Based Multiple Testing. Wiley, New York.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Statistica
This work is licensed under a Creative Commons Attribution 3.0 Unported License.